mirror of
https://github.com/RPCS3/llvm.git
synced 2025-05-22 21:35:57 +00:00

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@372113 91177308-0d34-0410-b5e6-96231b3b80d8
4314 lines
158 KiB
C++
4314 lines
158 KiB
C++
//===- Attributor.cpp - Module-wide attribute deduction -------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements an inter procedural pass that deduces and/or propagating
|
|
// attributes. This is done in an abstract interpretation style fixpoint
|
|
// iteration. See the Attributor.h file comment and the class descriptions in
|
|
// that file for more information.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/Attributor.h"
|
|
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/CaptureTracking.h"
|
|
#include "llvm/Analysis/EHPersonalities.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
|
|
#include <cassert>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "attributor"
|
|
|
|
STATISTIC(NumFnWithExactDefinition,
|
|
"Number of function with exact definitions");
|
|
STATISTIC(NumFnWithoutExactDefinition,
|
|
"Number of function without exact definitions");
|
|
STATISTIC(NumAttributesTimedOut,
|
|
"Number of abstract attributes timed out before fixpoint");
|
|
STATISTIC(NumAttributesValidFixpoint,
|
|
"Number of abstract attributes in a valid fixpoint state");
|
|
STATISTIC(NumAttributesManifested,
|
|
"Number of abstract attributes manifested in IR");
|
|
|
|
// Some helper macros to deal with statistics tracking.
|
|
//
|
|
// Usage:
|
|
// For simple IR attribute tracking overload trackStatistics in the abstract
|
|
// attribute and choose the right STATS_DECLTRACK_********* macro,
|
|
// e.g.,:
|
|
// void trackStatistics() const override {
|
|
// STATS_DECLTRACK_ARG_ATTR(returned)
|
|
// }
|
|
// If there is a single "increment" side one can use the macro
|
|
// STATS_DECLTRACK with a custom message. If there are multiple increment
|
|
// sides, STATS_DECL and STATS_TRACK can also be used separatly.
|
|
//
|
|
#define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME) \
|
|
("Number of " #TYPE " marked '" #NAME "'")
|
|
#define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
|
|
#define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
|
|
#define STATS_DECL(NAME, TYPE, MSG) \
|
|
STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
|
|
#define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
|
|
#define STATS_DECLTRACK(NAME, TYPE, MSG) \
|
|
{ \
|
|
STATS_DECL(NAME, TYPE, MSG) \
|
|
STATS_TRACK(NAME, TYPE) \
|
|
}
|
|
#define STATS_DECLTRACK_ARG_ATTR(NAME) \
|
|
STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
|
|
#define STATS_DECLTRACK_CSARG_ATTR(NAME) \
|
|
STATS_DECLTRACK(NAME, CSArguments, \
|
|
BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
|
|
#define STATS_DECLTRACK_FN_ATTR(NAME) \
|
|
STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
|
|
#define STATS_DECLTRACK_CS_ATTR(NAME) \
|
|
STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
|
|
#define STATS_DECLTRACK_FNRET_ATTR(NAME) \
|
|
STATS_DECLTRACK(NAME, FunctionReturn, \
|
|
BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
|
|
#define STATS_DECLTRACK_CSRET_ATTR(NAME) \
|
|
STATS_DECLTRACK(NAME, CSReturn, \
|
|
BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
|
|
#define STATS_DECLTRACK_FLOATING_ATTR(NAME) \
|
|
STATS_DECLTRACK(NAME, Floating, \
|
|
("Number of floating values known to be '" #NAME "'"))
|
|
|
|
// TODO: Determine a good default value.
|
|
//
|
|
// In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
|
|
// (when run with the first 5 abstract attributes). The results also indicate
|
|
// that we never reach 32 iterations but always find a fixpoint sooner.
|
|
//
|
|
// This will become more evolved once we perform two interleaved fixpoint
|
|
// iterations: bottom-up and top-down.
|
|
static cl::opt<unsigned>
|
|
MaxFixpointIterations("attributor-max-iterations", cl::Hidden,
|
|
cl::desc("Maximal number of fixpoint iterations."),
|
|
cl::init(32));
|
|
static cl::opt<bool> VerifyMaxFixpointIterations(
|
|
"attributor-max-iterations-verify", cl::Hidden,
|
|
cl::desc("Verify that max-iterations is a tight bound for a fixpoint"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> DisableAttributor(
|
|
"attributor-disable", cl::Hidden,
|
|
cl::desc("Disable the attributor inter-procedural deduction pass."),
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool> ManifestInternal(
|
|
"attributor-manifest-internal", cl::Hidden,
|
|
cl::desc("Manifest Attributor internal string attributes."),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> VerifyAttributor(
|
|
"attributor-verify", cl::Hidden,
|
|
cl::desc("Verify the Attributor deduction and "
|
|
"manifestation of attributes -- may issue false-positive errors"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<unsigned> DepRecInterval(
|
|
"attributor-dependence-recompute-interval", cl::Hidden,
|
|
cl::desc("Number of iterations until dependences are recomputed."),
|
|
cl::init(4));
|
|
|
|
static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
|
|
cl::init(true), cl::Hidden);
|
|
|
|
static cl::opt<int> MaxHeapToStackSize("max-heap-to-stack-size",
|
|
cl::init(128), cl::Hidden);
|
|
|
|
/// Logic operators for the change status enum class.
|
|
///
|
|
///{
|
|
ChangeStatus llvm::operator|(ChangeStatus l, ChangeStatus r) {
|
|
return l == ChangeStatus::CHANGED ? l : r;
|
|
}
|
|
ChangeStatus llvm::operator&(ChangeStatus l, ChangeStatus r) {
|
|
return l == ChangeStatus::UNCHANGED ? l : r;
|
|
}
|
|
///}
|
|
|
|
/// Recursively visit all values that might become \p IRP at some point. This
|
|
/// will be done by looking through cast instructions, selects, phis, and calls
|
|
/// with the "returned" attribute. Once we cannot look through the value any
|
|
/// further, the callback \p VisitValueCB is invoked and passed the current
|
|
/// value, the \p State, and a flag to indicate if we stripped anything. To
|
|
/// limit how much effort is invested, we will never visit more values than
|
|
/// specified by \p MaxValues.
|
|
template <typename AAType, typename StateTy>
|
|
static bool genericValueTraversal(
|
|
Attributor &A, IRPosition IRP, const AAType &QueryingAA, StateTy &State,
|
|
const function_ref<bool(Value &, StateTy &, bool)> &VisitValueCB,
|
|
int MaxValues = 8) {
|
|
|
|
const AAIsDead *LivenessAA = nullptr;
|
|
if (IRP.getAnchorScope())
|
|
LivenessAA = &A.getAAFor<AAIsDead>(
|
|
QueryingAA, IRPosition::function(*IRP.getAnchorScope()),
|
|
/* TrackDependence */ false);
|
|
bool AnyDead = false;
|
|
|
|
// TODO: Use Positions here to allow context sensitivity in VisitValueCB
|
|
SmallPtrSet<Value *, 16> Visited;
|
|
SmallVector<Value *, 16> Worklist;
|
|
Worklist.push_back(&IRP.getAssociatedValue());
|
|
|
|
int Iteration = 0;
|
|
do {
|
|
Value *V = Worklist.pop_back_val();
|
|
|
|
// Check if we should process the current value. To prevent endless
|
|
// recursion keep a record of the values we followed!
|
|
if (!Visited.insert(V).second)
|
|
continue;
|
|
|
|
// Make sure we limit the compile time for complex expressions.
|
|
if (Iteration++ >= MaxValues)
|
|
return false;
|
|
|
|
// Explicitly look through calls with a "returned" attribute if we do
|
|
// not have a pointer as stripPointerCasts only works on them.
|
|
Value *NewV = nullptr;
|
|
if (V->getType()->isPointerTy()) {
|
|
NewV = V->stripPointerCasts();
|
|
} else {
|
|
CallSite CS(V);
|
|
if (CS && CS.getCalledFunction()) {
|
|
for (Argument &Arg : CS.getCalledFunction()->args())
|
|
if (Arg.hasReturnedAttr()) {
|
|
NewV = CS.getArgOperand(Arg.getArgNo());
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (NewV && NewV != V) {
|
|
Worklist.push_back(NewV);
|
|
continue;
|
|
}
|
|
|
|
// Look through select instructions, visit both potential values.
|
|
if (auto *SI = dyn_cast<SelectInst>(V)) {
|
|
Worklist.push_back(SI->getTrueValue());
|
|
Worklist.push_back(SI->getFalseValue());
|
|
continue;
|
|
}
|
|
|
|
// Look through phi nodes, visit all live operands.
|
|
if (auto *PHI = dyn_cast<PHINode>(V)) {
|
|
assert(LivenessAA &&
|
|
"Expected liveness in the presence of instructions!");
|
|
for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
|
|
const BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
|
|
if (LivenessAA->isAssumedDead(IncomingBB->getTerminator())) {
|
|
AnyDead = true;
|
|
continue;
|
|
}
|
|
Worklist.push_back(PHI->getIncomingValue(u));
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Once a leaf is reached we inform the user through the callback.
|
|
if (!VisitValueCB(*V, State, Iteration > 1))
|
|
return false;
|
|
} while (!Worklist.empty());
|
|
|
|
// If we actually used liveness information so we have to record a dependence.
|
|
if (AnyDead)
|
|
A.recordDependence(*LivenessAA, QueryingAA);
|
|
|
|
// All values have been visited.
|
|
return true;
|
|
}
|
|
|
|
/// Return true if \p New is equal or worse than \p Old.
|
|
static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
|
|
if (!Old.isIntAttribute())
|
|
return true;
|
|
|
|
return Old.getValueAsInt() >= New.getValueAsInt();
|
|
}
|
|
|
|
/// Return true if the information provided by \p Attr was added to the
|
|
/// attribute list \p Attrs. This is only the case if it was not already present
|
|
/// in \p Attrs at the position describe by \p PK and \p AttrIdx.
|
|
static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
|
|
AttributeList &Attrs, int AttrIdx) {
|
|
|
|
if (Attr.isEnumAttribute()) {
|
|
Attribute::AttrKind Kind = Attr.getKindAsEnum();
|
|
if (Attrs.hasAttribute(AttrIdx, Kind))
|
|
if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
|
|
return false;
|
|
Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
|
|
return true;
|
|
}
|
|
if (Attr.isStringAttribute()) {
|
|
StringRef Kind = Attr.getKindAsString();
|
|
if (Attrs.hasAttribute(AttrIdx, Kind))
|
|
if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
|
|
return false;
|
|
Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
|
|
return true;
|
|
}
|
|
if (Attr.isIntAttribute()) {
|
|
Attribute::AttrKind Kind = Attr.getKindAsEnum();
|
|
if (Attrs.hasAttribute(AttrIdx, Kind))
|
|
if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
|
|
return false;
|
|
Attrs = Attrs.removeAttribute(Ctx, AttrIdx, Kind);
|
|
Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
|
|
return true;
|
|
}
|
|
|
|
llvm_unreachable("Expected enum or string attribute!");
|
|
}
|
|
|
|
ChangeStatus AbstractAttribute::update(Attributor &A) {
|
|
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
|
|
if (getState().isAtFixpoint())
|
|
return HasChanged;
|
|
|
|
LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
|
|
|
|
HasChanged = updateImpl(A);
|
|
|
|
LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
|
|
<< "\n");
|
|
|
|
return HasChanged;
|
|
}
|
|
|
|
ChangeStatus
|
|
IRAttributeManifest::manifestAttrs(Attributor &A, IRPosition &IRP,
|
|
const ArrayRef<Attribute> &DeducedAttrs) {
|
|
Function *ScopeFn = IRP.getAssociatedFunction();
|
|
IRPosition::Kind PK = IRP.getPositionKind();
|
|
|
|
// In the following some generic code that will manifest attributes in
|
|
// DeducedAttrs if they improve the current IR. Due to the different
|
|
// annotation positions we use the underlying AttributeList interface.
|
|
|
|
AttributeList Attrs;
|
|
switch (PK) {
|
|
case IRPosition::IRP_INVALID:
|
|
case IRPosition::IRP_FLOAT:
|
|
return ChangeStatus::UNCHANGED;
|
|
case IRPosition::IRP_ARGUMENT:
|
|
case IRPosition::IRP_FUNCTION:
|
|
case IRPosition::IRP_RETURNED:
|
|
Attrs = ScopeFn->getAttributes();
|
|
break;
|
|
case IRPosition::IRP_CALL_SITE:
|
|
case IRPosition::IRP_CALL_SITE_RETURNED:
|
|
case IRPosition::IRP_CALL_SITE_ARGUMENT:
|
|
Attrs = ImmutableCallSite(&IRP.getAnchorValue()).getAttributes();
|
|
break;
|
|
}
|
|
|
|
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
|
|
LLVMContext &Ctx = IRP.getAnchorValue().getContext();
|
|
for (const Attribute &Attr : DeducedAttrs) {
|
|
if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx()))
|
|
continue;
|
|
|
|
HasChanged = ChangeStatus::CHANGED;
|
|
}
|
|
|
|
if (HasChanged == ChangeStatus::UNCHANGED)
|
|
return HasChanged;
|
|
|
|
switch (PK) {
|
|
case IRPosition::IRP_ARGUMENT:
|
|
case IRPosition::IRP_FUNCTION:
|
|
case IRPosition::IRP_RETURNED:
|
|
ScopeFn->setAttributes(Attrs);
|
|
break;
|
|
case IRPosition::IRP_CALL_SITE:
|
|
case IRPosition::IRP_CALL_SITE_RETURNED:
|
|
case IRPosition::IRP_CALL_SITE_ARGUMENT:
|
|
CallSite(&IRP.getAnchorValue()).setAttributes(Attrs);
|
|
break;
|
|
case IRPosition::IRP_INVALID:
|
|
case IRPosition::IRP_FLOAT:
|
|
break;
|
|
}
|
|
|
|
return HasChanged;
|
|
}
|
|
|
|
const IRPosition IRPosition::EmptyKey(255);
|
|
const IRPosition IRPosition::TombstoneKey(256);
|
|
|
|
SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
|
|
IRPositions.emplace_back(IRP);
|
|
|
|
ImmutableCallSite ICS(&IRP.getAnchorValue());
|
|
switch (IRP.getPositionKind()) {
|
|
case IRPosition::IRP_INVALID:
|
|
case IRPosition::IRP_FLOAT:
|
|
case IRPosition::IRP_FUNCTION:
|
|
return;
|
|
case IRPosition::IRP_ARGUMENT:
|
|
case IRPosition::IRP_RETURNED:
|
|
IRPositions.emplace_back(
|
|
IRPosition::function(*IRP.getAssociatedFunction()));
|
|
return;
|
|
case IRPosition::IRP_CALL_SITE:
|
|
assert(ICS && "Expected call site!");
|
|
// TODO: We need to look at the operand bundles similar to the redirection
|
|
// in CallBase.
|
|
if (!ICS.hasOperandBundles())
|
|
if (const Function *Callee = ICS.getCalledFunction())
|
|
IRPositions.emplace_back(IRPosition::function(*Callee));
|
|
return;
|
|
case IRPosition::IRP_CALL_SITE_RETURNED:
|
|
assert(ICS && "Expected call site!");
|
|
// TODO: We need to look at the operand bundles similar to the redirection
|
|
// in CallBase.
|
|
if (!ICS.hasOperandBundles()) {
|
|
if (const Function *Callee = ICS.getCalledFunction()) {
|
|
IRPositions.emplace_back(IRPosition::returned(*Callee));
|
|
IRPositions.emplace_back(IRPosition::function(*Callee));
|
|
}
|
|
}
|
|
IRPositions.emplace_back(
|
|
IRPosition::callsite_function(cast<CallBase>(*ICS.getInstruction())));
|
|
return;
|
|
case IRPosition::IRP_CALL_SITE_ARGUMENT: {
|
|
int ArgNo = IRP.getArgNo();
|
|
assert(ICS && ArgNo >= 0 && "Expected call site!");
|
|
// TODO: We need to look at the operand bundles similar to the redirection
|
|
// in CallBase.
|
|
if (!ICS.hasOperandBundles()) {
|
|
const Function *Callee = ICS.getCalledFunction();
|
|
if (Callee && Callee->arg_size() > unsigned(ArgNo))
|
|
IRPositions.emplace_back(IRPosition::argument(*Callee->getArg(ArgNo)));
|
|
if (Callee)
|
|
IRPositions.emplace_back(IRPosition::function(*Callee));
|
|
}
|
|
IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs) const {
|
|
for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this))
|
|
for (Attribute::AttrKind AK : AKs)
|
|
if (EquivIRP.getAttr(AK).getKindAsEnum() == AK)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
|
|
SmallVectorImpl<Attribute> &Attrs) const {
|
|
for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this))
|
|
for (Attribute::AttrKind AK : AKs) {
|
|
const Attribute &Attr = EquivIRP.getAttr(AK);
|
|
if (Attr.getKindAsEnum() == AK)
|
|
Attrs.push_back(Attr);
|
|
}
|
|
}
|
|
|
|
void IRPosition::verify() {
|
|
switch (KindOrArgNo) {
|
|
default:
|
|
assert(KindOrArgNo >= 0 && "Expected argument or call site argument!");
|
|
assert((isa<CallBase>(AnchorVal) || isa<Argument>(AnchorVal)) &&
|
|
"Expected call base or argument for positive attribute index!");
|
|
if (isa<Argument>(AnchorVal)) {
|
|
assert(cast<Argument>(AnchorVal)->getArgNo() == unsigned(getArgNo()) &&
|
|
"Argument number mismatch!");
|
|
assert(cast<Argument>(AnchorVal) == &getAssociatedValue() &&
|
|
"Associated value mismatch!");
|
|
} else {
|
|
assert(cast<CallBase>(*AnchorVal).arg_size() > unsigned(getArgNo()) &&
|
|
"Call site argument number mismatch!");
|
|
assert(cast<CallBase>(*AnchorVal).getArgOperand(getArgNo()) ==
|
|
&getAssociatedValue() &&
|
|
"Associated value mismatch!");
|
|
}
|
|
break;
|
|
case IRP_INVALID:
|
|
assert(!AnchorVal && "Expected no value for an invalid position!");
|
|
break;
|
|
case IRP_FLOAT:
|
|
assert((!isa<CallBase>(&getAssociatedValue()) &&
|
|
!isa<Argument>(&getAssociatedValue())) &&
|
|
"Expected specialized kind for call base and argument values!");
|
|
break;
|
|
case IRP_RETURNED:
|
|
assert(isa<Function>(AnchorVal) &&
|
|
"Expected function for a 'returned' position!");
|
|
assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
|
|
break;
|
|
case IRP_CALL_SITE_RETURNED:
|
|
assert((isa<CallBase>(AnchorVal)) &&
|
|
"Expected call base for 'call site returned' position!");
|
|
assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
|
|
break;
|
|
case IRP_CALL_SITE:
|
|
assert((isa<CallBase>(AnchorVal)) &&
|
|
"Expected call base for 'call site function' position!");
|
|
assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
|
|
break;
|
|
case IRP_FUNCTION:
|
|
assert(isa<Function>(AnchorVal) &&
|
|
"Expected function for a 'function' position!");
|
|
assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
|
|
break;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
/// Helper functions to clamp a state \p S of type \p StateType with the
|
|
/// information in \p R and indicate/return if \p S did change (as-in update is
|
|
/// required to be run again).
|
|
///
|
|
///{
|
|
template <typename StateType>
|
|
ChangeStatus clampStateAndIndicateChange(StateType &S, const StateType &R);
|
|
|
|
template <>
|
|
ChangeStatus clampStateAndIndicateChange<IntegerState>(IntegerState &S,
|
|
const IntegerState &R) {
|
|
auto Assumed = S.getAssumed();
|
|
S ^= R;
|
|
return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
|
|
: ChangeStatus::CHANGED;
|
|
}
|
|
|
|
template <>
|
|
ChangeStatus clampStateAndIndicateChange<BooleanState>(BooleanState &S,
|
|
const BooleanState &R) {
|
|
return clampStateAndIndicateChange<IntegerState>(S, R);
|
|
}
|
|
///}
|
|
|
|
/// Clamp the information known for all returned values of a function
|
|
/// (identified by \p QueryingAA) into \p S.
|
|
template <typename AAType, typename StateType = typename AAType::StateType>
|
|
static void clampReturnedValueStates(Attributor &A, const AAType &QueryingAA,
|
|
StateType &S) {
|
|
LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
|
|
<< static_cast<const AbstractAttribute &>(QueryingAA)
|
|
<< " into " << S << "\n");
|
|
|
|
assert((QueryingAA.getIRPosition().getPositionKind() ==
|
|
IRPosition::IRP_RETURNED ||
|
|
QueryingAA.getIRPosition().getPositionKind() ==
|
|
IRPosition::IRP_CALL_SITE_RETURNED) &&
|
|
"Can only clamp returned value states for a function returned or call "
|
|
"site returned position!");
|
|
|
|
// Use an optional state as there might not be any return values and we want
|
|
// to join (IntegerState::operator&) the state of all there are.
|
|
Optional<StateType> T;
|
|
|
|
// Callback for each possibly returned value.
|
|
auto CheckReturnValue = [&](Value &RV) -> bool {
|
|
const IRPosition &RVPos = IRPosition::value(RV);
|
|
const AAType &AA = A.getAAFor<AAType>(QueryingAA, RVPos);
|
|
LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
|
|
<< " @ " << RVPos << "\n");
|
|
const StateType &AAS = static_cast<const StateType &>(AA.getState());
|
|
if (T.hasValue())
|
|
*T &= AAS;
|
|
else
|
|
T = AAS;
|
|
LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
|
|
<< "\n");
|
|
return T->isValidState();
|
|
};
|
|
|
|
if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
|
|
S.indicatePessimisticFixpoint();
|
|
else if (T.hasValue())
|
|
S ^= *T;
|
|
}
|
|
|
|
/// Helper class for generic deduction: return value -> returned position.
|
|
template <typename AAType, typename Base,
|
|
typename StateType = typename AAType::StateType>
|
|
struct AAReturnedFromReturnedValues : public Base {
|
|
AAReturnedFromReturnedValues(const IRPosition &IRP) : Base(IRP) {}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
StateType S;
|
|
clampReturnedValueStates<AAType, StateType>(A, *this, S);
|
|
// TODO: If we know we visited all returned values, thus no are assumed
|
|
// dead, we can take the known information from the state T.
|
|
return clampStateAndIndicateChange<StateType>(this->getState(), S);
|
|
}
|
|
};
|
|
|
|
/// Clamp the information known at all call sites for a given argument
|
|
/// (identified by \p QueryingAA) into \p S.
|
|
template <typename AAType, typename StateType = typename AAType::StateType>
|
|
static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
|
|
StateType &S) {
|
|
LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
|
|
<< static_cast<const AbstractAttribute &>(QueryingAA)
|
|
<< " into " << S << "\n");
|
|
|
|
assert(QueryingAA.getIRPosition().getPositionKind() ==
|
|
IRPosition::IRP_ARGUMENT &&
|
|
"Can only clamp call site argument states for an argument position!");
|
|
|
|
// Use an optional state as there might not be any return values and we want
|
|
// to join (IntegerState::operator&) the state of all there are.
|
|
Optional<StateType> T;
|
|
|
|
// The argument number which is also the call site argument number.
|
|
unsigned ArgNo = QueryingAA.getIRPosition().getArgNo();
|
|
|
|
auto CallSiteCheck = [&](CallSite CS) {
|
|
const IRPosition &CSArgPos = IRPosition::callsite_argument(CS, ArgNo);
|
|
const AAType &AA = A.getAAFor<AAType>(QueryingAA, CSArgPos);
|
|
LLVM_DEBUG(dbgs() << "[Attributor] CS: " << *CS.getInstruction()
|
|
<< " AA: " << AA.getAsStr() << " @" << CSArgPos << "\n");
|
|
const StateType &AAS = static_cast<const StateType &>(AA.getState());
|
|
if (T.hasValue())
|
|
*T &= AAS;
|
|
else
|
|
T = AAS;
|
|
LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
|
|
<< "\n");
|
|
return T->isValidState();
|
|
};
|
|
|
|
if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true))
|
|
S.indicatePessimisticFixpoint();
|
|
else if (T.hasValue())
|
|
S ^= *T;
|
|
}
|
|
|
|
/// Helper class for generic deduction: call site argument -> argument position.
|
|
template <typename AAType, typename Base,
|
|
typename StateType = typename AAType::StateType>
|
|
struct AAArgumentFromCallSiteArguments : public Base {
|
|
AAArgumentFromCallSiteArguments(const IRPosition &IRP) : Base(IRP) {}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
StateType S;
|
|
clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
|
|
// TODO: If we know we visited all incoming values, thus no are assumed
|
|
// dead, we can take the known information from the state T.
|
|
return clampStateAndIndicateChange<StateType>(this->getState(), S);
|
|
}
|
|
};
|
|
|
|
/// Helper class for generic replication: function returned -> cs returned.
|
|
template <typename AAType, typename Base>
|
|
struct AACallSiteReturnedFromReturned : public Base {
|
|
AACallSiteReturnedFromReturned(const IRPosition &IRP) : Base(IRP) {}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
assert(this->getIRPosition().getPositionKind() ==
|
|
IRPosition::IRP_CALL_SITE_RETURNED &&
|
|
"Can only wrap function returned positions for call site returned "
|
|
"positions!");
|
|
auto &S = this->getState();
|
|
|
|
const Function *AssociatedFunction =
|
|
this->getIRPosition().getAssociatedFunction();
|
|
if (!AssociatedFunction)
|
|
return S.indicatePessimisticFixpoint();
|
|
|
|
IRPosition FnPos = IRPosition::returned(*AssociatedFunction);
|
|
const AAType &AA = A.getAAFor<AAType>(*this, FnPos);
|
|
return clampStateAndIndicateChange(
|
|
S, static_cast<const typename AAType::StateType &>(AA.getState()));
|
|
}
|
|
};
|
|
|
|
/// -----------------------NoUnwind Function Attribute--------------------------
|
|
|
|
struct AANoUnwindImpl : AANoUnwind {
|
|
AANoUnwindImpl(const IRPosition &IRP) : AANoUnwind(IRP) {}
|
|
|
|
const std::string getAsStr() const override {
|
|
return getAssumed() ? "nounwind" : "may-unwind";
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
auto Opcodes = {
|
|
(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
|
|
(unsigned)Instruction::Call, (unsigned)Instruction::CleanupRet,
|
|
(unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
|
|
|
|
auto CheckForNoUnwind = [&](Instruction &I) {
|
|
if (!I.mayThrow())
|
|
return true;
|
|
|
|
if (ImmutableCallSite ICS = ImmutableCallSite(&I)) {
|
|
const auto &NoUnwindAA =
|
|
A.getAAFor<AANoUnwind>(*this, IRPosition::callsite_function(ICS));
|
|
return NoUnwindAA.isAssumedNoUnwind();
|
|
}
|
|
return false;
|
|
};
|
|
|
|
if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes))
|
|
return indicatePessimisticFixpoint();
|
|
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
};
|
|
|
|
struct AANoUnwindFunction final : public AANoUnwindImpl {
|
|
AANoUnwindFunction(const IRPosition &IRP) : AANoUnwindImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
|
|
};
|
|
|
|
/// NoUnwind attribute deduction for a call sites.
|
|
struct AANoUnwindCallSite final : AANoUnwindImpl {
|
|
AANoUnwindCallSite(const IRPosition &IRP) : AANoUnwindImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
AANoUnwindImpl::initialize(A);
|
|
Function *F = getAssociatedFunction();
|
|
if (!F)
|
|
indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
// TODO: Once we have call site specific value information we can provide
|
|
// call site specific liveness information and then it makes
|
|
// sense to specialize attributes for call sites arguments instead of
|
|
// redirecting requests to the callee argument.
|
|
Function *F = getAssociatedFunction();
|
|
const IRPosition &FnPos = IRPosition::function(*F);
|
|
auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos);
|
|
return clampStateAndIndicateChange(
|
|
getState(),
|
|
static_cast<const AANoUnwind::StateType &>(FnAA.getState()));
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
|
|
};
|
|
|
|
/// --------------------- Function Return Values -------------------------------
|
|
|
|
/// "Attribute" that collects all potential returned values and the return
|
|
/// instructions that they arise from.
|
|
///
|
|
/// If there is a unique returned value R, the manifest method will:
|
|
/// - mark R with the "returned" attribute, if R is an argument.
|
|
class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
|
|
|
|
/// Mapping of values potentially returned by the associated function to the
|
|
/// return instructions that might return them.
|
|
MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
|
|
|
|
/// Mapping to remember the number of returned values for a call site such
|
|
/// that we can avoid updates if nothing changed.
|
|
DenseMap<const CallBase *, unsigned> NumReturnedValuesPerKnownAA;
|
|
|
|
/// Set of unresolved calls returned by the associated function.
|
|
SmallSetVector<CallBase *, 4> UnresolvedCalls;
|
|
|
|
/// State flags
|
|
///
|
|
///{
|
|
bool IsFixed = false;
|
|
bool IsValidState = true;
|
|
///}
|
|
|
|
public:
|
|
AAReturnedValuesImpl(const IRPosition &IRP) : AAReturnedValues(IRP) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
// Reset the state.
|
|
IsFixed = false;
|
|
IsValidState = true;
|
|
ReturnedValues.clear();
|
|
|
|
Function *F = getAssociatedFunction();
|
|
if (!F) {
|
|
indicatePessimisticFixpoint();
|
|
return;
|
|
}
|
|
|
|
// The map from instruction opcodes to those instructions in the function.
|
|
auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
|
|
|
|
// Look through all arguments, if one is marked as returned we are done.
|
|
for (Argument &Arg : F->args()) {
|
|
if (Arg.hasReturnedAttr()) {
|
|
auto &ReturnInstSet = ReturnedValues[&Arg];
|
|
for (Instruction *RI : OpcodeInstMap[Instruction::Ret])
|
|
ReturnInstSet.insert(cast<ReturnInst>(RI));
|
|
|
|
indicateOptimisticFixpoint();
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!F->hasExactDefinition())
|
|
indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractAttribute::manifest(...).
|
|
ChangeStatus manifest(Attributor &A) override;
|
|
|
|
/// See AbstractAttribute::getState(...).
|
|
AbstractState &getState() override { return *this; }
|
|
|
|
/// See AbstractAttribute::getState(...).
|
|
const AbstractState &getState() const override { return *this; }
|
|
|
|
/// See AbstractAttribute::updateImpl(Attributor &A).
|
|
ChangeStatus updateImpl(Attributor &A) override;
|
|
|
|
llvm::iterator_range<iterator> returned_values() override {
|
|
return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
|
|
}
|
|
|
|
llvm::iterator_range<const_iterator> returned_values() const override {
|
|
return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
|
|
}
|
|
|
|
const SmallSetVector<CallBase *, 4> &getUnresolvedCalls() const override {
|
|
return UnresolvedCalls;
|
|
}
|
|
|
|
/// Return the number of potential return values, -1 if unknown.
|
|
size_t getNumReturnValues() const override {
|
|
return isValidState() ? ReturnedValues.size() : -1;
|
|
}
|
|
|
|
/// Return an assumed unique return value if a single candidate is found. If
|
|
/// there cannot be one, return a nullptr. If it is not clear yet, return the
|
|
/// Optional::NoneType.
|
|
Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
|
|
|
|
/// See AbstractState::checkForAllReturnedValues(...).
|
|
bool checkForAllReturnedValuesAndReturnInsts(
|
|
const function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)>
|
|
&Pred) const override;
|
|
|
|
/// Pretty print the attribute similar to the IR representation.
|
|
const std::string getAsStr() const override;
|
|
|
|
/// See AbstractState::isAtFixpoint().
|
|
bool isAtFixpoint() const override { return IsFixed; }
|
|
|
|
/// See AbstractState::isValidState().
|
|
bool isValidState() const override { return IsValidState; }
|
|
|
|
/// See AbstractState::indicateOptimisticFixpoint(...).
|
|
ChangeStatus indicateOptimisticFixpoint() override {
|
|
IsFixed = true;
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
ChangeStatus indicatePessimisticFixpoint() override {
|
|
IsFixed = true;
|
|
IsValidState = false;
|
|
return ChangeStatus::CHANGED;
|
|
}
|
|
};
|
|
|
|
ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
|
|
ChangeStatus Changed = ChangeStatus::UNCHANGED;
|
|
|
|
// Bookkeeping.
|
|
assert(isValidState());
|
|
STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
|
|
"Number of function with known return values");
|
|
|
|
// Check if we have an assumed unique return value that we could manifest.
|
|
Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
|
|
|
|
if (!UniqueRV.hasValue() || !UniqueRV.getValue())
|
|
return Changed;
|
|
|
|
// Bookkeeping.
|
|
STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
|
|
"Number of function with unique return");
|
|
|
|
// Callback to replace the uses of CB with the constant C.
|
|
auto ReplaceCallSiteUsersWith = [](CallBase &CB, Constant &C) {
|
|
if (CB.getNumUses() == 0)
|
|
return ChangeStatus::UNCHANGED;
|
|
CB.replaceAllUsesWith(&C);
|
|
return ChangeStatus::CHANGED;
|
|
};
|
|
|
|
// If the assumed unique return value is an argument, annotate it.
|
|
if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
|
|
getIRPosition() = IRPosition::argument(*UniqueRVArg);
|
|
Changed = IRAttribute::manifest(A);
|
|
} else if (auto *RVC = dyn_cast<Constant>(UniqueRV.getValue())) {
|
|
// We can replace the returned value with the unique returned constant.
|
|
Value &AnchorValue = getAnchorValue();
|
|
if (Function *F = dyn_cast<Function>(&AnchorValue)) {
|
|
for (const Use &U : F->uses())
|
|
if (CallBase *CB = dyn_cast<CallBase>(U.getUser()))
|
|
if (CB->isCallee(&U)) {
|
|
Constant *RVCCast =
|
|
ConstantExpr::getTruncOrBitCast(RVC, CB->getType());
|
|
Changed = ReplaceCallSiteUsersWith(*CB, *RVCCast) | Changed;
|
|
}
|
|
} else {
|
|
assert(isa<CallBase>(AnchorValue) &&
|
|
"Expcected a function or call base anchor!");
|
|
Constant *RVCCast =
|
|
ConstantExpr::getTruncOrBitCast(RVC, AnchorValue.getType());
|
|
Changed = ReplaceCallSiteUsersWith(cast<CallBase>(AnchorValue), *RVCCast);
|
|
}
|
|
if (Changed == ChangeStatus::CHANGED)
|
|
STATS_DECLTRACK(UniqueConstantReturnValue, FunctionReturn,
|
|
"Number of function returns replaced by constant return");
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
const std::string AAReturnedValuesImpl::getAsStr() const {
|
|
return (isAtFixpoint() ? "returns(#" : "may-return(#") +
|
|
(isValidState() ? std::to_string(getNumReturnValues()) : "?") +
|
|
")[#UC: " + std::to_string(UnresolvedCalls.size()) + "]";
|
|
}
|
|
|
|
Optional<Value *>
|
|
AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
|
|
// If checkForAllReturnedValues provides a unique value, ignoring potential
|
|
// undef values that can also be present, it is assumed to be the actual
|
|
// return value and forwarded to the caller of this method. If there are
|
|
// multiple, a nullptr is returned indicating there cannot be a unique
|
|
// returned value.
|
|
Optional<Value *> UniqueRV;
|
|
|
|
auto Pred = [&](Value &RV) -> bool {
|
|
// If we found a second returned value and neither the current nor the saved
|
|
// one is an undef, there is no unique returned value. Undefs are special
|
|
// since we can pretend they have any value.
|
|
if (UniqueRV.hasValue() && UniqueRV != &RV &&
|
|
!(isa<UndefValue>(RV) || isa<UndefValue>(UniqueRV.getValue()))) {
|
|
UniqueRV = nullptr;
|
|
return false;
|
|
}
|
|
|
|
// Do not overwrite a value with an undef.
|
|
if (!UniqueRV.hasValue() || !isa<UndefValue>(RV))
|
|
UniqueRV = &RV;
|
|
|
|
return true;
|
|
};
|
|
|
|
if (!A.checkForAllReturnedValues(Pred, *this))
|
|
UniqueRV = nullptr;
|
|
|
|
return UniqueRV;
|
|
}
|
|
|
|
bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
|
|
const function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)>
|
|
&Pred) const {
|
|
if (!isValidState())
|
|
return false;
|
|
|
|
// Check all returned values but ignore call sites as long as we have not
|
|
// encountered an overdefined one during an update.
|
|
for (auto &It : ReturnedValues) {
|
|
Value *RV = It.first;
|
|
|
|
CallBase *CB = dyn_cast<CallBase>(RV);
|
|
if (CB && !UnresolvedCalls.count(CB))
|
|
continue;
|
|
|
|
if (!Pred(*RV, It.second))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
|
|
size_t NumUnresolvedCalls = UnresolvedCalls.size();
|
|
bool Changed = false;
|
|
|
|
// State used in the value traversals starting in returned values.
|
|
struct RVState {
|
|
// The map in which we collect return values -> return instrs.
|
|
decltype(ReturnedValues) &RetValsMap;
|
|
// The flag to indicate a change.
|
|
bool &Changed;
|
|
// The return instrs we come from.
|
|
SmallSetVector<ReturnInst *, 4> RetInsts;
|
|
};
|
|
|
|
// Callback for a leaf value returned by the associated function.
|
|
auto VisitValueCB = [](Value &Val, RVState &RVS, bool) -> bool {
|
|
auto Size = RVS.RetValsMap[&Val].size();
|
|
RVS.RetValsMap[&Val].insert(RVS.RetInsts.begin(), RVS.RetInsts.end());
|
|
bool Inserted = RVS.RetValsMap[&Val].size() != Size;
|
|
RVS.Changed |= Inserted;
|
|
LLVM_DEBUG({
|
|
if (Inserted)
|
|
dbgs() << "[AAReturnedValues] 1 Add new returned value " << Val
|
|
<< " => " << RVS.RetInsts.size() << "\n";
|
|
});
|
|
return true;
|
|
};
|
|
|
|
// Helper method to invoke the generic value traversal.
|
|
auto VisitReturnedValue = [&](Value &RV, RVState &RVS) {
|
|
IRPosition RetValPos = IRPosition::value(RV);
|
|
return genericValueTraversal<AAReturnedValues, RVState>(A, RetValPos, *this,
|
|
RVS, VisitValueCB);
|
|
};
|
|
|
|
// Callback for all "return intructions" live in the associated function.
|
|
auto CheckReturnInst = [this, &VisitReturnedValue, &Changed](Instruction &I) {
|
|
ReturnInst &Ret = cast<ReturnInst>(I);
|
|
RVState RVS({ReturnedValues, Changed, {}});
|
|
RVS.RetInsts.insert(&Ret);
|
|
return VisitReturnedValue(*Ret.getReturnValue(), RVS);
|
|
};
|
|
|
|
// Start by discovering returned values from all live returned instructions in
|
|
// the associated function.
|
|
if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}))
|
|
return indicatePessimisticFixpoint();
|
|
|
|
// Once returned values "directly" present in the code are handled we try to
|
|
// resolve returned calls.
|
|
decltype(ReturnedValues) NewRVsMap;
|
|
for (auto &It : ReturnedValues) {
|
|
LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned value: " << *It.first
|
|
<< " by #" << It.second.size() << " RIs\n");
|
|
CallBase *CB = dyn_cast<CallBase>(It.first);
|
|
if (!CB || UnresolvedCalls.count(CB))
|
|
continue;
|
|
|
|
if (!CB->getCalledFunction()) {
|
|
LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB
|
|
<< "\n");
|
|
UnresolvedCalls.insert(CB);
|
|
continue;
|
|
}
|
|
|
|
// TODO: use the function scope once we have call site AAReturnedValues.
|
|
const auto &RetValAA = A.getAAFor<AAReturnedValues>(
|
|
*this, IRPosition::function(*CB->getCalledFunction()));
|
|
LLVM_DEBUG(dbgs() << "[AAReturnedValues] Found another AAReturnedValues: "
|
|
<< static_cast<const AbstractAttribute &>(RetValAA)
|
|
<< "\n");
|
|
|
|
// Skip dead ends, thus if we do not know anything about the returned
|
|
// call we mark it as unresolved and it will stay that way.
|
|
if (!RetValAA.getState().isValidState()) {
|
|
LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB
|
|
<< "\n");
|
|
UnresolvedCalls.insert(CB);
|
|
continue;
|
|
}
|
|
|
|
// Do not try to learn partial information. If the callee has unresolved
|
|
// return values we will treat the call as unresolved/opaque.
|
|
auto &RetValAAUnresolvedCalls = RetValAA.getUnresolvedCalls();
|
|
if (!RetValAAUnresolvedCalls.empty()) {
|
|
UnresolvedCalls.insert(CB);
|
|
continue;
|
|
}
|
|
|
|
// Now check if we can track transitively returned values. If possible, thus
|
|
// if all return value can be represented in the current scope, do so.
|
|
bool Unresolved = false;
|
|
for (auto &RetValAAIt : RetValAA.returned_values()) {
|
|
Value *RetVal = RetValAAIt.first;
|
|
if (isa<Argument>(RetVal) || isa<CallBase>(RetVal) ||
|
|
isa<Constant>(RetVal))
|
|
continue;
|
|
// Anything that did not fit in the above categories cannot be resolved,
|
|
// mark the call as unresolved.
|
|
LLVM_DEBUG(dbgs() << "[AAReturnedValues] transitively returned value "
|
|
"cannot be translated: "
|
|
<< *RetVal << "\n");
|
|
UnresolvedCalls.insert(CB);
|
|
Unresolved = true;
|
|
break;
|
|
}
|
|
|
|
if (Unresolved)
|
|
continue;
|
|
|
|
// Now track transitively returned values.
|
|
unsigned &NumRetAA = NumReturnedValuesPerKnownAA[CB];
|
|
if (NumRetAA == RetValAA.getNumReturnValues()) {
|
|
LLVM_DEBUG(dbgs() << "[AAReturnedValues] Skip call as it has not "
|
|
"changed since it was seen last\n");
|
|
continue;
|
|
}
|
|
NumRetAA = RetValAA.getNumReturnValues();
|
|
|
|
for (auto &RetValAAIt : RetValAA.returned_values()) {
|
|
Value *RetVal = RetValAAIt.first;
|
|
if (Argument *Arg = dyn_cast<Argument>(RetVal)) {
|
|
// Arguments are mapped to call site operands and we begin the traversal
|
|
// again.
|
|
bool Unused = false;
|
|
RVState RVS({NewRVsMap, Unused, RetValAAIt.second});
|
|
VisitReturnedValue(*CB->getArgOperand(Arg->getArgNo()), RVS);
|
|
continue;
|
|
} else if (isa<CallBase>(RetVal)) {
|
|
// Call sites are resolved by the callee attribute over time, no need to
|
|
// do anything for us.
|
|
continue;
|
|
} else if (isa<Constant>(RetVal)) {
|
|
// Constants are valid everywhere, we can simply take them.
|
|
NewRVsMap[RetVal].insert(It.second.begin(), It.second.end());
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// To avoid modifications to the ReturnedValues map while we iterate over it
|
|
// we kept record of potential new entries in a copy map, NewRVsMap.
|
|
for (auto &It : NewRVsMap) {
|
|
assert(!It.second.empty() && "Entry does not add anything.");
|
|
auto &ReturnInsts = ReturnedValues[It.first];
|
|
for (ReturnInst *RI : It.second)
|
|
if (ReturnInsts.insert(RI)) {
|
|
LLVM_DEBUG(dbgs() << "[AAReturnedValues] Add new returned value "
|
|
<< *It.first << " => " << *RI << "\n");
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
Changed |= (NumUnresolvedCalls != UnresolvedCalls.size());
|
|
return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
|
|
AAReturnedValuesFunction(const IRPosition &IRP) : AAReturnedValuesImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
|
|
};
|
|
|
|
/// Returned values information for a call sites.
|
|
struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
|
|
AAReturnedValuesCallSite(const IRPosition &IRP) : AAReturnedValuesImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
// TODO: Once we have call site specific value information we can provide
|
|
// call site specific liveness information and then it makes
|
|
// sense to specialize attributes for call sites instead of
|
|
// redirecting requests to the callee.
|
|
llvm_unreachable("Abstract attributes for returned values are not "
|
|
"supported for call sites yet!");
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
return indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override {}
|
|
};
|
|
|
|
/// ------------------------ NoSync Function Attribute -------------------------
|
|
|
|
struct AANoSyncImpl : AANoSync {
|
|
AANoSyncImpl(const IRPosition &IRP) : AANoSync(IRP) {}
|
|
|
|
const std::string getAsStr() const override {
|
|
return getAssumed() ? "nosync" : "may-sync";
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override;
|
|
|
|
/// Helper function used to determine whether an instruction is non-relaxed
|
|
/// atomic. In other words, if an atomic instruction does not have unordered
|
|
/// or monotonic ordering
|
|
static bool isNonRelaxedAtomic(Instruction *I);
|
|
|
|
/// Helper function used to determine whether an instruction is volatile.
|
|
static bool isVolatile(Instruction *I);
|
|
|
|
/// Helper function uset to check if intrinsic is volatile (memcpy, memmove,
|
|
/// memset).
|
|
static bool isNoSyncIntrinsic(Instruction *I);
|
|
};
|
|
|
|
bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) {
|
|
if (!I->isAtomic())
|
|
return false;
|
|
|
|
AtomicOrdering Ordering;
|
|
switch (I->getOpcode()) {
|
|
case Instruction::AtomicRMW:
|
|
Ordering = cast<AtomicRMWInst>(I)->getOrdering();
|
|
break;
|
|
case Instruction::Store:
|
|
Ordering = cast<StoreInst>(I)->getOrdering();
|
|
break;
|
|
case Instruction::Load:
|
|
Ordering = cast<LoadInst>(I)->getOrdering();
|
|
break;
|
|
case Instruction::Fence: {
|
|
auto *FI = cast<FenceInst>(I);
|
|
if (FI->getSyncScopeID() == SyncScope::SingleThread)
|
|
return false;
|
|
Ordering = FI->getOrdering();
|
|
break;
|
|
}
|
|
case Instruction::AtomicCmpXchg: {
|
|
AtomicOrdering Success = cast<AtomicCmpXchgInst>(I)->getSuccessOrdering();
|
|
AtomicOrdering Failure = cast<AtomicCmpXchgInst>(I)->getFailureOrdering();
|
|
// Only if both are relaxed, than it can be treated as relaxed.
|
|
// Otherwise it is non-relaxed.
|
|
if (Success != AtomicOrdering::Unordered &&
|
|
Success != AtomicOrdering::Monotonic)
|
|
return true;
|
|
if (Failure != AtomicOrdering::Unordered &&
|
|
Failure != AtomicOrdering::Monotonic)
|
|
return true;
|
|
return false;
|
|
}
|
|
default:
|
|
llvm_unreachable(
|
|
"New atomic operations need to be known in the attributor.");
|
|
}
|
|
|
|
// Relaxed.
|
|
if (Ordering == AtomicOrdering::Unordered ||
|
|
Ordering == AtomicOrdering::Monotonic)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Checks if an intrinsic is nosync. Currently only checks mem* intrinsics.
|
|
/// FIXME: We should ipmrove the handling of intrinsics.
|
|
bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) {
|
|
if (auto *II = dyn_cast<IntrinsicInst>(I)) {
|
|
switch (II->getIntrinsicID()) {
|
|
/// Element wise atomic memory intrinsics are can only be unordered,
|
|
/// therefore nosync.
|
|
case Intrinsic::memset_element_unordered_atomic:
|
|
case Intrinsic::memmove_element_unordered_atomic:
|
|
case Intrinsic::memcpy_element_unordered_atomic:
|
|
return true;
|
|
case Intrinsic::memset:
|
|
case Intrinsic::memmove:
|
|
case Intrinsic::memcpy:
|
|
if (!cast<MemIntrinsic>(II)->isVolatile())
|
|
return true;
|
|
return false;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool AANoSyncImpl::isVolatile(Instruction *I) {
|
|
assert(!ImmutableCallSite(I) && !isa<CallBase>(I) &&
|
|
"Calls should not be checked here");
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::AtomicRMW:
|
|
return cast<AtomicRMWInst>(I)->isVolatile();
|
|
case Instruction::Store:
|
|
return cast<StoreInst>(I)->isVolatile();
|
|
case Instruction::Load:
|
|
return cast<LoadInst>(I)->isVolatile();
|
|
case Instruction::AtomicCmpXchg:
|
|
return cast<AtomicCmpXchgInst>(I)->isVolatile();
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
|
|
|
|
auto CheckRWInstForNoSync = [&](Instruction &I) {
|
|
/// We are looking for volatile instructions or Non-Relaxed atomics.
|
|
/// FIXME: We should ipmrove the handling of intrinsics.
|
|
|
|
if (isa<IntrinsicInst>(&I) && isNoSyncIntrinsic(&I))
|
|
return true;
|
|
|
|
if (ImmutableCallSite ICS = ImmutableCallSite(&I)) {
|
|
if (ICS.hasFnAttr(Attribute::NoSync))
|
|
return true;
|
|
|
|
const auto &NoSyncAA =
|
|
A.getAAFor<AANoSync>(*this, IRPosition::callsite_function(ICS));
|
|
if (NoSyncAA.isAssumedNoSync())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
if (!isVolatile(&I) && !isNonRelaxedAtomic(&I))
|
|
return true;
|
|
|
|
return false;
|
|
};
|
|
|
|
auto CheckForNoSync = [&](Instruction &I) {
|
|
// At this point we handled all read/write effects and they are all
|
|
// nosync, so they can be skipped.
|
|
if (I.mayReadOrWriteMemory())
|
|
return true;
|
|
|
|
// non-convergent and readnone imply nosync.
|
|
return !ImmutableCallSite(&I).isConvergent();
|
|
};
|
|
|
|
if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this) ||
|
|
!A.checkForAllCallLikeInstructions(CheckForNoSync, *this))
|
|
return indicatePessimisticFixpoint();
|
|
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
struct AANoSyncFunction final : public AANoSyncImpl {
|
|
AANoSyncFunction(const IRPosition &IRP) : AANoSyncImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
|
|
};
|
|
|
|
/// NoSync attribute deduction for a call sites.
|
|
struct AANoSyncCallSite final : AANoSyncImpl {
|
|
AANoSyncCallSite(const IRPosition &IRP) : AANoSyncImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
AANoSyncImpl::initialize(A);
|
|
Function *F = getAssociatedFunction();
|
|
if (!F)
|
|
indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
// TODO: Once we have call site specific value information we can provide
|
|
// call site specific liveness information and then it makes
|
|
// sense to specialize attributes for call sites arguments instead of
|
|
// redirecting requests to the callee argument.
|
|
Function *F = getAssociatedFunction();
|
|
const IRPosition &FnPos = IRPosition::function(*F);
|
|
auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos);
|
|
return clampStateAndIndicateChange(
|
|
getState(), static_cast<const AANoSync::StateType &>(FnAA.getState()));
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
|
|
};
|
|
|
|
/// ------------------------ No-Free Attributes ----------------------------
|
|
|
|
struct AANoFreeImpl : public AANoFree {
|
|
AANoFreeImpl(const IRPosition &IRP) : AANoFree(IRP) {}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
auto CheckForNoFree = [&](Instruction &I) {
|
|
ImmutableCallSite ICS(&I);
|
|
if (ICS.hasFnAttr(Attribute::NoFree))
|
|
return true;
|
|
|
|
const auto &NoFreeAA =
|
|
A.getAAFor<AANoFree>(*this, IRPosition::callsite_function(ICS));
|
|
return NoFreeAA.isAssumedNoFree();
|
|
};
|
|
|
|
if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this))
|
|
return indicatePessimisticFixpoint();
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
/// See AbstractAttribute::getAsStr().
|
|
const std::string getAsStr() const override {
|
|
return getAssumed() ? "nofree" : "may-free";
|
|
}
|
|
};
|
|
|
|
struct AANoFreeFunction final : public AANoFreeImpl {
|
|
AANoFreeFunction(const IRPosition &IRP) : AANoFreeImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
|
|
};
|
|
|
|
/// NoFree attribute deduction for a call sites.
|
|
struct AANoFreeCallSite final : AANoFreeImpl {
|
|
AANoFreeCallSite(const IRPosition &IRP) : AANoFreeImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
AANoFreeImpl::initialize(A);
|
|
Function *F = getAssociatedFunction();
|
|
if (!F)
|
|
indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
// TODO: Once we have call site specific value information we can provide
|
|
// call site specific liveness information and then it makes
|
|
// sense to specialize attributes for call sites arguments instead of
|
|
// redirecting requests to the callee argument.
|
|
Function *F = getAssociatedFunction();
|
|
const IRPosition &FnPos = IRPosition::function(*F);
|
|
auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos);
|
|
return clampStateAndIndicateChange(
|
|
getState(), static_cast<const AANoFree::StateType &>(FnAA.getState()));
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
|
|
};
|
|
|
|
/// ------------------------ NonNull Argument Attribute ------------------------
|
|
struct AANonNullImpl : AANonNull {
|
|
AANonNullImpl(const IRPosition &IRP) : AANonNull(IRP) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
if (hasAttr({Attribute::NonNull, Attribute::Dereferenceable}))
|
|
indicateOptimisticFixpoint();
|
|
else
|
|
AANonNull::initialize(A);
|
|
}
|
|
|
|
/// See AbstractAttribute::getAsStr().
|
|
const std::string getAsStr() const override {
|
|
return getAssumed() ? "nonnull" : "may-null";
|
|
}
|
|
};
|
|
|
|
/// NonNull attribute for a floating value.
|
|
struct AANonNullFloating : AANonNullImpl {
|
|
AANonNullFloating(const IRPosition &IRP) : AANonNullImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
AANonNullImpl::initialize(A);
|
|
|
|
if (isAtFixpoint())
|
|
return;
|
|
|
|
const IRPosition &IRP = getIRPosition();
|
|
const Value &V = IRP.getAssociatedValue();
|
|
const DataLayout &DL = A.getDataLayout();
|
|
|
|
// TODO: This context sensitive query should be removed once we can do
|
|
// context sensitive queries in the genericValueTraversal below.
|
|
if (isKnownNonZero(&V, DL, 0, /* TODO: AC */ nullptr, IRP.getCtxI(),
|
|
/* TODO: DT */ nullptr))
|
|
indicateOptimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
const DataLayout &DL = A.getDataLayout();
|
|
|
|
auto VisitValueCB = [&](Value &V, AAAlign::StateType &T,
|
|
bool Stripped) -> bool {
|
|
const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V));
|
|
if (!Stripped && this == &AA) {
|
|
if (!isKnownNonZero(&V, DL, 0, /* TODO: AC */ nullptr,
|
|
/* TODO: CtxI */ nullptr,
|
|
/* TODO: DT */ nullptr))
|
|
T.indicatePessimisticFixpoint();
|
|
} else {
|
|
// Use abstract attribute information.
|
|
const AANonNull::StateType &NS =
|
|
static_cast<const AANonNull::StateType &>(AA.getState());
|
|
T ^= NS;
|
|
}
|
|
return T.isValidState();
|
|
};
|
|
|
|
StateType T;
|
|
if (!genericValueTraversal<AANonNull, StateType>(A, getIRPosition(), *this,
|
|
T, VisitValueCB))
|
|
return indicatePessimisticFixpoint();
|
|
|
|
return clampStateAndIndicateChange(getState(), T);
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
|
|
};
|
|
|
|
/// NonNull attribute for function return value.
|
|
struct AANonNullReturned final
|
|
: AAReturnedFromReturnedValues<AANonNull, AANonNullImpl> {
|
|
AANonNullReturned(const IRPosition &IRP)
|
|
: AAReturnedFromReturnedValues<AANonNull, AANonNullImpl>(IRP) {}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
|
|
};
|
|
|
|
/// NonNull attribute for function argument.
|
|
struct AANonNullArgument final
|
|
: AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
|
|
AANonNullArgument(const IRPosition &IRP)
|
|
: AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP) {}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
|
|
};
|
|
|
|
struct AANonNullCallSiteArgument final : AANonNullFloating {
|
|
AANonNullCallSiteArgument(const IRPosition &IRP) : AANonNullFloating(IRP) {}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
|
|
};
|
|
|
|
/// NonNull attribute for a call site return position.
|
|
struct AANonNullCallSiteReturned final
|
|
: AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
|
|
AANonNullCallSiteReturned(const IRPosition &IRP)
|
|
: AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP) {}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
|
|
};
|
|
|
|
/// ------------------------ No-Recurse Attributes ----------------------------
|
|
|
|
struct AANoRecurseImpl : public AANoRecurse {
|
|
AANoRecurseImpl(const IRPosition &IRP) : AANoRecurse(IRP) {}
|
|
|
|
/// See AbstractAttribute::getAsStr()
|
|
const std::string getAsStr() const override {
|
|
return getAssumed() ? "norecurse" : "may-recurse";
|
|
}
|
|
};
|
|
|
|
struct AANoRecurseFunction final : AANoRecurseImpl {
|
|
AANoRecurseFunction(const IRPosition &IRP) : AANoRecurseImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
// TODO: Implement this.
|
|
return indicatePessimisticFixpoint();
|
|
}
|
|
|
|
void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
|
|
};
|
|
|
|
/// NoRecurse attribute deduction for a call sites.
|
|
struct AANoRecurseCallSite final : AANoRecurseImpl {
|
|
AANoRecurseCallSite(const IRPosition &IRP) : AANoRecurseImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
AANoRecurseImpl::initialize(A);
|
|
Function *F = getAssociatedFunction();
|
|
if (!F)
|
|
indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
// TODO: Once we have call site specific value information we can provide
|
|
// call site specific liveness information and then it makes
|
|
// sense to specialize attributes for call sites arguments instead of
|
|
// redirecting requests to the callee argument.
|
|
Function *F = getAssociatedFunction();
|
|
const IRPosition &FnPos = IRPosition::function(*F);
|
|
auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos);
|
|
return clampStateAndIndicateChange(
|
|
getState(),
|
|
static_cast<const AANoRecurse::StateType &>(FnAA.getState()));
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
|
|
};
|
|
|
|
/// ------------------------ Will-Return Attributes ----------------------------
|
|
|
|
// Helper function that checks whether a function has any cycle.
|
|
// TODO: Replace with more efficent code
|
|
static bool containsCycle(Function &F) {
|
|
SmallPtrSet<BasicBlock *, 32> Visited;
|
|
|
|
// Traverse BB by dfs and check whether successor is already visited.
|
|
for (BasicBlock *BB : depth_first(&F)) {
|
|
Visited.insert(BB);
|
|
for (auto *SuccBB : successors(BB)) {
|
|
if (Visited.count(SuccBB))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Helper function that checks the function have a loop which might become an
|
|
// endless loop
|
|
// FIXME: Any cycle is regarded as endless loop for now.
|
|
// We have to allow some patterns.
|
|
static bool containsPossiblyEndlessLoop(Function *F) {
|
|
return !F || !F->hasExactDefinition() || containsCycle(*F);
|
|
}
|
|
|
|
struct AAWillReturnImpl : public AAWillReturn {
|
|
AAWillReturnImpl(const IRPosition &IRP) : AAWillReturn(IRP) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
AAWillReturn::initialize(A);
|
|
|
|
Function *F = getAssociatedFunction();
|
|
if (containsPossiblyEndlessLoop(F))
|
|
indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
auto CheckForWillReturn = [&](Instruction &I) {
|
|
IRPosition IPos = IRPosition::callsite_function(ImmutableCallSite(&I));
|
|
const auto &WillReturnAA = A.getAAFor<AAWillReturn>(*this, IPos);
|
|
if (WillReturnAA.isKnownWillReturn())
|
|
return true;
|
|
if (!WillReturnAA.isAssumedWillReturn())
|
|
return false;
|
|
const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(*this, IPos);
|
|
return NoRecurseAA.isAssumedNoRecurse();
|
|
};
|
|
|
|
if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this))
|
|
return indicatePessimisticFixpoint();
|
|
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
/// See AbstractAttribute::getAsStr()
|
|
const std::string getAsStr() const override {
|
|
return getAssumed() ? "willreturn" : "may-noreturn";
|
|
}
|
|
};
|
|
|
|
struct AAWillReturnFunction final : AAWillReturnImpl {
|
|
AAWillReturnFunction(const IRPosition &IRP) : AAWillReturnImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
|
|
};
|
|
|
|
/// WillReturn attribute deduction for a call sites.
|
|
struct AAWillReturnCallSite final : AAWillReturnImpl {
|
|
AAWillReturnCallSite(const IRPosition &IRP) : AAWillReturnImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
AAWillReturnImpl::initialize(A);
|
|
Function *F = getAssociatedFunction();
|
|
if (!F)
|
|
indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
// TODO: Once we have call site specific value information we can provide
|
|
// call site specific liveness information and then it makes
|
|
// sense to specialize attributes for call sites arguments instead of
|
|
// redirecting requests to the callee argument.
|
|
Function *F = getAssociatedFunction();
|
|
const IRPosition &FnPos = IRPosition::function(*F);
|
|
auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos);
|
|
return clampStateAndIndicateChange(
|
|
getState(),
|
|
static_cast<const AAWillReturn::StateType &>(FnAA.getState()));
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
|
|
};
|
|
|
|
/// ------------------------ NoAlias Argument Attribute ------------------------
|
|
|
|
struct AANoAliasImpl : AANoAlias {
|
|
AANoAliasImpl(const IRPosition &IRP) : AANoAlias(IRP) {}
|
|
|
|
const std::string getAsStr() const override {
|
|
return getAssumed() ? "noalias" : "may-alias";
|
|
}
|
|
};
|
|
|
|
/// NoAlias attribute for a floating value.
|
|
struct AANoAliasFloating final : AANoAliasImpl {
|
|
AANoAliasFloating(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
AANoAliasImpl::initialize(A);
|
|
if (isa<AllocaInst>(getAnchorValue()))
|
|
indicateOptimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
// TODO: Implement this.
|
|
return indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override {
|
|
STATS_DECLTRACK_FLOATING_ATTR(noalias)
|
|
}
|
|
};
|
|
|
|
/// NoAlias attribute for an argument.
|
|
struct AANoAliasArgument final
|
|
: AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
|
|
AANoAliasArgument(const IRPosition &IRP)
|
|
: AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>(IRP) {}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
|
|
};
|
|
|
|
struct AANoAliasCallSiteArgument final : AANoAliasImpl {
|
|
AANoAliasCallSiteArgument(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
// See callsite argument attribute and callee argument attribute.
|
|
ImmutableCallSite ICS(&getAnchorValue());
|
|
if (ICS.paramHasAttr(getArgNo(), Attribute::NoAlias))
|
|
indicateOptimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
// We can deduce "noalias" if the following conditions hold.
|
|
// (i) Associated value is assumed to be noalias in the definition.
|
|
// (ii) Associated value is assumed to be no-capture in all the uses
|
|
// possibly executed before this callsite.
|
|
// (iii) There is no other pointer argument which could alias with the
|
|
// value.
|
|
|
|
const Value &V = getAssociatedValue();
|
|
const IRPosition IRP = IRPosition::value(V);
|
|
|
|
// (i) Check whether noalias holds in the definition.
|
|
|
|
auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, IRP);
|
|
|
|
if (!NoAliasAA.isAssumedNoAlias())
|
|
return indicatePessimisticFixpoint();
|
|
|
|
LLVM_DEBUG(dbgs() << "[Attributor][AANoAliasCSArg] " << V
|
|
<< " is assumed NoAlias in the definition\n");
|
|
|
|
// (ii) Check whether the value is captured in the scope using AANoCapture.
|
|
// FIXME: This is conservative though, it is better to look at CFG and
|
|
// check only uses possibly executed before this callsite.
|
|
|
|
auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, IRP);
|
|
if (!NoCaptureAA.isAssumedNoCaptureMaybeReturned())
|
|
return indicatePessimisticFixpoint();
|
|
|
|
// (iii) Check there is no other pointer argument which could alias with the
|
|
// value.
|
|
ImmutableCallSite ICS(&getAnchorValue());
|
|
for (unsigned i = 0; i < ICS.getNumArgOperands(); i++) {
|
|
if (getArgNo() == (int)i)
|
|
continue;
|
|
const Value *ArgOp = ICS.getArgOperand(i);
|
|
if (!ArgOp->getType()->isPointerTy())
|
|
continue;
|
|
|
|
if (const Function *F = getAnchorScope()) {
|
|
if (AAResults *AAR = A.getInfoCache().getAAResultsForFunction(*F)) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "[Attributor][NoAliasCSArg] Check alias between "
|
|
"callsite arguments "
|
|
<< AAR->isNoAlias(&getAssociatedValue(), ArgOp) << " "
|
|
<< getAssociatedValue() << " " << *ArgOp << "\n");
|
|
|
|
if (AAR->isNoAlias(&getAssociatedValue(), ArgOp))
|
|
continue;
|
|
}
|
|
}
|
|
return indicatePessimisticFixpoint();
|
|
}
|
|
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
|
|
};
|
|
|
|
/// NoAlias attribute for function return value.
|
|
struct AANoAliasReturned final : AANoAliasImpl {
|
|
AANoAliasReturned(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
virtual ChangeStatus updateImpl(Attributor &A) override {
|
|
|
|
auto CheckReturnValue = [&](Value &RV) -> bool {
|
|
if (Constant *C = dyn_cast<Constant>(&RV))
|
|
if (C->isNullValue() || isa<UndefValue>(C))
|
|
return true;
|
|
|
|
/// For now, we can only deduce noalias if we have call sites.
|
|
/// FIXME: add more support.
|
|
ImmutableCallSite ICS(&RV);
|
|
if (!ICS)
|
|
return false;
|
|
|
|
const IRPosition &RVPos = IRPosition::value(RV);
|
|
const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, RVPos);
|
|
if (!NoAliasAA.isAssumedNoAlias())
|
|
return false;
|
|
|
|
const auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, RVPos);
|
|
return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
|
|
};
|
|
|
|
if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
|
|
return indicatePessimisticFixpoint();
|
|
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
|
|
};
|
|
|
|
/// NoAlias attribute deduction for a call site return value.
|
|
struct AANoAliasCallSiteReturned final : AANoAliasImpl {
|
|
AANoAliasCallSiteReturned(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
AANoAliasImpl::initialize(A);
|
|
Function *F = getAssociatedFunction();
|
|
if (!F)
|
|
indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
// TODO: Once we have call site specific value information we can provide
|
|
// call site specific liveness information and then it makes
|
|
// sense to specialize attributes for call sites arguments instead of
|
|
// redirecting requests to the callee argument.
|
|
Function *F = getAssociatedFunction();
|
|
const IRPosition &FnPos = IRPosition::returned(*F);
|
|
auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos);
|
|
return clampStateAndIndicateChange(
|
|
getState(), static_cast<const AANoAlias::StateType &>(FnAA.getState()));
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
|
|
};
|
|
|
|
/// -------------------AAIsDead Function Attribute-----------------------
|
|
|
|
struct AAIsDeadImpl : public AAIsDead {
|
|
AAIsDeadImpl(const IRPosition &IRP) : AAIsDead(IRP) {}
|
|
|
|
void initialize(Attributor &A) override {
|
|
const Function *F = getAssociatedFunction();
|
|
if (F && !F->isDeclaration())
|
|
exploreFromEntry(A, F);
|
|
}
|
|
|
|
void exploreFromEntry(Attributor &A, const Function *F) {
|
|
ToBeExploredPaths.insert(&(F->getEntryBlock().front()));
|
|
|
|
for (size_t i = 0; i < ToBeExploredPaths.size(); ++i)
|
|
if (const Instruction *NextNoReturnI =
|
|
findNextNoReturn(A, ToBeExploredPaths[i]))
|
|
NoReturnCalls.insert(NextNoReturnI);
|
|
|
|
// Mark the block live after we looked for no-return instructions.
|
|
assumeLive(A, F->getEntryBlock());
|
|
}
|
|
|
|
/// Find the next assumed noreturn instruction in the block of \p I starting
|
|
/// from, thus including, \p I.
|
|
///
|
|
/// The caller is responsible to monitor the ToBeExploredPaths set as new
|
|
/// instructions discovered in other basic block will be placed in there.
|
|
///
|
|
/// \returns The next assumed noreturn instructions in the block of \p I
|
|
/// starting from, thus including, \p I.
|
|
const Instruction *findNextNoReturn(Attributor &A, const Instruction *I);
|
|
|
|
/// See AbstractAttribute::getAsStr().
|
|
const std::string getAsStr() const override {
|
|
return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
|
|
std::to_string(getAssociatedFunction()->size()) + "][#NRI " +
|
|
std::to_string(NoReturnCalls.size()) + "]";
|
|
}
|
|
|
|
/// See AbstractAttribute::manifest(...).
|
|
ChangeStatus manifest(Attributor &A) override {
|
|
assert(getState().isValidState() &&
|
|
"Attempted to manifest an invalid state!");
|
|
|
|
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
|
|
Function &F = *getAssociatedFunction();
|
|
|
|
if (AssumedLiveBlocks.empty()) {
|
|
A.deleteAfterManifest(F);
|
|
return ChangeStatus::CHANGED;
|
|
}
|
|
|
|
// Flag to determine if we can change an invoke to a call assuming the
|
|
// callee is nounwind. This is not possible if the personality of the
|
|
// function allows to catch asynchronous exceptions.
|
|
bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
|
|
|
|
for (const Instruction *NRC : NoReturnCalls) {
|
|
Instruction *I = const_cast<Instruction *>(NRC);
|
|
BasicBlock *BB = I->getParent();
|
|
Instruction *SplitPos = I->getNextNode();
|
|
// TODO: mark stuff before unreachable instructions as dead.
|
|
if (isa_and_nonnull<UnreachableInst>(SplitPos))
|
|
continue;
|
|
|
|
if (auto *II = dyn_cast<InvokeInst>(I)) {
|
|
// If we keep the invoke the split position is at the beginning of the
|
|
// normal desitination block (it invokes a noreturn function after all).
|
|
BasicBlock *NormalDestBB = II->getNormalDest();
|
|
SplitPos = &NormalDestBB->front();
|
|
|
|
/// Invoke is replaced with a call and unreachable is placed after it if
|
|
/// the callee is nounwind and noreturn. Otherwise, we keep the invoke
|
|
/// and only place an unreachable in the normal successor.
|
|
if (Invoke2CallAllowed) {
|
|
if (II->getCalledFunction()) {
|
|
const IRPosition &IPos = IRPosition::callsite_function(*II);
|
|
const auto &AANoUnw = A.getAAFor<AANoUnwind>(*this, IPos);
|
|
if (AANoUnw.isAssumedNoUnwind()) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "[AAIsDead] Replace invoke with call inst\n");
|
|
// We do not need an invoke (II) but instead want a call followed
|
|
// by an unreachable. However, we do not remove II as other
|
|
// abstract attributes might have it cached as part of their
|
|
// results. Given that we modify the CFG anyway, we simply keep II
|
|
// around but in a new dead block. To avoid II being live through
|
|
// a different edge we have to ensure the block we place it in is
|
|
// only reached from the current block of II and then not reached
|
|
// at all when we insert the unreachable.
|
|
SplitBlockPredecessors(NormalDestBB, {BB}, ".i2c");
|
|
CallInst *CI = createCallMatchingInvoke(II);
|
|
CI->insertBefore(II);
|
|
CI->takeName(II);
|
|
II->replaceAllUsesWith(CI);
|
|
SplitPos = CI->getNextNode();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (SplitPos == &NormalDestBB->front()) {
|
|
// If this is an invoke of a noreturn function the edge to the normal
|
|
// destination block is dead but not necessarily the block itself.
|
|
// TODO: We need to move to an edge based system during deduction and
|
|
// also manifest.
|
|
assert(!NormalDestBB->isLandingPad() &&
|
|
"Expected the normal destination not to be a landingpad!");
|
|
BasicBlock *SplitBB =
|
|
SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
|
|
// The split block is live even if it contains only an unreachable
|
|
// instruction at the end.
|
|
assumeLive(A, *SplitBB);
|
|
SplitPos = SplitBB->getTerminator();
|
|
}
|
|
}
|
|
|
|
BB = SplitPos->getParent();
|
|
SplitBlock(BB, SplitPos);
|
|
changeToUnreachable(BB->getTerminator(), /* UseLLVMTrap */ false);
|
|
HasChanged = ChangeStatus::CHANGED;
|
|
}
|
|
|
|
for (BasicBlock &BB : F)
|
|
if (!AssumedLiveBlocks.count(&BB))
|
|
A.deleteAfterManifest(BB);
|
|
|
|
return HasChanged;
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override;
|
|
|
|
/// See AAIsDead::isAssumedDead(BasicBlock *).
|
|
bool isAssumedDead(const BasicBlock *BB) const override {
|
|
assert(BB->getParent() == getAssociatedFunction() &&
|
|
"BB must be in the same anchor scope function.");
|
|
|
|
if (!getAssumed())
|
|
return false;
|
|
return !AssumedLiveBlocks.count(BB);
|
|
}
|
|
|
|
/// See AAIsDead::isKnownDead(BasicBlock *).
|
|
bool isKnownDead(const BasicBlock *BB) const override {
|
|
return getKnown() && isAssumedDead(BB);
|
|
}
|
|
|
|
/// See AAIsDead::isAssumed(Instruction *I).
|
|
bool isAssumedDead(const Instruction *I) const override {
|
|
assert(I->getParent()->getParent() == getAssociatedFunction() &&
|
|
"Instruction must be in the same anchor scope function.");
|
|
|
|
if (!getAssumed())
|
|
return false;
|
|
|
|
// If it is not in AssumedLiveBlocks then it for sure dead.
|
|
// Otherwise, it can still be after noreturn call in a live block.
|
|
if (!AssumedLiveBlocks.count(I->getParent()))
|
|
return true;
|
|
|
|
// If it is not after a noreturn call, than it is live.
|
|
return isAfterNoReturn(I);
|
|
}
|
|
|
|
/// See AAIsDead::isKnownDead(Instruction *I).
|
|
bool isKnownDead(const Instruction *I) const override {
|
|
return getKnown() && isAssumedDead(I);
|
|
}
|
|
|
|
/// Check if instruction is after noreturn call, in other words, assumed dead.
|
|
bool isAfterNoReturn(const Instruction *I) const;
|
|
|
|
/// Determine if \p F might catch asynchronous exceptions.
|
|
static bool mayCatchAsynchronousExceptions(const Function &F) {
|
|
return F.hasPersonalityFn() && !canSimplifyInvokeNoUnwind(&F);
|
|
}
|
|
|
|
/// Assume \p BB is (partially) live now and indicate to the Attributor \p A
|
|
/// that internal function called from \p BB should now be looked at.
|
|
void assumeLive(Attributor &A, const BasicBlock &BB) {
|
|
if (!AssumedLiveBlocks.insert(&BB).second)
|
|
return;
|
|
|
|
// We assume that all of BB is (probably) live now and if there are calls to
|
|
// internal functions we will assume that those are now live as well. This
|
|
// is a performance optimization for blocks with calls to a lot of internal
|
|
// functions. It can however cause dead functions to be treated as live.
|
|
for (const Instruction &I : BB)
|
|
if (ImmutableCallSite ICS = ImmutableCallSite(&I))
|
|
if (const Function *F = ICS.getCalledFunction())
|
|
if (F->hasInternalLinkage())
|
|
A.markLiveInternalFunction(*F);
|
|
}
|
|
|
|
/// Collection of to be explored paths.
|
|
SmallSetVector<const Instruction *, 8> ToBeExploredPaths;
|
|
|
|
/// Collection of all assumed live BasicBlocks.
|
|
DenseSet<const BasicBlock *> AssumedLiveBlocks;
|
|
|
|
/// Collection of calls with noreturn attribute, assumed or knwon.
|
|
SmallSetVector<const Instruction *, 4> NoReturnCalls;
|
|
};
|
|
|
|
struct AAIsDeadFunction final : public AAIsDeadImpl {
|
|
AAIsDeadFunction(const IRPosition &IRP) : AAIsDeadImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override {
|
|
STATS_DECL(PartiallyDeadBlocks, Function,
|
|
"Number of basic blocks classified as partially dead");
|
|
BUILD_STAT_NAME(PartiallyDeadBlocks, Function) += NoReturnCalls.size();
|
|
}
|
|
};
|
|
|
|
bool AAIsDeadImpl::isAfterNoReturn(const Instruction *I) const {
|
|
const Instruction *PrevI = I->getPrevNode();
|
|
while (PrevI) {
|
|
if (NoReturnCalls.count(PrevI))
|
|
return true;
|
|
PrevI = PrevI->getPrevNode();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
const Instruction *AAIsDeadImpl::findNextNoReturn(Attributor &A,
|
|
const Instruction *I) {
|
|
const BasicBlock *BB = I->getParent();
|
|
const Function &F = *BB->getParent();
|
|
|
|
// Flag to determine if we can change an invoke to a call assuming the callee
|
|
// is nounwind. This is not possible if the personality of the function allows
|
|
// to catch asynchronous exceptions.
|
|
bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
|
|
|
|
// TODO: We should have a function that determines if an "edge" is dead.
|
|
// Edges could be from an instruction to the next or from a terminator
|
|
// to the successor. For now, we need to special case the unwind block
|
|
// of InvokeInst below.
|
|
|
|
while (I) {
|
|
ImmutableCallSite ICS(I);
|
|
|
|
if (ICS) {
|
|
const IRPosition &IPos = IRPosition::callsite_function(ICS);
|
|
// Regarless of the no-return property of an invoke instruction we only
|
|
// learn that the regular successor is not reachable through this
|
|
// instruction but the unwind block might still be.
|
|
if (auto *Invoke = dyn_cast<InvokeInst>(I)) {
|
|
// Use nounwind to justify the unwind block is dead as well.
|
|
const auto &AANoUnw = A.getAAFor<AANoUnwind>(*this, IPos);
|
|
if (!Invoke2CallAllowed || !AANoUnw.isAssumedNoUnwind()) {
|
|
assumeLive(A, *Invoke->getUnwindDest());
|
|
ToBeExploredPaths.insert(&Invoke->getUnwindDest()->front());
|
|
}
|
|
}
|
|
|
|
const auto &NoReturnAA = A.getAAFor<AANoReturn>(*this, IPos);
|
|
if (NoReturnAA.isAssumedNoReturn())
|
|
return I;
|
|
}
|
|
|
|
I = I->getNextNode();
|
|
}
|
|
|
|
// get new paths (reachable blocks).
|
|
for (const BasicBlock *SuccBB : successors(BB)) {
|
|
assumeLive(A, *SuccBB);
|
|
ToBeExploredPaths.insert(&SuccBB->front());
|
|
}
|
|
|
|
// No noreturn instruction found.
|
|
return nullptr;
|
|
}
|
|
|
|
ChangeStatus AAIsDeadImpl::updateImpl(Attributor &A) {
|
|
ChangeStatus Status = ChangeStatus::UNCHANGED;
|
|
|
|
// Temporary collection to iterate over existing noreturn instructions. This
|
|
// will alow easier modification of NoReturnCalls collection
|
|
SmallVector<const Instruction *, 8> NoReturnChanged;
|
|
|
|
for (const Instruction *I : NoReturnCalls)
|
|
NoReturnChanged.push_back(I);
|
|
|
|
for (const Instruction *I : NoReturnChanged) {
|
|
size_t Size = ToBeExploredPaths.size();
|
|
|
|
const Instruction *NextNoReturnI = findNextNoReturn(A, I);
|
|
if (NextNoReturnI != I) {
|
|
Status = ChangeStatus::CHANGED;
|
|
NoReturnCalls.remove(I);
|
|
if (NextNoReturnI)
|
|
NoReturnCalls.insert(NextNoReturnI);
|
|
}
|
|
|
|
// Explore new paths.
|
|
while (Size != ToBeExploredPaths.size()) {
|
|
Status = ChangeStatus::CHANGED;
|
|
if (const Instruction *NextNoReturnI =
|
|
findNextNoReturn(A, ToBeExploredPaths[Size++]))
|
|
NoReturnCalls.insert(NextNoReturnI);
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "[AAIsDead] AssumedLiveBlocks: "
|
|
<< AssumedLiveBlocks.size() << " Total number of blocks: "
|
|
<< getAssociatedFunction()->size() << "\n");
|
|
|
|
// If we know everything is live there is no need to query for liveness.
|
|
if (NoReturnCalls.empty() &&
|
|
getAssociatedFunction()->size() == AssumedLiveBlocks.size()) {
|
|
// Indicating a pessimistic fixpoint will cause the state to be "invalid"
|
|
// which will cause the Attributor to not return the AAIsDead on request,
|
|
// which will prevent us from querying isAssumedDead().
|
|
indicatePessimisticFixpoint();
|
|
assert(!isValidState() && "Expected an invalid state!");
|
|
Status = ChangeStatus::CHANGED;
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
/// Liveness information for a call sites.
|
|
struct AAIsDeadCallSite final : AAIsDeadImpl {
|
|
AAIsDeadCallSite(const IRPosition &IRP) : AAIsDeadImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
// TODO: Once we have call site specific value information we can provide
|
|
// call site specific liveness information and then it makes
|
|
// sense to specialize attributes for call sites instead of
|
|
// redirecting requests to the callee.
|
|
llvm_unreachable("Abstract attributes for liveness are not "
|
|
"supported for call sites yet!");
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
return indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override {}
|
|
};
|
|
|
|
/// -------------------- Dereferenceable Argument Attribute --------------------
|
|
|
|
template <>
|
|
ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
|
|
const DerefState &R) {
|
|
ChangeStatus CS0 = clampStateAndIndicateChange<IntegerState>(
|
|
S.DerefBytesState, R.DerefBytesState);
|
|
ChangeStatus CS1 =
|
|
clampStateAndIndicateChange<IntegerState>(S.GlobalState, R.GlobalState);
|
|
return CS0 | CS1;
|
|
}
|
|
|
|
struct AADereferenceableImpl : AADereferenceable {
|
|
AADereferenceableImpl(const IRPosition &IRP) : AADereferenceable(IRP) {}
|
|
using StateType = DerefState;
|
|
|
|
void initialize(Attributor &A) override {
|
|
SmallVector<Attribute, 4> Attrs;
|
|
getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
|
|
Attrs);
|
|
for (const Attribute &Attr : Attrs)
|
|
takeKnownDerefBytesMaximum(Attr.getValueAsInt());
|
|
|
|
NonNullAA = &A.getAAFor<AANonNull>(*this, getIRPosition());
|
|
|
|
const IRPosition &IRP = this->getIRPosition();
|
|
bool IsFnInterface = IRP.isFnInterfaceKind();
|
|
const Function *FnScope = IRP.getAnchorScope();
|
|
if (IsFnInterface && (!FnScope || !FnScope->hasExactDefinition()))
|
|
indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractAttribute::getState()
|
|
/// {
|
|
StateType &getState() override { return *this; }
|
|
const StateType &getState() const override { return *this; }
|
|
/// }
|
|
|
|
void getDeducedAttributes(LLVMContext &Ctx,
|
|
SmallVectorImpl<Attribute> &Attrs) const override {
|
|
// TODO: Add *_globally support
|
|
if (isAssumedNonNull())
|
|
Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
|
|
Ctx, getAssumedDereferenceableBytes()));
|
|
else
|
|
Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
|
|
Ctx, getAssumedDereferenceableBytes()));
|
|
}
|
|
|
|
/// See AbstractAttribute::getAsStr().
|
|
const std::string getAsStr() const override {
|
|
if (!getAssumedDereferenceableBytes())
|
|
return "unknown-dereferenceable";
|
|
return std::string("dereferenceable") +
|
|
(isAssumedNonNull() ? "" : "_or_null") +
|
|
(isAssumedGlobal() ? "_globally" : "") + "<" +
|
|
std::to_string(getKnownDereferenceableBytes()) + "-" +
|
|
std::to_string(getAssumedDereferenceableBytes()) + ">";
|
|
}
|
|
};
|
|
|
|
/// Dereferenceable attribute for a floating value.
|
|
struct AADereferenceableFloating : AADereferenceableImpl {
|
|
AADereferenceableFloating(const IRPosition &IRP)
|
|
: AADereferenceableImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
const DataLayout &DL = A.getDataLayout();
|
|
|
|
auto VisitValueCB = [&](Value &V, DerefState &T, bool Stripped) -> bool {
|
|
unsigned IdxWidth =
|
|
DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
|
|
APInt Offset(IdxWidth, 0);
|
|
const Value *Base =
|
|
V.stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
|
|
|
|
const auto &AA =
|
|
A.getAAFor<AADereferenceable>(*this, IRPosition::value(*Base));
|
|
int64_t DerefBytes = 0;
|
|
if (!Stripped && this == &AA) {
|
|
// Use IR information if we did not strip anything.
|
|
// TODO: track globally.
|
|
bool CanBeNull;
|
|
DerefBytes = Base->getPointerDereferenceableBytes(DL, CanBeNull);
|
|
T.GlobalState.indicatePessimisticFixpoint();
|
|
} else {
|
|
const DerefState &DS = static_cast<const DerefState &>(AA.getState());
|
|
DerefBytes = DS.DerefBytesState.getAssumed();
|
|
T.GlobalState &= DS.GlobalState;
|
|
}
|
|
|
|
// For now we do not try to "increase" dereferenceability due to negative
|
|
// indices as we first have to come up with code to deal with loops and
|
|
// for overflows of the dereferenceable bytes.
|
|
int64_t OffsetSExt = Offset.getSExtValue();
|
|
if (OffsetSExt < 0)
|
|
Offset = 0;
|
|
|
|
T.takeAssumedDerefBytesMinimum(
|
|
std::max(int64_t(0), DerefBytes - OffsetSExt));
|
|
|
|
if (this == &AA) {
|
|
if (!Stripped) {
|
|
// If nothing was stripped IR information is all we got.
|
|
T.takeKnownDerefBytesMaximum(
|
|
std::max(int64_t(0), DerefBytes - OffsetSExt));
|
|
T.indicatePessimisticFixpoint();
|
|
} else if (OffsetSExt > 0) {
|
|
// If something was stripped but there is circular reasoning we look
|
|
// for the offset. If it is positive we basically decrease the
|
|
// dereferenceable bytes in a circluar loop now, which will simply
|
|
// drive them down to the known value in a very slow way which we
|
|
// can accelerate.
|
|
T.indicatePessimisticFixpoint();
|
|
}
|
|
}
|
|
|
|
return T.isValidState();
|
|
};
|
|
|
|
DerefState T;
|
|
if (!genericValueTraversal<AADereferenceable, DerefState>(
|
|
A, getIRPosition(), *this, T, VisitValueCB))
|
|
return indicatePessimisticFixpoint();
|
|
|
|
return clampStateAndIndicateChange(getState(), T);
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override {
|
|
STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
|
|
}
|
|
};
|
|
|
|
/// Dereferenceable attribute for a return value.
|
|
struct AADereferenceableReturned final
|
|
: AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl,
|
|
DerefState> {
|
|
AADereferenceableReturned(const IRPosition &IRP)
|
|
: AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl,
|
|
DerefState>(IRP) {}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override {
|
|
STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
|
|
}
|
|
};
|
|
|
|
/// Dereferenceable attribute for an argument
|
|
struct AADereferenceableArgument final
|
|
: AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl,
|
|
DerefState> {
|
|
AADereferenceableArgument(const IRPosition &IRP)
|
|
: AAArgumentFromCallSiteArguments<AADereferenceable,
|
|
AADereferenceableImpl, DerefState>(
|
|
IRP) {}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override {
|
|
STATS_DECLTRACK_ARG_ATTR(dereferenceable)
|
|
}
|
|
};
|
|
|
|
/// Dereferenceable attribute for a call site argument.
|
|
struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
|
|
AADereferenceableCallSiteArgument(const IRPosition &IRP)
|
|
: AADereferenceableFloating(IRP) {}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override {
|
|
STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
|
|
}
|
|
};
|
|
|
|
/// Dereferenceable attribute deduction for a call site return value.
|
|
struct AADereferenceableCallSiteReturned final : AADereferenceableImpl {
|
|
AADereferenceableCallSiteReturned(const IRPosition &IRP)
|
|
: AADereferenceableImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
AADereferenceableImpl::initialize(A);
|
|
Function *F = getAssociatedFunction();
|
|
if (!F)
|
|
indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
// TODO: Once we have call site specific value information we can provide
|
|
// call site specific liveness information and then it makes
|
|
// sense to specialize attributes for call sites arguments instead of
|
|
// redirecting requests to the callee argument.
|
|
Function *F = getAssociatedFunction();
|
|
const IRPosition &FnPos = IRPosition::returned(*F);
|
|
auto &FnAA = A.getAAFor<AADereferenceable>(*this, FnPos);
|
|
return clampStateAndIndicateChange(
|
|
getState(), static_cast<const DerefState &>(FnAA.getState()));
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override {
|
|
STATS_DECLTRACK_CS_ATTR(dereferenceable);
|
|
}
|
|
};
|
|
|
|
// ------------------------ Align Argument Attribute ------------------------
|
|
|
|
struct AAAlignImpl : AAAlign {
|
|
AAAlignImpl(const IRPosition &IRP) : AAAlign(IRP) {}
|
|
|
|
// Max alignemnt value allowed in IR
|
|
static const unsigned MAX_ALIGN = 1U << 29;
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
takeAssumedMinimum(MAX_ALIGN);
|
|
|
|
SmallVector<Attribute, 4> Attrs;
|
|
getAttrs({Attribute::Alignment}, Attrs);
|
|
for (const Attribute &Attr : Attrs)
|
|
takeKnownMaximum(Attr.getValueAsInt());
|
|
|
|
if (getIRPosition().isFnInterfaceKind() &&
|
|
(!getAssociatedFunction() ||
|
|
!getAssociatedFunction()->hasExactDefinition()))
|
|
indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractAttribute::manifest(...).
|
|
ChangeStatus manifest(Attributor &A) override {
|
|
ChangeStatus Changed = ChangeStatus::UNCHANGED;
|
|
|
|
// Check for users that allow alignment annotations.
|
|
Value &AnchorVal = getIRPosition().getAnchorValue();
|
|
for (const Use &U : AnchorVal.uses()) {
|
|
if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
|
|
if (SI->getPointerOperand() == &AnchorVal)
|
|
if (SI->getAlignment() < getAssumedAlign()) {
|
|
STATS_DECLTRACK(AAAlign, Store,
|
|
"Number of times alignemnt added to a store");
|
|
SI->setAlignment(getAssumedAlign());
|
|
Changed = ChangeStatus::CHANGED;
|
|
}
|
|
} else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
|
|
if (LI->getPointerOperand() == &AnchorVal)
|
|
if (LI->getAlignment() < getAssumedAlign()) {
|
|
LI->setAlignment(getAssumedAlign());
|
|
STATS_DECLTRACK(AAAlign, Load,
|
|
"Number of times alignemnt added to a load");
|
|
Changed = ChangeStatus::CHANGED;
|
|
}
|
|
}
|
|
}
|
|
|
|
return AAAlign::manifest(A) | Changed;
|
|
}
|
|
|
|
// TODO: Provide a helper to determine the implied ABI alignment and check in
|
|
// the existing manifest method and a new one for AAAlignImpl that value
|
|
// to avoid making the alignment explicit if it did not improve.
|
|
|
|
/// See AbstractAttribute::getDeducedAttributes
|
|
virtual void
|
|
getDeducedAttributes(LLVMContext &Ctx,
|
|
SmallVectorImpl<Attribute> &Attrs) const override {
|
|
if (getAssumedAlign() > 1)
|
|
Attrs.emplace_back(Attribute::getWithAlignment(Ctx, getAssumedAlign()));
|
|
}
|
|
|
|
/// See AbstractAttribute::getAsStr().
|
|
const std::string getAsStr() const override {
|
|
return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
|
|
"-" + std::to_string(getAssumedAlign()) + ">")
|
|
: "unknown-align";
|
|
}
|
|
};
|
|
|
|
/// Align attribute for a floating value.
|
|
struct AAAlignFloating : AAAlignImpl {
|
|
AAAlignFloating(const IRPosition &IRP) : AAAlignImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
const DataLayout &DL = A.getDataLayout();
|
|
|
|
auto VisitValueCB = [&](Value &V, AAAlign::StateType &T,
|
|
bool Stripped) -> bool {
|
|
const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V));
|
|
if (!Stripped && this == &AA) {
|
|
// Use only IR information if we did not strip anything.
|
|
T.takeKnownMaximum(V.getPointerAlignment(DL));
|
|
T.indicatePessimisticFixpoint();
|
|
} else {
|
|
// Use abstract attribute information.
|
|
const AAAlign::StateType &DS =
|
|
static_cast<const AAAlign::StateType &>(AA.getState());
|
|
T ^= DS;
|
|
}
|
|
return T.isValidState();
|
|
};
|
|
|
|
StateType T;
|
|
if (!genericValueTraversal<AAAlign, StateType>(A, getIRPosition(), *this, T,
|
|
VisitValueCB))
|
|
return indicatePessimisticFixpoint();
|
|
|
|
// TODO: If we know we visited all incoming values, thus no are assumed
|
|
// dead, we can take the known information from the state T.
|
|
return clampStateAndIndicateChange(getState(), T);
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
|
|
};
|
|
|
|
/// Align attribute for function return value.
|
|
struct AAAlignReturned final
|
|
: AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
|
|
AAAlignReturned(const IRPosition &IRP)
|
|
: AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>(IRP) {}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
|
|
};
|
|
|
|
/// Align attribute for function argument.
|
|
struct AAAlignArgument final
|
|
: AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
|
|
AAAlignArgument(const IRPosition &IRP)
|
|
: AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>(IRP) {}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
|
|
};
|
|
|
|
struct AAAlignCallSiteArgument final : AAAlignFloating {
|
|
AAAlignCallSiteArgument(const IRPosition &IRP) : AAAlignFloating(IRP) {}
|
|
|
|
/// See AbstractAttribute::manifest(...).
|
|
ChangeStatus manifest(Attributor &A) override {
|
|
return AAAlignImpl::manifest(A);
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
|
|
};
|
|
|
|
/// Align attribute deduction for a call site return value.
|
|
struct AAAlignCallSiteReturned final : AAAlignImpl {
|
|
AAAlignCallSiteReturned(const IRPosition &IRP) : AAAlignImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
AAAlignImpl::initialize(A);
|
|
Function *F = getAssociatedFunction();
|
|
if (!F)
|
|
indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
// TODO: Once we have call site specific value information we can provide
|
|
// call site specific liveness information and then it makes
|
|
// sense to specialize attributes for call sites arguments instead of
|
|
// redirecting requests to the callee argument.
|
|
Function *F = getAssociatedFunction();
|
|
const IRPosition &FnPos = IRPosition::returned(*F);
|
|
auto &FnAA = A.getAAFor<AAAlign>(*this, FnPos);
|
|
return clampStateAndIndicateChange(
|
|
getState(), static_cast<const AAAlign::StateType &>(FnAA.getState()));
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
|
|
};
|
|
|
|
/// ------------------ Function No-Return Attribute ----------------------------
|
|
struct AANoReturnImpl : public AANoReturn {
|
|
AANoReturnImpl(const IRPosition &IRP) : AANoReturn(IRP) {}
|
|
|
|
/// See AbstractAttribute::getAsStr().
|
|
const std::string getAsStr() const override {
|
|
return getAssumed() ? "noreturn" : "may-return";
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(Attributor &A).
|
|
virtual ChangeStatus updateImpl(Attributor &A) override {
|
|
auto CheckForNoReturn = [](Instruction &) { return false; };
|
|
if (!A.checkForAllInstructions(CheckForNoReturn, *this,
|
|
{(unsigned)Instruction::Ret}))
|
|
return indicatePessimisticFixpoint();
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
};
|
|
|
|
struct AANoReturnFunction final : AANoReturnImpl {
|
|
AANoReturnFunction(const IRPosition &IRP) : AANoReturnImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
|
|
};
|
|
|
|
/// NoReturn attribute deduction for a call sites.
|
|
struct AANoReturnCallSite final : AANoReturnImpl {
|
|
AANoReturnCallSite(const IRPosition &IRP) : AANoReturnImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
AANoReturnImpl::initialize(A);
|
|
Function *F = getAssociatedFunction();
|
|
if (!F)
|
|
indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
// TODO: Once we have call site specific value information we can provide
|
|
// call site specific liveness information and then it makes
|
|
// sense to specialize attributes for call sites arguments instead of
|
|
// redirecting requests to the callee argument.
|
|
Function *F = getAssociatedFunction();
|
|
const IRPosition &FnPos = IRPosition::function(*F);
|
|
auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos);
|
|
return clampStateAndIndicateChange(
|
|
getState(),
|
|
static_cast<const AANoReturn::StateType &>(FnAA.getState()));
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
|
|
};
|
|
|
|
/// ----------------------- Variable Capturing ---------------------------------
|
|
|
|
/// A class to hold the state of for no-capture attributes.
|
|
struct AANoCaptureImpl : public AANoCapture {
|
|
AANoCaptureImpl(const IRPosition &IRP) : AANoCapture(IRP) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
AANoCapture::initialize(A);
|
|
|
|
const IRPosition &IRP = getIRPosition();
|
|
const Function *F =
|
|
getArgNo() >= 0 ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
|
|
|
|
// Check what state the associated function can actually capture.
|
|
if (F)
|
|
determineFunctionCaptureCapabilities(*F, *this);
|
|
else
|
|
indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override;
|
|
|
|
/// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
|
|
virtual void
|
|
getDeducedAttributes(LLVMContext &Ctx,
|
|
SmallVectorImpl<Attribute> &Attrs) const override {
|
|
if (!isAssumedNoCaptureMaybeReturned())
|
|
return;
|
|
|
|
if (getArgNo() >= 0) {
|
|
if (isAssumedNoCapture())
|
|
Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
|
|
else if (ManifestInternal)
|
|
Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
|
|
}
|
|
}
|
|
|
|
/// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
|
|
/// depending on the ability of the function associated with \p IRP to capture
|
|
/// state in memory and through "returning/throwing", respectively.
|
|
static void determineFunctionCaptureCapabilities(const Function &F,
|
|
IntegerState &State) {
|
|
// TODO: Once we have memory behavior attributes we should use them here.
|
|
|
|
// If we know we cannot communicate or write to memory, we do not care about
|
|
// ptr2int anymore.
|
|
if (F.onlyReadsMemory() && F.doesNotThrow() &&
|
|
F.getReturnType()->isVoidTy()) {
|
|
State.addKnownBits(NO_CAPTURE);
|
|
return;
|
|
}
|
|
|
|
// A function cannot capture state in memory if it only reads memory, it can
|
|
// however return/throw state and the state might be influenced by the
|
|
// pointer value, e.g., loading from a returned pointer might reveal a bit.
|
|
if (F.onlyReadsMemory())
|
|
State.addKnownBits(NOT_CAPTURED_IN_MEM);
|
|
|
|
// A function cannot communicate state back if it does not through
|
|
// exceptions and doesn not return values.
|
|
if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
|
|
State.addKnownBits(NOT_CAPTURED_IN_RET);
|
|
}
|
|
|
|
/// See AbstractState::getAsStr().
|
|
const std::string getAsStr() const override {
|
|
if (isKnownNoCapture())
|
|
return "known not-captured";
|
|
if (isAssumedNoCapture())
|
|
return "assumed not-captured";
|
|
if (isKnownNoCaptureMaybeReturned())
|
|
return "known not-captured-maybe-returned";
|
|
if (isAssumedNoCaptureMaybeReturned())
|
|
return "assumed not-captured-maybe-returned";
|
|
return "assumed-captured";
|
|
}
|
|
};
|
|
|
|
/// Attributor-aware capture tracker.
|
|
struct AACaptureUseTracker final : public CaptureTracker {
|
|
|
|
/// Create a capture tracker that can lookup in-flight abstract attributes
|
|
/// through the Attributor \p A.
|
|
///
|
|
/// If a use leads to a potential capture, \p CapturedInMemory is set and the
|
|
/// search is stopped. If a use leads to a return instruction,
|
|
/// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed.
|
|
/// If a use leads to a ptr2int which may capture the value,
|
|
/// \p CapturedInInteger is set. If a use is found that is currently assumed
|
|
/// "no-capture-maybe-returned", the user is added to the \p PotentialCopies
|
|
/// set. All values in \p PotentialCopies are later tracked as well. For every
|
|
/// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0,
|
|
/// the search is stopped with \p CapturedInMemory and \p CapturedInInteger
|
|
/// conservatively set to true.
|
|
AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA,
|
|
const AAIsDead &IsDeadAA, IntegerState &State,
|
|
SmallVectorImpl<const Value *> &PotentialCopies,
|
|
unsigned &RemainingUsesToExplore)
|
|
: A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State),
|
|
PotentialCopies(PotentialCopies),
|
|
RemainingUsesToExplore(RemainingUsesToExplore) {}
|
|
|
|
/// Determine if \p V maybe captured. *Also updates the state!*
|
|
bool valueMayBeCaptured(const Value *V) {
|
|
if (V->getType()->isPointerTy()) {
|
|
PointerMayBeCaptured(V, this);
|
|
} else {
|
|
State.indicatePessimisticFixpoint();
|
|
}
|
|
return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
|
|
}
|
|
|
|
/// See CaptureTracker::tooManyUses().
|
|
void tooManyUses() override {
|
|
State.removeAssumedBits(AANoCapture::NO_CAPTURE);
|
|
}
|
|
|
|
bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override {
|
|
if (CaptureTracker::isDereferenceableOrNull(O, DL))
|
|
return true;
|
|
const auto &DerefAA =
|
|
A.getAAFor<AADereferenceable>(NoCaptureAA, IRPosition::value(*O));
|
|
return DerefAA.getAssumedDereferenceableBytes();
|
|
}
|
|
|
|
/// See CaptureTracker::captured(...).
|
|
bool captured(const Use *U) override {
|
|
Instruction *UInst = cast<Instruction>(U->getUser());
|
|
LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst
|
|
<< "\n");
|
|
|
|
// Because we may reuse the tracker multiple times we keep track of the
|
|
// number of explored uses ourselves as well.
|
|
if (RemainingUsesToExplore-- == 0) {
|
|
LLVM_DEBUG(dbgs() << " - too many uses to explore!\n");
|
|
return isCapturedIn(/* Memory */ true, /* Integer */ true,
|
|
/* Return */ true);
|
|
}
|
|
|
|
// Deal with ptr2int by following uses.
|
|
if (isa<PtrToIntInst>(UInst)) {
|
|
LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
|
|
return valueMayBeCaptured(UInst);
|
|
}
|
|
|
|
// Explicitly catch return instructions.
|
|
if (isa<ReturnInst>(UInst))
|
|
return isCapturedIn(/* Memory */ false, /* Integer */ false,
|
|
/* Return */ true);
|
|
|
|
// For now we only use special logic for call sites. However, the tracker
|
|
// itself knows about a lot of other non-capturing cases already.
|
|
CallSite CS(UInst);
|
|
if (!CS || !CS.isArgOperand(U))
|
|
return isCapturedIn(/* Memory */ true, /* Integer */ true,
|
|
/* Return */ true);
|
|
|
|
unsigned ArgNo = CS.getArgumentNo(U);
|
|
const IRPosition &CSArgPos = IRPosition::callsite_argument(CS, ArgNo);
|
|
// If we have a abstract no-capture attribute for the argument we can use
|
|
// it to justify a non-capture attribute here. This allows recursion!
|
|
auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos);
|
|
if (ArgNoCaptureAA.isAssumedNoCapture())
|
|
return isCapturedIn(/* Memory */ false, /* Integer */ false,
|
|
/* Return */ false);
|
|
if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
|
|
addPotentialCopy(CS);
|
|
return isCapturedIn(/* Memory */ false, /* Integer */ false,
|
|
/* Return */ false);
|
|
}
|
|
|
|
// Lastly, we could not find a reason no-capture can be assumed so we don't.
|
|
return isCapturedIn(/* Memory */ true, /* Integer */ true,
|
|
/* Return */ true);
|
|
}
|
|
|
|
/// Register \p CS as potential copy of the value we are checking.
|
|
void addPotentialCopy(CallSite CS) {
|
|
PotentialCopies.push_back(CS.getInstruction());
|
|
}
|
|
|
|
/// See CaptureTracker::shouldExplore(...).
|
|
bool shouldExplore(const Use *U) override {
|
|
// Check liveness.
|
|
return !IsDeadAA.isAssumedDead(cast<Instruction>(U->getUser()));
|
|
}
|
|
|
|
/// Update the state according to \p CapturedInMem, \p CapturedInInt, and
|
|
/// \p CapturedInRet, then return the appropriate value for use in the
|
|
/// CaptureTracker::captured() interface.
|
|
bool isCapturedIn(bool CapturedInMem, bool CapturedInInt,
|
|
bool CapturedInRet) {
|
|
LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
|
|
<< CapturedInInt << "|Ret " << CapturedInRet << "]\n");
|
|
if (CapturedInMem)
|
|
State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
|
|
if (CapturedInInt)
|
|
State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
|
|
if (CapturedInRet)
|
|
State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
|
|
return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
|
|
}
|
|
|
|
private:
|
|
/// The attributor providing in-flight abstract attributes.
|
|
Attributor &A;
|
|
|
|
/// The abstract attribute currently updated.
|
|
AANoCapture &NoCaptureAA;
|
|
|
|
/// The abstract liveness state.
|
|
const AAIsDead &IsDeadAA;
|
|
|
|
/// The state currently updated.
|
|
IntegerState &State;
|
|
|
|
/// Set of potential copies of the tracked value.
|
|
SmallVectorImpl<const Value *> &PotentialCopies;
|
|
|
|
/// Global counter to limit the number of explored uses.
|
|
unsigned &RemainingUsesToExplore;
|
|
};
|
|
|
|
ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
|
|
const IRPosition &IRP = getIRPosition();
|
|
const Value *V =
|
|
getArgNo() >= 0 ? IRP.getAssociatedArgument() : &IRP.getAssociatedValue();
|
|
if (!V)
|
|
return indicatePessimisticFixpoint();
|
|
|
|
const Function *F =
|
|
getArgNo() >= 0 ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
|
|
assert(F && "Expected a function!");
|
|
const auto &IsDeadAA = A.getAAFor<AAIsDead>(*this, IRPosition::function(*F));
|
|
|
|
AANoCapture::StateType T;
|
|
// TODO: Once we have memory behavior attributes we should use them here
|
|
// similar to the reasoning in
|
|
// AANoCaptureImpl::determineFunctionCaptureCapabilities(...).
|
|
|
|
// TODO: Use the AAReturnedValues to learn if the argument can return or
|
|
// not.
|
|
|
|
// Use the CaptureTracker interface and logic with the specialized tracker,
|
|
// defined in AACaptureUseTracker, that can look at in-flight abstract
|
|
// attributes and directly updates the assumed state.
|
|
SmallVector<const Value *, 4> PotentialCopies;
|
|
unsigned RemainingUsesToExplore = DefaultMaxUsesToExplore;
|
|
AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies,
|
|
RemainingUsesToExplore);
|
|
|
|
// Check all potential copies of the associated value until we can assume
|
|
// none will be captured or we have to assume at least one might be.
|
|
unsigned Idx = 0;
|
|
PotentialCopies.push_back(V);
|
|
while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size())
|
|
Tracker.valueMayBeCaptured(PotentialCopies[Idx++]);
|
|
|
|
AAAlign::StateType &S = getState();
|
|
auto Assumed = S.getAssumed();
|
|
S.intersectAssumedBits(T.getAssumed());
|
|
return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
|
|
: ChangeStatus::CHANGED;
|
|
}
|
|
|
|
/// NoCapture attribute for function arguments.
|
|
struct AANoCaptureArgument final : AANoCaptureImpl {
|
|
AANoCaptureArgument(const IRPosition &IRP) : AANoCaptureImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
|
|
};
|
|
|
|
/// NoCapture attribute for call site arguments.
|
|
struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
|
|
AANoCaptureCallSiteArgument(const IRPosition &IRP) : AANoCaptureImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
// TODO: Once we have call site specific value information we can provide
|
|
// call site specific liveness information and then it makes
|
|
// sense to specialize attributes for call sites arguments instead of
|
|
// redirecting requests to the callee argument.
|
|
Argument *Arg = getAssociatedArgument();
|
|
if (!Arg)
|
|
return indicatePessimisticFixpoint();
|
|
const IRPosition &ArgPos = IRPosition::argument(*Arg);
|
|
auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos);
|
|
return clampStateAndIndicateChange(
|
|
getState(),
|
|
static_cast<const AANoCapture::StateType &>(ArgAA.getState()));
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
|
|
};
|
|
|
|
/// NoCapture attribute for floating values.
|
|
struct AANoCaptureFloating final : AANoCaptureImpl {
|
|
AANoCaptureFloating(const IRPosition &IRP) : AANoCaptureImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override {
|
|
STATS_DECLTRACK_FLOATING_ATTR(nocapture)
|
|
}
|
|
};
|
|
|
|
/// NoCapture attribute for function return value.
|
|
struct AANoCaptureReturned final : AANoCaptureImpl {
|
|
AANoCaptureReturned(const IRPosition &IRP) : AANoCaptureImpl(IRP) {
|
|
llvm_unreachable("NoCapture is not applicable to function returns!");
|
|
}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
llvm_unreachable("NoCapture is not applicable to function returns!");
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
llvm_unreachable("NoCapture is not applicable to function returns!");
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override {}
|
|
};
|
|
|
|
/// NoCapture attribute deduction for a call site return value.
|
|
struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
|
|
AANoCaptureCallSiteReturned(const IRPosition &IRP) : AANoCaptureImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override {
|
|
STATS_DECLTRACK_CSRET_ATTR(nocapture)
|
|
}
|
|
};
|
|
|
|
/// ------------------ Value Simplify Attribute ----------------------------
|
|
struct AAValueSimplifyImpl : AAValueSimplify {
|
|
AAValueSimplifyImpl(const IRPosition &IRP) : AAValueSimplify(IRP) {}
|
|
|
|
/// See AbstractAttribute::getAsStr().
|
|
const std::string getAsStr() const override {
|
|
return getAssumed() ? (getKnown() ? "simplified" : "maybe-simple")
|
|
: "not-simple";
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override {}
|
|
|
|
/// See AAValueSimplify::getAssumedSimplifiedValue()
|
|
Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const override {
|
|
if (!getAssumed())
|
|
return const_cast<Value *>(&getAssociatedValue());
|
|
return SimplifiedAssociatedValue;
|
|
}
|
|
void initialize(Attributor &A) override {}
|
|
|
|
/// Helper function for querying AAValueSimplify and updating candicate.
|
|
/// \param QueryingValue Value trying to unify with SimplifiedValue
|
|
/// \param AccumulatedSimplifiedValue Current simplification result.
|
|
static bool checkAndUpdate(Attributor &A, const AbstractAttribute &QueryingAA,
|
|
Value &QueryingValue,
|
|
Optional<Value *> &AccumulatedSimplifiedValue) {
|
|
// FIXME: Add a typecast support.
|
|
|
|
auto &ValueSimpifyAA = A.getAAFor<AAValueSimplify>(
|
|
QueryingAA, IRPosition::value(QueryingValue));
|
|
|
|
Optional<Value *> QueryingValueSimplified =
|
|
ValueSimpifyAA.getAssumedSimplifiedValue(A);
|
|
|
|
if (!QueryingValueSimplified.hasValue())
|
|
return true;
|
|
|
|
if (!QueryingValueSimplified.getValue())
|
|
return false;
|
|
|
|
Value &QueryingValueSimplifiedUnwrapped =
|
|
*QueryingValueSimplified.getValue();
|
|
|
|
if (isa<UndefValue>(QueryingValueSimplifiedUnwrapped))
|
|
return true;
|
|
|
|
if (AccumulatedSimplifiedValue.hasValue())
|
|
return AccumulatedSimplifiedValue == QueryingValueSimplified;
|
|
|
|
LLVM_DEBUG(dbgs() << "[Attributor][ValueSimplify] " << QueryingValue
|
|
<< " is assumed to be "
|
|
<< QueryingValueSimplifiedUnwrapped << "\n");
|
|
|
|
AccumulatedSimplifiedValue = QueryingValueSimplified;
|
|
return true;
|
|
}
|
|
|
|
/// See AbstractAttribute::manifest(...).
|
|
ChangeStatus manifest(Attributor &A) override {
|
|
ChangeStatus Changed = ChangeStatus::UNCHANGED;
|
|
|
|
if (!SimplifiedAssociatedValue.hasValue() ||
|
|
!SimplifiedAssociatedValue.getValue())
|
|
return Changed;
|
|
|
|
if (auto *C = dyn_cast<Constant>(SimplifiedAssociatedValue.getValue())) {
|
|
// We can replace the AssociatedValue with the constant.
|
|
Value &V = getAssociatedValue();
|
|
if (!V.user_empty() && &V != C && V.getType() == C->getType()) {
|
|
LLVM_DEBUG(dbgs() << "[Attributor][ValueSimplify] " << V << " -> " << *C
|
|
<< "\n");
|
|
V.replaceAllUsesWith(C);
|
|
Changed = ChangeStatus::CHANGED;
|
|
}
|
|
}
|
|
|
|
return Changed | AAValueSimplify::manifest(A);
|
|
}
|
|
|
|
protected:
|
|
// An assumed simplified value. Initially, it is set to Optional::None, which
|
|
// means that the value is not clear under current assumption. If in the
|
|
// pessimistic state, getAssumedSimplifiedValue doesn't return this value but
|
|
// returns orignal associated value.
|
|
Optional<Value *> SimplifiedAssociatedValue;
|
|
};
|
|
|
|
struct AAValueSimplifyArgument final : AAValueSimplifyImpl {
|
|
AAValueSimplifyArgument(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
|
|
|
|
auto PredForCallSite = [&](CallSite CS) {
|
|
return checkAndUpdate(A, *this, *CS.getArgOperand(getArgNo()),
|
|
SimplifiedAssociatedValue);
|
|
};
|
|
|
|
if (!A.checkForAllCallSites(PredForCallSite, *this, true))
|
|
return indicatePessimisticFixpoint();
|
|
|
|
// If a candicate was found in this update, return CHANGED.
|
|
return HasValueBefore == SimplifiedAssociatedValue.hasValue()
|
|
? ChangeStatus::UNCHANGED
|
|
: ChangeStatus ::CHANGED;
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override {
|
|
STATS_DECLTRACK_ARG_ATTR(value_simplify)
|
|
}
|
|
};
|
|
|
|
struct AAValueSimplifyReturned : AAValueSimplifyImpl {
|
|
AAValueSimplifyReturned(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
|
|
|
|
auto PredForReturned = [&](Value &V) {
|
|
return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue);
|
|
};
|
|
|
|
if (!A.checkForAllReturnedValues(PredForReturned, *this))
|
|
return indicatePessimisticFixpoint();
|
|
|
|
// If a candicate was found in this update, return CHANGED.
|
|
return HasValueBefore == SimplifiedAssociatedValue.hasValue()
|
|
? ChangeStatus::UNCHANGED
|
|
: ChangeStatus ::CHANGED;
|
|
}
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override {
|
|
STATS_DECLTRACK_FNRET_ATTR(value_simplify)
|
|
}
|
|
};
|
|
|
|
struct AAValueSimplifyFloating : AAValueSimplifyImpl {
|
|
AAValueSimplifyFloating(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
Value &V = getAnchorValue();
|
|
|
|
// TODO: add other stuffs
|
|
if (isa<Constant>(V) || isa<UndefValue>(V))
|
|
indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractAttribute::updateImpl(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
bool HasValueBefore = SimplifiedAssociatedValue.hasValue();
|
|
|
|
auto VisitValueCB = [&](Value &V, BooleanState, bool Stripped) -> bool {
|
|
auto &AA = A.getAAFor<AAValueSimplify>(*this, IRPosition::value(V));
|
|
if (!Stripped && this == &AA) {
|
|
// TODO: Look the instruction and check recursively.
|
|
LLVM_DEBUG(
|
|
dbgs() << "[Attributor][ValueSimplify] Can't be stripped more : "
|
|
<< V << "\n");
|
|
indicatePessimisticFixpoint();
|
|
return false;
|
|
}
|
|
return checkAndUpdate(A, *this, V, SimplifiedAssociatedValue);
|
|
};
|
|
|
|
if (!genericValueTraversal<AAValueSimplify, BooleanState>(
|
|
A, getIRPosition(), *this, static_cast<BooleanState &>(*this),
|
|
VisitValueCB))
|
|
return indicatePessimisticFixpoint();
|
|
|
|
// If a candicate was found in this update, return CHANGED.
|
|
|
|
return HasValueBefore == SimplifiedAssociatedValue.hasValue()
|
|
? ChangeStatus::UNCHANGED
|
|
: ChangeStatus ::CHANGED;
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override {
|
|
STATS_DECLTRACK_FLOATING_ATTR(value_simplify)
|
|
}
|
|
};
|
|
|
|
struct AAValueSimplifyFunction : AAValueSimplifyImpl {
|
|
AAValueSimplifyFunction(const IRPosition &IRP) : AAValueSimplifyImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
SimplifiedAssociatedValue = &getAnchorValue();
|
|
indicateOptimisticFixpoint();
|
|
}
|
|
/// See AbstractAttribute::initialize(...).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
llvm_unreachable(
|
|
"AAValueSimplify(Function|CallSite)::updateImpl will not be called");
|
|
}
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override {
|
|
STATS_DECLTRACK_FN_ATTR(value_simplify)
|
|
}
|
|
};
|
|
|
|
struct AAValueSimplifyCallSite : AAValueSimplifyFunction {
|
|
AAValueSimplifyCallSite(const IRPosition &IRP)
|
|
: AAValueSimplifyFunction(IRP) {}
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override {
|
|
STATS_DECLTRACK_CS_ATTR(value_simplify)
|
|
}
|
|
};
|
|
|
|
struct AAValueSimplifyCallSiteReturned : AAValueSimplifyReturned {
|
|
AAValueSimplifyCallSiteReturned(const IRPosition &IRP)
|
|
: AAValueSimplifyReturned(IRP) {}
|
|
|
|
void trackStatistics() const override {
|
|
STATS_DECLTRACK_CSRET_ATTR(value_simplify)
|
|
}
|
|
};
|
|
struct AAValueSimplifyCallSiteArgument : AAValueSimplifyFloating {
|
|
AAValueSimplifyCallSiteArgument(const IRPosition &IRP)
|
|
: AAValueSimplifyFloating(IRP) {}
|
|
|
|
void trackStatistics() const override {
|
|
STATS_DECLTRACK_CSARG_ATTR(value_simplify)
|
|
}
|
|
};
|
|
|
|
/// ----------------------- Heap-To-Stack Conversion ---------------------------
|
|
struct AAHeapToStackImpl : public AAHeapToStack {
|
|
AAHeapToStackImpl(const IRPosition &IRP) : AAHeapToStack(IRP) {}
|
|
|
|
const std::string getAsStr() const override {
|
|
return "[H2S] Mallocs: " + std::to_string(MallocCalls.size());
|
|
}
|
|
|
|
ChangeStatus manifest(Attributor &A) override {
|
|
assert(getState().isValidState() &&
|
|
"Attempted to manifest an invalid state!");
|
|
|
|
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
|
|
Function *F = getAssociatedFunction();
|
|
const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
|
|
|
|
for (Instruction *MallocCall : MallocCalls) {
|
|
// This malloc cannot be replaced.
|
|
if (BadMallocCalls.count(MallocCall))
|
|
continue;
|
|
|
|
for (Instruction *FreeCall : FreesForMalloc[MallocCall]) {
|
|
LLVM_DEBUG(dbgs() << "H2S: Removing free call: " << *FreeCall << "\n");
|
|
A.deleteAfterManifest(*FreeCall);
|
|
HasChanged = ChangeStatus::CHANGED;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "H2S: Removing malloc call: " << *MallocCall
|
|
<< "\n");
|
|
|
|
Constant *Size;
|
|
if (isCallocLikeFn(MallocCall, TLI)) {
|
|
auto *Num = cast<ConstantInt>(MallocCall->getOperand(0));
|
|
auto *SizeT = dyn_cast<ConstantInt>(MallocCall->getOperand(1));
|
|
APInt TotalSize = SizeT->getValue() * Num->getValue();
|
|
Size =
|
|
ConstantInt::get(MallocCall->getOperand(0)->getType(), TotalSize);
|
|
} else {
|
|
Size = cast<ConstantInt>(MallocCall->getOperand(0));
|
|
}
|
|
|
|
unsigned AS = cast<PointerType>(MallocCall->getType())->getAddressSpace();
|
|
Instruction *AI = new AllocaInst(Type::getInt8Ty(F->getContext()), AS,
|
|
Size, "", MallocCall->getNextNode());
|
|
|
|
if (AI->getType() != MallocCall->getType())
|
|
AI = new BitCastInst(AI, MallocCall->getType(), "malloc_bc",
|
|
AI->getNextNode());
|
|
|
|
MallocCall->replaceAllUsesWith(AI);
|
|
|
|
if (auto *II = dyn_cast<InvokeInst>(MallocCall)) {
|
|
auto *NBB = II->getNormalDest();
|
|
BranchInst::Create(NBB, MallocCall->getParent());
|
|
A.deleteAfterManifest(*MallocCall);
|
|
} else {
|
|
A.deleteAfterManifest(*MallocCall);
|
|
}
|
|
|
|
if (isCallocLikeFn(MallocCall, TLI)) {
|
|
auto *BI = new BitCastInst(AI, MallocCall->getType(), "calloc_bc",
|
|
AI->getNextNode());
|
|
Value *Ops[] = {
|
|
BI, ConstantInt::get(F->getContext(), APInt(8, 0, false)), Size,
|
|
ConstantInt::get(Type::getInt1Ty(F->getContext()), false)};
|
|
|
|
Type *Tys[] = {BI->getType(), MallocCall->getOperand(0)->getType()};
|
|
Module *M = F->getParent();
|
|
Function *Fn = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys);
|
|
CallInst::Create(Fn, Ops, "", BI->getNextNode());
|
|
}
|
|
HasChanged = ChangeStatus::CHANGED;
|
|
}
|
|
|
|
return HasChanged;
|
|
}
|
|
|
|
/// Collection of all malloc calls in a function.
|
|
SmallSetVector<Instruction *, 4> MallocCalls;
|
|
|
|
/// Collection of malloc calls that cannot be converted.
|
|
DenseSet<const Instruction *> BadMallocCalls;
|
|
|
|
/// A map for each malloc call to the set of associated free calls.
|
|
DenseMap<Instruction *, SmallPtrSet<Instruction *, 4>> FreesForMalloc;
|
|
|
|
ChangeStatus updateImpl(Attributor &A) override;
|
|
};
|
|
|
|
ChangeStatus AAHeapToStackImpl::updateImpl(Attributor &A) {
|
|
const Function *F = getAssociatedFunction();
|
|
const auto *TLI = A.getInfoCache().getTargetLibraryInfoForFunction(*F);
|
|
|
|
auto UsesCheck = [&](Instruction &I) {
|
|
SmallPtrSet<const Use *, 8> Visited;
|
|
SmallVector<const Use *, 8> Worklist;
|
|
|
|
for (Use &U : I.uses())
|
|
Worklist.push_back(&U);
|
|
|
|
while (!Worklist.empty()) {
|
|
const Use *U = Worklist.pop_back_val();
|
|
if (!Visited.insert(U).second)
|
|
continue;
|
|
|
|
auto *UserI = U->getUser();
|
|
|
|
if (isa<LoadInst>(UserI) || isa<StoreInst>(UserI))
|
|
continue;
|
|
|
|
// NOTE: Right now, if a function that has malloc pointer as an argument
|
|
// frees memory, we assume that the malloc pointer is freed.
|
|
|
|
// TODO: Add nofree callsite argument attribute to indicate that pointer
|
|
// argument is not freed.
|
|
if (auto *CB = dyn_cast<CallBase>(UserI)) {
|
|
if (!CB->isArgOperand(U))
|
|
continue;
|
|
|
|
if (CB->isLifetimeStartOrEnd())
|
|
continue;
|
|
|
|
// Record malloc.
|
|
if (isFreeCall(UserI, TLI)) {
|
|
FreesForMalloc[&I].insert(
|
|
cast<Instruction>(const_cast<User *>(UserI)));
|
|
continue;
|
|
}
|
|
|
|
// If a function does not free memory we are fine
|
|
const auto &NoFreeAA =
|
|
A.getAAFor<AANoFree>(*this, IRPosition::callsite_function(*CB));
|
|
|
|
unsigned ArgNo = U - CB->arg_begin();
|
|
const auto &NoCaptureAA = A.getAAFor<AANoCapture>(
|
|
*this, IRPosition::callsite_argument(*CB, ArgNo));
|
|
|
|
if (!NoCaptureAA.isAssumedNoCapture() || !NoFreeAA.isAssumedNoFree()) {
|
|
LLVM_DEBUG(dbgs() << "[H2S] Bad user: " << *UserI << "\n");
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (isa<GetElementPtrInst>(UserI) || isa<BitCastInst>(UserI)) {
|
|
for (Use &U : UserI->uses())
|
|
Worklist.push_back(&U);
|
|
continue;
|
|
}
|
|
|
|
// Unknown user.
|
|
LLVM_DEBUG(dbgs() << "[H2S] Unknown user: " << *UserI << "\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
auto MallocCallocCheck = [&](Instruction &I) {
|
|
if (isMallocLikeFn(&I, TLI)) {
|
|
if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(0)))
|
|
if (!Size->getValue().sle(MaxHeapToStackSize))
|
|
return true;
|
|
} else if (isCallocLikeFn(&I, TLI)) {
|
|
bool Overflow = false;
|
|
if (auto *Num = dyn_cast<ConstantInt>(I.getOperand(0)))
|
|
if (auto *Size = dyn_cast<ConstantInt>(I.getOperand(1)))
|
|
if (!(Size->getValue().umul_ov(Num->getValue(), Overflow))
|
|
.sle(MaxHeapToStackSize))
|
|
if (!Overflow)
|
|
return true;
|
|
} else {
|
|
BadMallocCalls.insert(&I);
|
|
return true;
|
|
}
|
|
|
|
if (BadMallocCalls.count(&I))
|
|
return true;
|
|
|
|
if (UsesCheck(I))
|
|
MallocCalls.insert(&I);
|
|
else
|
|
BadMallocCalls.insert(&I);
|
|
return true;
|
|
};
|
|
|
|
size_t NumBadMallocs = BadMallocCalls.size();
|
|
|
|
A.checkForAllCallLikeInstructions(MallocCallocCheck, *this);
|
|
|
|
if (NumBadMallocs != BadMallocCalls.size())
|
|
return ChangeStatus::CHANGED;
|
|
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
struct AAHeapToStackFunction final : public AAHeapToStackImpl {
|
|
AAHeapToStackFunction(const IRPosition &IRP) : AAHeapToStackImpl(IRP) {}
|
|
|
|
/// See AbstractAttribute::trackStatistics()
|
|
void trackStatistics() const override {
|
|
STATS_DECL(MallocCalls, Function,
|
|
"Number of MallocCalls converted to allocas");
|
|
BUILD_STAT_NAME(MallocCalls, Function) += MallocCalls.size();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
/// ----------------------------------------------------------------------------
|
|
/// Attributor
|
|
/// ----------------------------------------------------------------------------
|
|
|
|
bool Attributor::isAssumedDead(const AbstractAttribute &AA,
|
|
const AAIsDead *LivenessAA) {
|
|
const Instruction *CtxI = AA.getIRPosition().getCtxI();
|
|
if (!CtxI)
|
|
return false;
|
|
|
|
if (!LivenessAA)
|
|
LivenessAA =
|
|
&getAAFor<AAIsDead>(AA, IRPosition::function(*CtxI->getFunction()),
|
|
/* TrackDependence */ false);
|
|
|
|
// Don't check liveness for AAIsDead.
|
|
if (&AA == LivenessAA)
|
|
return false;
|
|
|
|
if (!LivenessAA->isAssumedDead(CtxI))
|
|
return false;
|
|
|
|
// We actually used liveness information so we have to record a dependence.
|
|
recordDependence(*LivenessAA, AA);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Attributor::checkForAllCallSites(const function_ref<bool(CallSite)> &Pred,
|
|
const AbstractAttribute &QueryingAA,
|
|
bool RequireAllCallSites) {
|
|
// We can try to determine information from
|
|
// the call sites. However, this is only possible all call sites are known,
|
|
// hence the function has internal linkage.
|
|
const IRPosition &IRP = QueryingAA.getIRPosition();
|
|
const Function *AssociatedFunction = IRP.getAssociatedFunction();
|
|
if (!AssociatedFunction)
|
|
return false;
|
|
|
|
if (RequireAllCallSites && !AssociatedFunction->hasInternalLinkage()) {
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "[Attributor] Function " << AssociatedFunction->getName()
|
|
<< " has no internal linkage, hence not all call sites are known\n");
|
|
return false;
|
|
}
|
|
|
|
for (const Use &U : AssociatedFunction->uses()) {
|
|
Instruction *I = dyn_cast<Instruction>(U.getUser());
|
|
// TODO: Deal with abstract call sites here.
|
|
if (!I)
|
|
return false;
|
|
|
|
Function *Caller = I->getFunction();
|
|
|
|
const auto &LivenessAA = getAAFor<AAIsDead>(
|
|
QueryingAA, IRPosition::function(*Caller), /* TrackDependence */ false);
|
|
|
|
// Skip dead calls.
|
|
if (LivenessAA.isAssumedDead(I)) {
|
|
// We actually used liveness information so we have to record a
|
|
// dependence.
|
|
recordDependence(LivenessAA, QueryingAA);
|
|
continue;
|
|
}
|
|
|
|
CallSite CS(U.getUser());
|
|
if (!CS || !CS.isCallee(&U)) {
|
|
if (!RequireAllCallSites)
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "[Attributor] User " << *U.getUser()
|
|
<< " is an invalid use of "
|
|
<< AssociatedFunction->getName() << "\n");
|
|
return false;
|
|
}
|
|
|
|
if (Pred(CS))
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
|
|
<< *CS.getInstruction() << "\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Attributor::checkForAllReturnedValuesAndReturnInsts(
|
|
const function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)>
|
|
&Pred,
|
|
const AbstractAttribute &QueryingAA) {
|
|
|
|
const IRPosition &IRP = QueryingAA.getIRPosition();
|
|
// Since we need to provide return instructions we have to have an exact
|
|
// definition.
|
|
const Function *AssociatedFunction = IRP.getAssociatedFunction();
|
|
if (!AssociatedFunction)
|
|
return false;
|
|
|
|
// If this is a call site query we use the call site specific return values
|
|
// and liveness information.
|
|
// TODO: use the function scope once we have call site AAReturnedValues.
|
|
const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
|
|
const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP);
|
|
if (!AARetVal.getState().isValidState())
|
|
return false;
|
|
|
|
return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred);
|
|
}
|
|
|
|
bool Attributor::checkForAllReturnedValues(
|
|
const function_ref<bool(Value &)> &Pred,
|
|
const AbstractAttribute &QueryingAA) {
|
|
|
|
const IRPosition &IRP = QueryingAA.getIRPosition();
|
|
const Function *AssociatedFunction = IRP.getAssociatedFunction();
|
|
if (!AssociatedFunction)
|
|
return false;
|
|
|
|
// TODO: use the function scope once we have call site AAReturnedValues.
|
|
const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
|
|
const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP);
|
|
if (!AARetVal.getState().isValidState())
|
|
return false;
|
|
|
|
return AARetVal.checkForAllReturnedValuesAndReturnInsts(
|
|
[&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) {
|
|
return Pred(RV);
|
|
});
|
|
}
|
|
|
|
static bool
|
|
checkForAllInstructionsImpl(InformationCache::OpcodeInstMapTy &OpcodeInstMap,
|
|
const function_ref<bool(Instruction &)> &Pred,
|
|
const AAIsDead *LivenessAA, bool &AnyDead,
|
|
const ArrayRef<unsigned> &Opcodes) {
|
|
for (unsigned Opcode : Opcodes) {
|
|
for (Instruction *I : OpcodeInstMap[Opcode]) {
|
|
// Skip dead instructions.
|
|
if (LivenessAA && LivenessAA->isAssumedDead(I)) {
|
|
AnyDead = true;
|
|
continue;
|
|
}
|
|
|
|
if (!Pred(*I))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Attributor::checkForAllInstructions(
|
|
const llvm::function_ref<bool(Instruction &)> &Pred,
|
|
const AbstractAttribute &QueryingAA, const ArrayRef<unsigned> &Opcodes) {
|
|
|
|
const IRPosition &IRP = QueryingAA.getIRPosition();
|
|
// Since we need to provide instructions we have to have an exact definition.
|
|
const Function *AssociatedFunction = IRP.getAssociatedFunction();
|
|
if (!AssociatedFunction)
|
|
return false;
|
|
|
|
// TODO: use the function scope once we have call site AAReturnedValues.
|
|
const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
|
|
const auto &LivenessAA =
|
|
getAAFor<AAIsDead>(QueryingAA, QueryIRP, /* TrackDependence */ false);
|
|
bool AnyDead = false;
|
|
|
|
auto &OpcodeInstMap =
|
|
InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction);
|
|
if (!checkForAllInstructionsImpl(OpcodeInstMap, Pred, &LivenessAA, AnyDead, Opcodes))
|
|
return false;
|
|
|
|
// If we actually used liveness information so we have to record a dependence.
|
|
if (AnyDead)
|
|
recordDependence(LivenessAA, QueryingAA);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Attributor::checkForAllReadWriteInstructions(
|
|
const llvm::function_ref<bool(Instruction &)> &Pred,
|
|
AbstractAttribute &QueryingAA) {
|
|
|
|
const Function *AssociatedFunction =
|
|
QueryingAA.getIRPosition().getAssociatedFunction();
|
|
if (!AssociatedFunction)
|
|
return false;
|
|
|
|
// TODO: use the function scope once we have call site AAReturnedValues.
|
|
const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
|
|
const auto &LivenessAA =
|
|
getAAFor<AAIsDead>(QueryingAA, QueryIRP, /* TrackDependence */ false);
|
|
bool AnyDead = false;
|
|
|
|
for (Instruction *I :
|
|
InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
|
|
// Skip dead instructions.
|
|
if (LivenessAA.isAssumedDead(I)) {
|
|
AnyDead = true;
|
|
continue;
|
|
}
|
|
|
|
if (!Pred(*I))
|
|
return false;
|
|
}
|
|
|
|
// If we actually used liveness information so we have to record a dependence.
|
|
if (AnyDead)
|
|
recordDependence(LivenessAA, QueryingAA);
|
|
|
|
return true;
|
|
}
|
|
|
|
ChangeStatus Attributor::run(Module &M) {
|
|
LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
|
|
<< AllAbstractAttributes.size()
|
|
<< " abstract attributes.\n");
|
|
|
|
// Now that all abstract attributes are collected and initialized we start
|
|
// the abstract analysis.
|
|
|
|
unsigned IterationCounter = 1;
|
|
|
|
SmallVector<AbstractAttribute *, 64> ChangedAAs;
|
|
SetVector<AbstractAttribute *> Worklist;
|
|
Worklist.insert(AllAbstractAttributes.begin(), AllAbstractAttributes.end());
|
|
|
|
bool RecomputeDependences = false;
|
|
|
|
do {
|
|
// Remember the size to determine new attributes.
|
|
size_t NumAAs = AllAbstractAttributes.size();
|
|
LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
|
|
<< ", Worklist size: " << Worklist.size() << "\n");
|
|
|
|
// If dependences (=QueryMap) are recomputed we have to look at all abstract
|
|
// attributes again, regardless of what changed in the last iteration.
|
|
if (RecomputeDependences) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "[Attributor] Run all AAs to recompute dependences\n");
|
|
QueryMap.clear();
|
|
ChangedAAs.clear();
|
|
Worklist.insert(AllAbstractAttributes.begin(),
|
|
AllAbstractAttributes.end());
|
|
}
|
|
|
|
// Add all abstract attributes that are potentially dependent on one that
|
|
// changed to the work list.
|
|
for (AbstractAttribute *ChangedAA : ChangedAAs) {
|
|
auto &QuerriedAAs = QueryMap[ChangedAA];
|
|
Worklist.insert(QuerriedAAs.begin(), QuerriedAAs.end());
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
|
|
<< ", Worklist+Dependent size: " << Worklist.size()
|
|
<< "\n");
|
|
|
|
// Reset the changed set.
|
|
ChangedAAs.clear();
|
|
|
|
// Update all abstract attribute in the work list and record the ones that
|
|
// changed.
|
|
for (AbstractAttribute *AA : Worklist)
|
|
if (!isAssumedDead(*AA, nullptr))
|
|
if (AA->update(*this) == ChangeStatus::CHANGED)
|
|
ChangedAAs.push_back(AA);
|
|
|
|
// Check if we recompute the dependences in the next iteration.
|
|
RecomputeDependences = (DepRecomputeInterval > 0 &&
|
|
IterationCounter % DepRecomputeInterval == 0);
|
|
|
|
// Add attributes to the changed set if they have been created in the last
|
|
// iteration.
|
|
ChangedAAs.append(AllAbstractAttributes.begin() + NumAAs,
|
|
AllAbstractAttributes.end());
|
|
|
|
// Reset the work list and repopulate with the changed abstract attributes.
|
|
// Note that dependent ones are added above.
|
|
Worklist.clear();
|
|
Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
|
|
|
|
} while (!Worklist.empty() && (IterationCounter++ < MaxFixpointIterations ||
|
|
VerifyMaxFixpointIterations));
|
|
|
|
LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
|
|
<< IterationCounter << "/" << MaxFixpointIterations
|
|
<< " iterations\n");
|
|
|
|
size_t NumFinalAAs = AllAbstractAttributes.size();
|
|
|
|
bool FinishedAtFixpoint = Worklist.empty();
|
|
|
|
// Reset abstract arguments not settled in a sound fixpoint by now. This
|
|
// happens when we stopped the fixpoint iteration early. Note that only the
|
|
// ones marked as "changed" *and* the ones transitively depending on them
|
|
// need to be reverted to a pessimistic state. Others might not be in a
|
|
// fixpoint state but we can use the optimistic results for them anyway.
|
|
SmallPtrSet<AbstractAttribute *, 32> Visited;
|
|
for (unsigned u = 0; u < ChangedAAs.size(); u++) {
|
|
AbstractAttribute *ChangedAA = ChangedAAs[u];
|
|
if (!Visited.insert(ChangedAA).second)
|
|
continue;
|
|
|
|
AbstractState &State = ChangedAA->getState();
|
|
if (!State.isAtFixpoint()) {
|
|
State.indicatePessimisticFixpoint();
|
|
|
|
NumAttributesTimedOut++;
|
|
}
|
|
|
|
auto &QuerriedAAs = QueryMap[ChangedAA];
|
|
ChangedAAs.append(QuerriedAAs.begin(), QuerriedAAs.end());
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
if (!Visited.empty())
|
|
dbgs() << "\n[Attributor] Finalized " << Visited.size()
|
|
<< " abstract attributes.\n";
|
|
});
|
|
|
|
unsigned NumManifested = 0;
|
|
unsigned NumAtFixpoint = 0;
|
|
ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
|
|
for (AbstractAttribute *AA : AllAbstractAttributes) {
|
|
AbstractState &State = AA->getState();
|
|
|
|
// If there is not already a fixpoint reached, we can now take the
|
|
// optimistic state. This is correct because we enforced a pessimistic one
|
|
// on abstract attributes that were transitively dependent on a changed one
|
|
// already above.
|
|
if (!State.isAtFixpoint())
|
|
State.indicateOptimisticFixpoint();
|
|
|
|
// If the state is invalid, we do not try to manifest it.
|
|
if (!State.isValidState())
|
|
continue;
|
|
|
|
// Skip dead code.
|
|
if (isAssumedDead(*AA, nullptr))
|
|
continue;
|
|
// Manifest the state and record if we changed the IR.
|
|
ChangeStatus LocalChange = AA->manifest(*this);
|
|
if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
|
|
AA->trackStatistics();
|
|
|
|
ManifestChange = ManifestChange | LocalChange;
|
|
|
|
NumAtFixpoint++;
|
|
NumManifested += (LocalChange == ChangeStatus::CHANGED);
|
|
}
|
|
|
|
(void)NumManifested;
|
|
(void)NumAtFixpoint;
|
|
LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
|
|
<< " arguments while " << NumAtFixpoint
|
|
<< " were in a valid fixpoint state\n");
|
|
|
|
// If verification is requested, we finished this run at a fixpoint, and the
|
|
// IR was changed, we re-run the whole fixpoint analysis, starting at
|
|
// re-initialization of the arguments. This re-run should not result in an IR
|
|
// change. Though, the (virtual) state of attributes at the end of the re-run
|
|
// might be more optimistic than the known state or the IR state if the better
|
|
// state cannot be manifested.
|
|
if (VerifyAttributor && FinishedAtFixpoint &&
|
|
ManifestChange == ChangeStatus::CHANGED) {
|
|
VerifyAttributor = false;
|
|
ChangeStatus VerifyStatus = run(M);
|
|
if (VerifyStatus != ChangeStatus::UNCHANGED)
|
|
llvm_unreachable(
|
|
"Attributor verification failed, re-run did result in an IR change "
|
|
"even after a fixpoint was reached in the original run. (False "
|
|
"positives possible!)");
|
|
VerifyAttributor = true;
|
|
}
|
|
|
|
NumAttributesManifested += NumManifested;
|
|
NumAttributesValidFixpoint += NumAtFixpoint;
|
|
|
|
(void)NumFinalAAs;
|
|
assert(
|
|
NumFinalAAs == AllAbstractAttributes.size() &&
|
|
"Expected the final number of abstract attributes to remain unchanged!");
|
|
|
|
// Delete stuff at the end to avoid invalid references and a nice order.
|
|
{
|
|
LLVM_DEBUG(dbgs() << "\n[Attributor] Delete at least "
|
|
<< ToBeDeletedFunctions.size() << " functions and "
|
|
<< ToBeDeletedBlocks.size() << " blocks and "
|
|
<< ToBeDeletedInsts.size() << " instructions\n");
|
|
for (Instruction *I : ToBeDeletedInsts) {
|
|
if (!I->use_empty())
|
|
I->replaceAllUsesWith(UndefValue::get(I->getType()));
|
|
I->eraseFromParent();
|
|
}
|
|
|
|
if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
|
|
SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
|
|
ToBeDeletedBBs.reserve(NumDeadBlocks);
|
|
ToBeDeletedBBs.append(ToBeDeletedBlocks.begin(), ToBeDeletedBlocks.end());
|
|
DeleteDeadBlocks(ToBeDeletedBBs);
|
|
STATS_DECLTRACK(AAIsDead, BasicBlock,
|
|
"Number of dead basic blocks deleted.");
|
|
}
|
|
|
|
STATS_DECL(AAIsDead, Function, "Number of dead functions deleted.");
|
|
for (Function *Fn : ToBeDeletedFunctions) {
|
|
Fn->replaceAllUsesWith(UndefValue::get(Fn->getType()));
|
|
Fn->eraseFromParent();
|
|
STATS_TRACK(AAIsDead, Function);
|
|
}
|
|
|
|
// Identify dead internal functions and delete them. This happens outside
|
|
// the other fixpoint analysis as we might treat potentially dead functions
|
|
// as live to lower the number of iterations. If they happen to be dead, the
|
|
// below fixpoint loop will identify and eliminate them.
|
|
SmallVector<Function *, 8> InternalFns;
|
|
for (Function &F : M)
|
|
if (F.hasInternalLinkage())
|
|
InternalFns.push_back(&F);
|
|
|
|
bool FoundDeadFn = true;
|
|
while (FoundDeadFn) {
|
|
FoundDeadFn = false;
|
|
for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
|
|
Function *F = InternalFns[u];
|
|
if (!F)
|
|
continue;
|
|
|
|
const auto *LivenessAA =
|
|
lookupAAFor<AAIsDead>(IRPosition::function(*F));
|
|
if (LivenessAA &&
|
|
!checkForAllCallSites([](CallSite CS) { return false; },
|
|
*LivenessAA, true))
|
|
continue;
|
|
|
|
STATS_TRACK(AAIsDead, Function);
|
|
F->replaceAllUsesWith(UndefValue::get(F->getType()));
|
|
F->eraseFromParent();
|
|
InternalFns[u] = nullptr;
|
|
FoundDeadFn = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (VerifyMaxFixpointIterations &&
|
|
IterationCounter != MaxFixpointIterations) {
|
|
errs() << "\n[Attributor] Fixpoint iteration done after: "
|
|
<< IterationCounter << "/" << MaxFixpointIterations
|
|
<< " iterations\n";
|
|
llvm_unreachable("The fixpoint was not reached with exactly the number of "
|
|
"specified iterations!");
|
|
}
|
|
|
|
return ManifestChange;
|
|
}
|
|
|
|
void Attributor::initializeInformationCache(Function &F) {
|
|
|
|
// Walk all instructions to find interesting instructions that might be
|
|
// queried by abstract attributes during their initialization or update.
|
|
// This has to happen before we create attributes.
|
|
auto &ReadOrWriteInsts = InfoCache.FuncRWInstsMap[&F];
|
|
auto &InstOpcodeMap = InfoCache.FuncInstOpcodeMap[&F];
|
|
|
|
for (Instruction &I : instructions(&F)) {
|
|
bool IsInterestingOpcode = false;
|
|
|
|
// To allow easy access to all instructions in a function with a given
|
|
// opcode we store them in the InfoCache. As not all opcodes are interesting
|
|
// to concrete attributes we only cache the ones that are as identified in
|
|
// the following switch.
|
|
// Note: There are no concrete attributes now so this is initially empty.
|
|
switch (I.getOpcode()) {
|
|
default:
|
|
assert((!ImmutableCallSite(&I)) && (!isa<CallBase>(&I)) &&
|
|
"New call site/base instruction type needs to be known int the "
|
|
"Attributor.");
|
|
break;
|
|
case Instruction::Load:
|
|
// The alignment of a pointer is interesting for loads.
|
|
case Instruction::Store:
|
|
// The alignment of a pointer is interesting for stores.
|
|
case Instruction::Call:
|
|
case Instruction::CallBr:
|
|
case Instruction::Invoke:
|
|
case Instruction::CleanupRet:
|
|
case Instruction::CatchSwitch:
|
|
case Instruction::Resume:
|
|
case Instruction::Ret:
|
|
IsInterestingOpcode = true;
|
|
}
|
|
if (IsInterestingOpcode)
|
|
InstOpcodeMap[I.getOpcode()].push_back(&I);
|
|
if (I.mayReadOrWriteMemory())
|
|
ReadOrWriteInsts.push_back(&I);
|
|
}
|
|
}
|
|
|
|
void Attributor::identifyDefaultAbstractAttributes(Function &F) {
|
|
if (!VisitedFunctions.insert(&F).second)
|
|
return;
|
|
|
|
IRPosition FPos = IRPosition::function(F);
|
|
|
|
// Check for dead BasicBlocks in every function.
|
|
// We need dead instruction detection because we do not want to deal with
|
|
// broken IR in which SSA rules do not apply.
|
|
getOrCreateAAFor<AAIsDead>(FPos);
|
|
|
|
// Every function might be "will-return".
|
|
getOrCreateAAFor<AAWillReturn>(FPos);
|
|
|
|
// Every function can be nounwind.
|
|
getOrCreateAAFor<AANoUnwind>(FPos);
|
|
|
|
// Every function might be marked "nosync"
|
|
getOrCreateAAFor<AANoSync>(FPos);
|
|
|
|
// Every function might be "no-free".
|
|
getOrCreateAAFor<AANoFree>(FPos);
|
|
|
|
// Every function might be "no-return".
|
|
getOrCreateAAFor<AANoReturn>(FPos);
|
|
|
|
// Every function might be applicable for Heap-To-Stack conversion.
|
|
if (EnableHeapToStack)
|
|
getOrCreateAAFor<AAHeapToStack>(FPos);
|
|
|
|
// Return attributes are only appropriate if the return type is non void.
|
|
Type *ReturnType = F.getReturnType();
|
|
if (!ReturnType->isVoidTy()) {
|
|
// Argument attribute "returned" --- Create only one per function even
|
|
// though it is an argument attribute.
|
|
getOrCreateAAFor<AAReturnedValues>(FPos);
|
|
|
|
IRPosition RetPos = IRPosition::returned(F);
|
|
|
|
// Every function might be simplified.
|
|
getOrCreateAAFor<AAValueSimplify>(RetPos);
|
|
|
|
if (ReturnType->isPointerTy()) {
|
|
|
|
// Every function with pointer return type might be marked align.
|
|
getOrCreateAAFor<AAAlign>(RetPos);
|
|
|
|
// Every function with pointer return type might be marked nonnull.
|
|
getOrCreateAAFor<AANonNull>(RetPos);
|
|
|
|
// Every function with pointer return type might be marked noalias.
|
|
getOrCreateAAFor<AANoAlias>(RetPos);
|
|
|
|
// Every function with pointer return type might be marked
|
|
// dereferenceable.
|
|
getOrCreateAAFor<AADereferenceable>(RetPos);
|
|
}
|
|
}
|
|
|
|
for (Argument &Arg : F.args()) {
|
|
IRPosition ArgPos = IRPosition::argument(Arg);
|
|
|
|
// Every argument might be simplified.
|
|
getOrCreateAAFor<AAValueSimplify>(ArgPos);
|
|
|
|
if (Arg.getType()->isPointerTy()) {
|
|
// Every argument with pointer type might be marked nonnull.
|
|
getOrCreateAAFor<AANonNull>(ArgPos);
|
|
|
|
// Every argument with pointer type might be marked noalias.
|
|
getOrCreateAAFor<AANoAlias>(ArgPos);
|
|
|
|
// Every argument with pointer type might be marked dereferenceable.
|
|
getOrCreateAAFor<AADereferenceable>(ArgPos);
|
|
|
|
// Every argument with pointer type might be marked align.
|
|
getOrCreateAAFor<AAAlign>(ArgPos);
|
|
|
|
// Every argument with pointer type might be marked nocapture.
|
|
getOrCreateAAFor<AANoCapture>(ArgPos);
|
|
}
|
|
}
|
|
|
|
auto CallSitePred = [&](Instruction &I) -> bool {
|
|
CallSite CS(&I);
|
|
if (CS.getCalledFunction()) {
|
|
for (int i = 0, e = CS.getCalledFunction()->arg_size(); i < e; i++) {
|
|
|
|
IRPosition CSArgPos = IRPosition::callsite_argument(CS, i);
|
|
|
|
// Call site argument might be simplified.
|
|
getOrCreateAAFor<AAValueSimplify>(CSArgPos);
|
|
|
|
if (!CS.getArgument(i)->getType()->isPointerTy())
|
|
continue;
|
|
|
|
// Call site argument attribute "non-null".
|
|
getOrCreateAAFor<AANonNull>(CSArgPos);
|
|
|
|
// Call site argument attribute "no-alias".
|
|
getOrCreateAAFor<AANoAlias>(CSArgPos);
|
|
|
|
// Call site argument attribute "dereferenceable".
|
|
getOrCreateAAFor<AADereferenceable>(CSArgPos);
|
|
|
|
// Call site argument attribute "align".
|
|
getOrCreateAAFor<AAAlign>(CSArgPos);
|
|
}
|
|
}
|
|
return true;
|
|
};
|
|
|
|
auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
|
|
bool Success, AnyDead = false;
|
|
Success = checkForAllInstructionsImpl(
|
|
OpcodeInstMap, CallSitePred, nullptr, AnyDead,
|
|
{(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
|
|
(unsigned)Instruction::Call});
|
|
(void)Success;
|
|
assert(Success && !AnyDead && "Expected the check call to be successful!");
|
|
|
|
auto LoadStorePred = [&](Instruction &I) -> bool {
|
|
if (isa<LoadInst>(I))
|
|
getOrCreateAAFor<AAAlign>(
|
|
IRPosition::value(*cast<LoadInst>(I).getPointerOperand()));
|
|
else
|
|
getOrCreateAAFor<AAAlign>(
|
|
IRPosition::value(*cast<StoreInst>(I).getPointerOperand()));
|
|
return true;
|
|
};
|
|
Success = checkForAllInstructionsImpl(
|
|
OpcodeInstMap, LoadStorePred, nullptr, AnyDead,
|
|
{(unsigned)Instruction::Load, (unsigned)Instruction::Store});
|
|
(void)Success;
|
|
assert(Success && !AnyDead && "Expected the check call to be successful!");
|
|
}
|
|
|
|
/// Helpers to ease debugging through output streams and print calls.
|
|
///
|
|
///{
|
|
raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
|
|
return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
|
|
}
|
|
|
|
raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
|
|
switch (AP) {
|
|
case IRPosition::IRP_INVALID:
|
|
return OS << "inv";
|
|
case IRPosition::IRP_FLOAT:
|
|
return OS << "flt";
|
|
case IRPosition::IRP_RETURNED:
|
|
return OS << "fn_ret";
|
|
case IRPosition::IRP_CALL_SITE_RETURNED:
|
|
return OS << "cs_ret";
|
|
case IRPosition::IRP_FUNCTION:
|
|
return OS << "fn";
|
|
case IRPosition::IRP_CALL_SITE:
|
|
return OS << "cs";
|
|
case IRPosition::IRP_ARGUMENT:
|
|
return OS << "arg";
|
|
case IRPosition::IRP_CALL_SITE_ARGUMENT:
|
|
return OS << "cs_arg";
|
|
}
|
|
llvm_unreachable("Unknown attribute position!");
|
|
}
|
|
|
|
raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
|
|
const Value &AV = Pos.getAssociatedValue();
|
|
return OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
|
|
<< Pos.getAnchorValue().getName() << "@" << Pos.getArgNo() << "]}";
|
|
}
|
|
|
|
raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerState &S) {
|
|
return OS << "(" << S.getKnown() << "-" << S.getAssumed() << ")"
|
|
<< static_cast<const AbstractState &>(S);
|
|
}
|
|
|
|
raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
|
|
return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
|
|
}
|
|
|
|
raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
|
|
AA.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
void AbstractAttribute::print(raw_ostream &OS) const {
|
|
OS << "[P: " << getIRPosition() << "][" << getAsStr() << "][S: " << getState()
|
|
<< "]";
|
|
}
|
|
///}
|
|
|
|
/// ----------------------------------------------------------------------------
|
|
/// Pass (Manager) Boilerplate
|
|
/// ----------------------------------------------------------------------------
|
|
|
|
static bool runAttributorOnModule(Module &M, AnalysisGetter &AG) {
|
|
if (DisableAttributor)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << M.size()
|
|
<< " functions.\n");
|
|
|
|
// Create an Attributor and initially empty information cache that is filled
|
|
// while we identify default attribute opportunities.
|
|
InformationCache InfoCache(M.getDataLayout(), AG);
|
|
Attributor A(InfoCache, DepRecInterval);
|
|
|
|
for (Function &F : M)
|
|
A.initializeInformationCache(F);
|
|
|
|
for (Function &F : M) {
|
|
if (F.hasExactDefinition())
|
|
NumFnWithExactDefinition++;
|
|
else
|
|
NumFnWithoutExactDefinition++;
|
|
|
|
// For now we ignore naked and optnone functions.
|
|
if (F.hasFnAttribute(Attribute::Naked) ||
|
|
F.hasFnAttribute(Attribute::OptimizeNone))
|
|
continue;
|
|
|
|
// We look at internal functions only on-demand but if any use is not a
|
|
// direct call, we have to do it eagerly.
|
|
if (F.hasInternalLinkage()) {
|
|
if (llvm::all_of(F.uses(), [](const Use &U) {
|
|
return ImmutableCallSite(U.getUser()) &&
|
|
ImmutableCallSite(U.getUser()).isCallee(&U);
|
|
}))
|
|
continue;
|
|
}
|
|
|
|
// Populate the Attributor with abstract attribute opportunities in the
|
|
// function and the information cache with IR information.
|
|
A.identifyDefaultAbstractAttributes(F);
|
|
}
|
|
|
|
return A.run(M) == ChangeStatus::CHANGED;
|
|
}
|
|
|
|
PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
|
|
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
|
|
AnalysisGetter AG(FAM);
|
|
if (runAttributorOnModule(M, AG)) {
|
|
// FIXME: Think about passes we will preserve and add them here.
|
|
return PreservedAnalyses::none();
|
|
}
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct AttributorLegacyPass : public ModulePass {
|
|
static char ID;
|
|
|
|
AttributorLegacyPass() : ModulePass(ID) {
|
|
initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnModule(Module &M) override {
|
|
if (skipModule(M))
|
|
return false;
|
|
|
|
AnalysisGetter AG;
|
|
return runAttributorOnModule(M, AG);
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
// FIXME: Think about passes we will preserve and add them here.
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
|
|
|
|
char AttributorLegacyPass::ID = 0;
|
|
|
|
const char AAReturnedValues::ID = 0;
|
|
const char AANoUnwind::ID = 0;
|
|
const char AANoSync::ID = 0;
|
|
const char AANoFree::ID = 0;
|
|
const char AANonNull::ID = 0;
|
|
const char AANoRecurse::ID = 0;
|
|
const char AAWillReturn::ID = 0;
|
|
const char AANoAlias::ID = 0;
|
|
const char AANoReturn::ID = 0;
|
|
const char AAIsDead::ID = 0;
|
|
const char AADereferenceable::ID = 0;
|
|
const char AAAlign::ID = 0;
|
|
const char AANoCapture::ID = 0;
|
|
const char AAValueSimplify::ID = 0;
|
|
const char AAHeapToStack::ID = 0;
|
|
|
|
// Macro magic to create the static generator function for attributes that
|
|
// follow the naming scheme.
|
|
|
|
#define SWITCH_PK_INV(CLASS, PK, POS_NAME) \
|
|
case IRPosition::PK: \
|
|
llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
|
|
|
|
#define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX) \
|
|
case IRPosition::PK: \
|
|
AA = new CLASS##SUFFIX(IRP); \
|
|
break;
|
|
|
|
#define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
|
|
CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
|
|
CLASS *AA = nullptr; \
|
|
switch (IRP.getPositionKind()) { \
|
|
SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
|
|
SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \
|
|
SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \
|
|
SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \
|
|
SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \
|
|
SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \
|
|
SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
|
|
SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \
|
|
} \
|
|
return *AA; \
|
|
}
|
|
|
|
#define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
|
|
CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
|
|
CLASS *AA = nullptr; \
|
|
switch (IRP.getPositionKind()) { \
|
|
SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
|
|
SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function") \
|
|
SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \
|
|
SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \
|
|
SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \
|
|
SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \
|
|
SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \
|
|
SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \
|
|
} \
|
|
return *AA; \
|
|
}
|
|
|
|
#define CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
|
|
CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
|
|
CLASS *AA = nullptr; \
|
|
switch (IRP.getPositionKind()) { \
|
|
SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
|
|
SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
|
|
SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \
|
|
SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \
|
|
SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \
|
|
SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \
|
|
SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \
|
|
SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \
|
|
} \
|
|
return *AA; \
|
|
}
|
|
|
|
#define CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
|
|
CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
|
|
CLASS *AA = nullptr; \
|
|
switch (IRP.getPositionKind()) { \
|
|
SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
|
|
SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \
|
|
SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \
|
|
SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \
|
|
SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \
|
|
SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \
|
|
SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \
|
|
SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
|
|
} \
|
|
AA->initialize(A); \
|
|
return *AA; \
|
|
}
|
|
|
|
CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
|
|
CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
|
|
CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
|
|
CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
|
|
CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
|
|
CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
|
|
CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
|
|
CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
|
|
|
|
CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
|
|
CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
|
|
CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
|
|
CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
|
|
CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
|
|
|
|
CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAValueSimplify)
|
|
|
|
CREATE_FUNCTION_ONLY_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAHeapToStack)
|
|
|
|
#undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
|
|
#undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
|
|
#undef CREATE_ALL_ABSTRACT_ATTRIBUTE_FOR_POSITION
|
|
#undef SWITCH_PK_CREATE
|
|
#undef SWITCH_PK_INV
|
|
|
|
INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
|
|
"Deduce and propagate attributes", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
|
|
"Deduce and propagate attributes", false, false)
|