llvm/lib/IR/Instructions.cpp
Matt Arsenault 744742602a Use dyn_cast<> instead of isa<> and cast<>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217796 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-15 17:56:51 +00:00

3790 lines
139 KiB
C++

//===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements all of the non-inline methods for the LLVM instruction
// classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Instructions.h"
#include "LLVMContextImpl.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// CallSite Class
//===----------------------------------------------------------------------===//
User::op_iterator CallSite::getCallee() const {
Instruction *II(getInstruction());
return isCall()
? cast<CallInst>(II)->op_end() - 1 // Skip Callee
: cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
}
//===----------------------------------------------------------------------===//
// TerminatorInst Class
//===----------------------------------------------------------------------===//
// Out of line virtual method, so the vtable, etc has a home.
TerminatorInst::~TerminatorInst() {
}
//===----------------------------------------------------------------------===//
// UnaryInstruction Class
//===----------------------------------------------------------------------===//
// Out of line virtual method, so the vtable, etc has a home.
UnaryInstruction::~UnaryInstruction() {
}
//===----------------------------------------------------------------------===//
// SelectInst Class
//===----------------------------------------------------------------------===//
/// areInvalidOperands - Return a string if the specified operands are invalid
/// for a select operation, otherwise return null.
const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
if (Op1->getType() != Op2->getType())
return "both values to select must have same type";
if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
// Vector select.
if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
return "vector select condition element type must be i1";
VectorType *ET = dyn_cast<VectorType>(Op1->getType());
if (!ET)
return "selected values for vector select must be vectors";
if (ET->getNumElements() != VT->getNumElements())
return "vector select requires selected vectors to have "
"the same vector length as select condition";
} else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
return "select condition must be i1 or <n x i1>";
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// PHINode Class
//===----------------------------------------------------------------------===//
PHINode::PHINode(const PHINode &PN)
: Instruction(PN.getType(), Instruction::PHI,
allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
ReservedSpace(PN.getNumOperands()) {
std::copy(PN.op_begin(), PN.op_end(), op_begin());
std::copy(PN.block_begin(), PN.block_end(), block_begin());
SubclassOptionalData = PN.SubclassOptionalData;
}
PHINode::~PHINode() {
dropHungoffUses();
}
Use *PHINode::allocHungoffUses(unsigned N) const {
// Allocate the array of Uses of the incoming values, followed by a pointer
// (with bottom bit set) to the User, followed by the array of pointers to
// the incoming basic blocks.
size_t size = N * sizeof(Use) + sizeof(Use::UserRef)
+ N * sizeof(BasicBlock*);
Use *Begin = static_cast<Use*>(::operator new(size));
Use *End = Begin + N;
(void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1);
return Use::initTags(Begin, End);
}
// removeIncomingValue - Remove an incoming value. This is useful if a
// predecessor basic block is deleted.
Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
Value *Removed = getIncomingValue(Idx);
// Move everything after this operand down.
//
// FIXME: we could just swap with the end of the list, then erase. However,
// clients might not expect this to happen. The code as it is thrashes the
// use/def lists, which is kinda lame.
std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
// Nuke the last value.
Op<-1>().set(nullptr);
--NumOperands;
// If the PHI node is dead, because it has zero entries, nuke it now.
if (getNumOperands() == 0 && DeletePHIIfEmpty) {
// If anyone is using this PHI, make them use a dummy value instead...
replaceAllUsesWith(UndefValue::get(getType()));
eraseFromParent();
}
return Removed;
}
/// growOperands - grow operands - This grows the operand list in response
/// to a push_back style of operation. This grows the number of ops by 1.5
/// times.
///
void PHINode::growOperands() {
unsigned e = getNumOperands();
unsigned NumOps = e + e / 2;
if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
Use *OldOps = op_begin();
BasicBlock **OldBlocks = block_begin();
ReservedSpace = NumOps;
OperandList = allocHungoffUses(ReservedSpace);
std::copy(OldOps, OldOps + e, op_begin());
std::copy(OldBlocks, OldBlocks + e, block_begin());
Use::zap(OldOps, OldOps + e, true);
}
/// hasConstantValue - If the specified PHI node always merges together the same
/// value, return the value, otherwise return null.
Value *PHINode::hasConstantValue() const {
// Exploit the fact that phi nodes always have at least one entry.
Value *ConstantValue = getIncomingValue(0);
for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
if (ConstantValue != this)
return nullptr; // Incoming values not all the same.
// The case where the first value is this PHI.
ConstantValue = getIncomingValue(i);
}
if (ConstantValue == this)
return UndefValue::get(getType());
return ConstantValue;
}
//===----------------------------------------------------------------------===//
// LandingPadInst Implementation
//===----------------------------------------------------------------------===//
LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
unsigned NumReservedValues, const Twine &NameStr,
Instruction *InsertBefore)
: Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
init(PersonalityFn, 1 + NumReservedValues, NameStr);
}
LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn,
unsigned NumReservedValues, const Twine &NameStr,
BasicBlock *InsertAtEnd)
: Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
init(PersonalityFn, 1 + NumReservedValues, NameStr);
}
LandingPadInst::LandingPadInst(const LandingPadInst &LP)
: Instruction(LP.getType(), Instruction::LandingPad,
allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()),
ReservedSpace(LP.getNumOperands()) {
Use *OL = OperandList, *InOL = LP.OperandList;
for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
OL[I] = InOL[I];
setCleanup(LP.isCleanup());
}
LandingPadInst::~LandingPadInst() {
dropHungoffUses();
}
LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
unsigned NumReservedClauses,
const Twine &NameStr,
Instruction *InsertBefore) {
return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
InsertBefore);
}
LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn,
unsigned NumReservedClauses,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr,
InsertAtEnd);
}
void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues,
const Twine &NameStr) {
ReservedSpace = NumReservedValues;
NumOperands = 1;
OperandList = allocHungoffUses(ReservedSpace);
OperandList[0] = PersFn;
setName(NameStr);
setCleanup(false);
}
/// growOperands - grow operands - This grows the operand list in response to a
/// push_back style of operation. This grows the number of ops by 2 times.
void LandingPadInst::growOperands(unsigned Size) {
unsigned e = getNumOperands();
if (ReservedSpace >= e + Size) return;
ReservedSpace = (e + Size / 2) * 2;
Use *NewOps = allocHungoffUses(ReservedSpace);
Use *OldOps = OperandList;
for (unsigned i = 0; i != e; ++i)
NewOps[i] = OldOps[i];
OperandList = NewOps;
Use::zap(OldOps, OldOps + e, true);
}
void LandingPadInst::addClause(Constant *Val) {
unsigned OpNo = getNumOperands();
growOperands(1);
assert(OpNo < ReservedSpace && "Growing didn't work!");
++NumOperands;
OperandList[OpNo] = Val;
}
//===----------------------------------------------------------------------===//
// CallInst Implementation
//===----------------------------------------------------------------------===//
CallInst::~CallInst() {
}
void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) {
assert(NumOperands == Args.size() + 1 && "NumOperands not set up?");
Op<-1>() = Func;
#ifndef NDEBUG
FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
assert((Args.size() == FTy->getNumParams() ||
(FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
"Calling a function with bad signature!");
for (unsigned i = 0; i != Args.size(); ++i)
assert((i >= FTy->getNumParams() ||
FTy->getParamType(i) == Args[i]->getType()) &&
"Calling a function with a bad signature!");
#endif
std::copy(Args.begin(), Args.end(), op_begin());
setName(NameStr);
}
void CallInst::init(Value *Func, const Twine &NameStr) {
assert(NumOperands == 1 && "NumOperands not set up?");
Op<-1>() = Func;
#ifndef NDEBUG
FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
#endif
setName(NameStr);
}
CallInst::CallInst(Value *Func, const Twine &Name,
Instruction *InsertBefore)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call,
OperandTraits<CallInst>::op_end(this) - 1,
1, InsertBefore) {
init(Func, Name);
}
CallInst::CallInst(Value *Func, const Twine &Name,
BasicBlock *InsertAtEnd)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call,
OperandTraits<CallInst>::op_end(this) - 1,
1, InsertAtEnd) {
init(Func, Name);
}
CallInst::CallInst(const CallInst &CI)
: Instruction(CI.getType(), Instruction::Call,
OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
CI.getNumOperands()) {
setAttributes(CI.getAttributes());
setTailCallKind(CI.getTailCallKind());
setCallingConv(CI.getCallingConv());
std::copy(CI.op_begin(), CI.op_end(), op_begin());
SubclassOptionalData = CI.SubclassOptionalData;
}
void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
AttributeSet PAL = getAttributes();
PAL = PAL.addAttribute(getContext(), i, attr);
setAttributes(PAL);
}
void CallInst::removeAttribute(unsigned i, Attribute attr) {
AttributeSet PAL = getAttributes();
AttrBuilder B(attr);
LLVMContext &Context = getContext();
PAL = PAL.removeAttributes(Context, i,
AttributeSet::get(Context, i, B));
setAttributes(PAL);
}
bool CallInst::hasFnAttrImpl(Attribute::AttrKind A) const {
if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
return true;
if (const Function *F = getCalledFunction())
return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
return false;
}
bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
if (AttributeList.hasAttribute(i, A))
return true;
if (const Function *F = getCalledFunction())
return F->getAttributes().hasAttribute(i, A);
return false;
}
/// IsConstantOne - Return true only if val is constant int 1
static bool IsConstantOne(Value *val) {
assert(val && "IsConstantOne does not work with NULL val");
const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
return CVal && CVal->isOne();
}
static Instruction *createMalloc(Instruction *InsertBefore,
BasicBlock *InsertAtEnd, Type *IntPtrTy,
Type *AllocTy, Value *AllocSize,
Value *ArraySize, Function *MallocF,
const Twine &Name) {
assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
"createMalloc needs either InsertBefore or InsertAtEnd");
// malloc(type) becomes:
// bitcast (i8* malloc(typeSize)) to type*
// malloc(type, arraySize) becomes:
// bitcast (i8 *malloc(typeSize*arraySize)) to type*
if (!ArraySize)
ArraySize = ConstantInt::get(IntPtrTy, 1);
else if (ArraySize->getType() != IntPtrTy) {
if (InsertBefore)
ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
"", InsertBefore);
else
ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
"", InsertAtEnd);
}
if (!IsConstantOne(ArraySize)) {
if (IsConstantOne(AllocSize)) {
AllocSize = ArraySize; // Operand * 1 = Operand
} else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
false /*ZExt*/);
// Malloc arg is constant product of type size and array size
AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
} else {
// Multiply type size by the array size...
if (InsertBefore)
AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
"mallocsize", InsertBefore);
else
AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
"mallocsize", InsertAtEnd);
}
}
assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
// Create the call to Malloc.
BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
Module* M = BB->getParent()->getParent();
Type *BPTy = Type::getInt8PtrTy(BB->getContext());
Value *MallocFunc = MallocF;
if (!MallocFunc)
// prototype malloc as "void *malloc(size_t)"
MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
CallInst *MCall = nullptr;
Instruction *Result = nullptr;
if (InsertBefore) {
MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
Result = MCall;
if (Result->getType() != AllocPtrType)
// Create a cast instruction to convert to the right type...
Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
} else {
MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
Result = MCall;
if (Result->getType() != AllocPtrType) {
InsertAtEnd->getInstList().push_back(MCall);
// Create a cast instruction to convert to the right type...
Result = new BitCastInst(MCall, AllocPtrType, Name);
}
}
MCall->setTailCall();
if (Function *F = dyn_cast<Function>(MallocFunc)) {
MCall->setCallingConv(F->getCallingConv());
if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
}
assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
return Result;
}
/// CreateMalloc - Generate the IR for a call to malloc:
/// 1. Compute the malloc call's argument as the specified type's size,
/// possibly multiplied by the array size if the array size is not
/// constant 1.
/// 2. Call malloc with that argument.
/// 3. Bitcast the result of the malloc call to the specified type.
Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
Type *IntPtrTy, Type *AllocTy,
Value *AllocSize, Value *ArraySize,
Function * MallocF,
const Twine &Name) {
return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
ArraySize, MallocF, Name);
}
/// CreateMalloc - Generate the IR for a call to malloc:
/// 1. Compute the malloc call's argument as the specified type's size,
/// possibly multiplied by the array size if the array size is not
/// constant 1.
/// 2. Call malloc with that argument.
/// 3. Bitcast the result of the malloc call to the specified type.
/// Note: This function does not add the bitcast to the basic block, that is the
/// responsibility of the caller.
Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
Type *IntPtrTy, Type *AllocTy,
Value *AllocSize, Value *ArraySize,
Function *MallocF, const Twine &Name) {
return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
ArraySize, MallocF, Name);
}
static Instruction* createFree(Value* Source, Instruction *InsertBefore,
BasicBlock *InsertAtEnd) {
assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
"createFree needs either InsertBefore or InsertAtEnd");
assert(Source->getType()->isPointerTy() &&
"Can not free something of nonpointer type!");
BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
Module* M = BB->getParent()->getParent();
Type *VoidTy = Type::getVoidTy(M->getContext());
Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
// prototype free as "void free(void*)"
Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
CallInst* Result = nullptr;
Value *PtrCast = Source;
if (InsertBefore) {
if (Source->getType() != IntPtrTy)
PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
} else {
if (Source->getType() != IntPtrTy)
PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
Result = CallInst::Create(FreeFunc, PtrCast, "");
}
Result->setTailCall();
if (Function *F = dyn_cast<Function>(FreeFunc))
Result->setCallingConv(F->getCallingConv());
return Result;
}
/// CreateFree - Generate the IR for a call to the builtin free function.
Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
return createFree(Source, InsertBefore, nullptr);
}
/// CreateFree - Generate the IR for a call to the builtin free function.
/// Note: This function does not add the call to the basic block, that is the
/// responsibility of the caller.
Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
Instruction* FreeCall = createFree(Source, nullptr, InsertAtEnd);
assert(FreeCall && "CreateFree did not create a CallInst");
return FreeCall;
}
//===----------------------------------------------------------------------===//
// InvokeInst Implementation
//===----------------------------------------------------------------------===//
void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
ArrayRef<Value *> Args, const Twine &NameStr) {
assert(NumOperands == 3 + Args.size() && "NumOperands not set up?");
Op<-3>() = Fn;
Op<-2>() = IfNormal;
Op<-1>() = IfException;
#ifndef NDEBUG
FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
assert(((Args.size() == FTy->getNumParams()) ||
(FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
"Invoking a function with bad signature");
for (unsigned i = 0, e = Args.size(); i != e; i++)
assert((i >= FTy->getNumParams() ||
FTy->getParamType(i) == Args[i]->getType()) &&
"Invoking a function with a bad signature!");
#endif
std::copy(Args.begin(), Args.end(), op_begin());
setName(NameStr);
}
InvokeInst::InvokeInst(const InvokeInst &II)
: TerminatorInst(II.getType(), Instruction::Invoke,
OperandTraits<InvokeInst>::op_end(this)
- II.getNumOperands(),
II.getNumOperands()) {
setAttributes(II.getAttributes());
setCallingConv(II.getCallingConv());
std::copy(II.op_begin(), II.op_end(), op_begin());
SubclassOptionalData = II.SubclassOptionalData;
}
BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
return getSuccessor(idx);
}
unsigned InvokeInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
return setSuccessor(idx, B);
}
bool InvokeInst::hasFnAttrImpl(Attribute::AttrKind A) const {
if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
return true;
if (const Function *F = getCalledFunction())
return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
return false;
}
bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
if (AttributeList.hasAttribute(i, A))
return true;
if (const Function *F = getCalledFunction())
return F->getAttributes().hasAttribute(i, A);
return false;
}
void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
AttributeSet PAL = getAttributes();
PAL = PAL.addAttribute(getContext(), i, attr);
setAttributes(PAL);
}
void InvokeInst::removeAttribute(unsigned i, Attribute attr) {
AttributeSet PAL = getAttributes();
AttrBuilder B(attr);
PAL = PAL.removeAttributes(getContext(), i,
AttributeSet::get(getContext(), i, B));
setAttributes(PAL);
}
LandingPadInst *InvokeInst::getLandingPadInst() const {
return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
}
//===----------------------------------------------------------------------===//
// ReturnInst Implementation
//===----------------------------------------------------------------------===//
ReturnInst::ReturnInst(const ReturnInst &RI)
: TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
OperandTraits<ReturnInst>::op_end(this) -
RI.getNumOperands(),
RI.getNumOperands()) {
if (RI.getNumOperands())
Op<0>() = RI.Op<0>();
SubclassOptionalData = RI.SubclassOptionalData;
}
ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
: TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
InsertBefore) {
if (retVal)
Op<0>() = retVal;
}
ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
: TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
InsertAtEnd) {
if (retVal)
Op<0>() = retVal;
}
ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
: TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
}
unsigned ReturnInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
/// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
/// emit the vtable for the class in this translation unit.
void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
llvm_unreachable("ReturnInst has no successors!");
}
BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
llvm_unreachable("ReturnInst has no successors!");
}
ReturnInst::~ReturnInst() {
}
//===----------------------------------------------------------------------===//
// ResumeInst Implementation
//===----------------------------------------------------------------------===//
ResumeInst::ResumeInst(const ResumeInst &RI)
: TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
OperandTraits<ResumeInst>::op_begin(this), 1) {
Op<0>() = RI.Op<0>();
}
ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
: TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
Op<0>() = Exn;
}
ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
: TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
Op<0>() = Exn;
}
unsigned ResumeInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
llvm_unreachable("ResumeInst has no successors!");
}
BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
llvm_unreachable("ResumeInst has no successors!");
}
//===----------------------------------------------------------------------===//
// UnreachableInst Implementation
//===----------------------------------------------------------------------===//
UnreachableInst::UnreachableInst(LLVMContext &Context,
Instruction *InsertBefore)
: TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
nullptr, 0, InsertBefore) {
}
UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
: TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
nullptr, 0, InsertAtEnd) {
}
unsigned UnreachableInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
llvm_unreachable("UnreachableInst has no successors!");
}
BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
llvm_unreachable("UnreachableInst has no successors!");
}
//===----------------------------------------------------------------------===//
// BranchInst Implementation
//===----------------------------------------------------------------------===//
void BranchInst::AssertOK() {
if (isConditional())
assert(getCondition()->getType()->isIntegerTy(1) &&
"May only branch on boolean predicates!");
}
BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
: TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
OperandTraits<BranchInst>::op_end(this) - 1,
1, InsertBefore) {
assert(IfTrue && "Branch destination may not be null!");
Op<-1>() = IfTrue;
}
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
Instruction *InsertBefore)
: TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
OperandTraits<BranchInst>::op_end(this) - 3,
3, InsertBefore) {
Op<-1>() = IfTrue;
Op<-2>() = IfFalse;
Op<-3>() = Cond;
#ifndef NDEBUG
AssertOK();
#endif
}
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
: TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
OperandTraits<BranchInst>::op_end(this) - 1,
1, InsertAtEnd) {
assert(IfTrue && "Branch destination may not be null!");
Op<-1>() = IfTrue;
}
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
BasicBlock *InsertAtEnd)
: TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
OperandTraits<BranchInst>::op_end(this) - 3,
3, InsertAtEnd) {
Op<-1>() = IfTrue;
Op<-2>() = IfFalse;
Op<-3>() = Cond;
#ifndef NDEBUG
AssertOK();
#endif
}
BranchInst::BranchInst(const BranchInst &BI) :
TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
BI.getNumOperands()) {
Op<-1>() = BI.Op<-1>();
if (BI.getNumOperands() != 1) {
assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
Op<-3>() = BI.Op<-3>();
Op<-2>() = BI.Op<-2>();
}
SubclassOptionalData = BI.SubclassOptionalData;
}
void BranchInst::swapSuccessors() {
assert(isConditional() &&
"Cannot swap successors of an unconditional branch");
Op<-1>().swap(Op<-2>());
// Update profile metadata if present and it matches our structural
// expectations.
MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
if (!ProfileData || ProfileData->getNumOperands() != 3)
return;
// The first operand is the name. Fetch them backwards and build a new one.
Value *Ops[] = {
ProfileData->getOperand(0),
ProfileData->getOperand(2),
ProfileData->getOperand(1)
};
setMetadata(LLVMContext::MD_prof,
MDNode::get(ProfileData->getContext(), Ops));
}
BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
return getSuccessor(idx);
}
unsigned BranchInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
setSuccessor(idx, B);
}
//===----------------------------------------------------------------------===//
// AllocaInst Implementation
//===----------------------------------------------------------------------===//
static Value *getAISize(LLVMContext &Context, Value *Amt) {
if (!Amt)
Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
else {
assert(!isa<BasicBlock>(Amt) &&
"Passed basic block into allocation size parameter! Use other ctor");
assert(Amt->getType()->isIntegerTy() &&
"Allocation array size is not an integer!");
}
return Amt;
}
AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
const Twine &Name, Instruction *InsertBefore)
: UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
getAISize(Ty->getContext(), ArraySize), InsertBefore) {
setAlignment(0);
assert(!Ty->isVoidTy() && "Cannot allocate void!");
setName(Name);
}
AllocaInst::AllocaInst(Type *Ty, Value *ArraySize,
const Twine &Name, BasicBlock *InsertAtEnd)
: UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
setAlignment(0);
assert(!Ty->isVoidTy() && "Cannot allocate void!");
setName(Name);
}
AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
Instruction *InsertBefore)
: UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
getAISize(Ty->getContext(), nullptr), InsertBefore) {
setAlignment(0);
assert(!Ty->isVoidTy() && "Cannot allocate void!");
setName(Name);
}
AllocaInst::AllocaInst(Type *Ty, const Twine &Name,
BasicBlock *InsertAtEnd)
: UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
getAISize(Ty->getContext(), nullptr), InsertAtEnd) {
setAlignment(0);
assert(!Ty->isVoidTy() && "Cannot allocate void!");
setName(Name);
}
AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
const Twine &Name, Instruction *InsertBefore)
: UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
getAISize(Ty->getContext(), ArraySize), InsertBefore) {
setAlignment(Align);
assert(!Ty->isVoidTy() && "Cannot allocate void!");
setName(Name);
}
AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
const Twine &Name, BasicBlock *InsertAtEnd)
: UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
setAlignment(Align);
assert(!Ty->isVoidTy() && "Cannot allocate void!");
setName(Name);
}
// Out of line virtual method, so the vtable, etc has a home.
AllocaInst::~AllocaInst() {
}
void AllocaInst::setAlignment(unsigned Align) {
assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
assert(Align <= MaximumAlignment &&
"Alignment is greater than MaximumAlignment!");
setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
(Log2_32(Align) + 1));
assert(getAlignment() == Align && "Alignment representation error!");
}
bool AllocaInst::isArrayAllocation() const {
if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
return !CI->isOne();
return true;
}
Type *AllocaInst::getAllocatedType() const {
return getType()->getElementType();
}
/// isStaticAlloca - Return true if this alloca is in the entry block of the
/// function and is a constant size. If so, the code generator will fold it
/// into the prolog/epilog code, so it is basically free.
bool AllocaInst::isStaticAlloca() const {
// Must be constant size.
if (!isa<ConstantInt>(getArraySize())) return false;
// Must be in the entry block.
const BasicBlock *Parent = getParent();
return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
}
//===----------------------------------------------------------------------===//
// LoadInst Implementation
//===----------------------------------------------------------------------===//
void LoadInst::AssertOK() {
assert(getOperand(0)->getType()->isPointerTy() &&
"Ptr must have pointer type.");
assert(!(isAtomic() && getAlignment() == 0) &&
"Alignment required for atomic load");
}
LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertBef) {
setVolatile(false);
setAlignment(0);
setAtomic(NotAtomic);
AssertOK();
setName(Name);
}
LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertAE) {
setVolatile(false);
setAlignment(0);
setAtomic(NotAtomic);
AssertOK();
setName(Name);
}
LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
Instruction *InsertBef)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertBef) {
setVolatile(isVolatile);
setAlignment(0);
setAtomic(NotAtomic);
AssertOK();
setName(Name);
}
LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
BasicBlock *InsertAE)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertAE) {
setVolatile(isVolatile);
setAlignment(0);
setAtomic(NotAtomic);
AssertOK();
setName(Name);
}
LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
unsigned Align, Instruction *InsertBef)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertBef) {
setVolatile(isVolatile);
setAlignment(Align);
setAtomic(NotAtomic);
AssertOK();
setName(Name);
}
LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
unsigned Align, BasicBlock *InsertAE)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertAE) {
setVolatile(isVolatile);
setAlignment(Align);
setAtomic(NotAtomic);
AssertOK();
setName(Name);
}
LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
unsigned Align, AtomicOrdering Order,
SynchronizationScope SynchScope,
Instruction *InsertBef)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertBef) {
setVolatile(isVolatile);
setAlignment(Align);
setAtomic(Order, SynchScope);
AssertOK();
setName(Name);
}
LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
unsigned Align, AtomicOrdering Order,
SynchronizationScope SynchScope,
BasicBlock *InsertAE)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertAE) {
setVolatile(isVolatile);
setAlignment(Align);
setAtomic(Order, SynchScope);
AssertOK();
setName(Name);
}
LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertBef) {
setVolatile(false);
setAlignment(0);
setAtomic(NotAtomic);
AssertOK();
if (Name && Name[0]) setName(Name);
}
LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertAE) {
setVolatile(false);
setAlignment(0);
setAtomic(NotAtomic);
AssertOK();
if (Name && Name[0]) setName(Name);
}
LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
Instruction *InsertBef)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertBef) {
setVolatile(isVolatile);
setAlignment(0);
setAtomic(NotAtomic);
AssertOK();
if (Name && Name[0]) setName(Name);
}
LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
BasicBlock *InsertAE)
: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
Load, Ptr, InsertAE) {
setVolatile(isVolatile);
setAlignment(0);
setAtomic(NotAtomic);
AssertOK();
if (Name && Name[0]) setName(Name);
}
void LoadInst::setAlignment(unsigned Align) {
assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
assert(Align <= MaximumAlignment &&
"Alignment is greater than MaximumAlignment!");
setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
((Log2_32(Align)+1)<<1));
assert(getAlignment() == Align && "Alignment representation error!");
}
//===----------------------------------------------------------------------===//
// StoreInst Implementation
//===----------------------------------------------------------------------===//
void StoreInst::AssertOK() {
assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
assert(getOperand(1)->getType()->isPointerTy() &&
"Ptr must have pointer type!");
assert(getOperand(0)->getType() ==
cast<PointerType>(getOperand(1)->getType())->getElementType()
&& "Ptr must be a pointer to Val type!");
assert(!(isAtomic() && getAlignment() == 0) &&
"Alignment required for atomic store");
}
StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
: Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertBefore) {
Op<0>() = val;
Op<1>() = addr;
setVolatile(false);
setAlignment(0);
setAtomic(NotAtomic);
AssertOK();
}
StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
: Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertAtEnd) {
Op<0>() = val;
Op<1>() = addr;
setVolatile(false);
setAlignment(0);
setAtomic(NotAtomic);
AssertOK();
}
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
Instruction *InsertBefore)
: Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertBefore) {
Op<0>() = val;
Op<1>() = addr;
setVolatile(isVolatile);
setAlignment(0);
setAtomic(NotAtomic);
AssertOK();
}
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
unsigned Align, Instruction *InsertBefore)
: Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertBefore) {
Op<0>() = val;
Op<1>() = addr;
setVolatile(isVolatile);
setAlignment(Align);
setAtomic(NotAtomic);
AssertOK();
}
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
unsigned Align, AtomicOrdering Order,
SynchronizationScope SynchScope,
Instruction *InsertBefore)
: Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertBefore) {
Op<0>() = val;
Op<1>() = addr;
setVolatile(isVolatile);
setAlignment(Align);
setAtomic(Order, SynchScope);
AssertOK();
}
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
BasicBlock *InsertAtEnd)
: Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertAtEnd) {
Op<0>() = val;
Op<1>() = addr;
setVolatile(isVolatile);
setAlignment(0);
setAtomic(NotAtomic);
AssertOK();
}
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
unsigned Align, BasicBlock *InsertAtEnd)
: Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertAtEnd) {
Op<0>() = val;
Op<1>() = addr;
setVolatile(isVolatile);
setAlignment(Align);
setAtomic(NotAtomic);
AssertOK();
}
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
unsigned Align, AtomicOrdering Order,
SynchronizationScope SynchScope,
BasicBlock *InsertAtEnd)
: Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertAtEnd) {
Op<0>() = val;
Op<1>() = addr;
setVolatile(isVolatile);
setAlignment(Align);
setAtomic(Order, SynchScope);
AssertOK();
}
void StoreInst::setAlignment(unsigned Align) {
assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
assert(Align <= MaximumAlignment &&
"Alignment is greater than MaximumAlignment!");
setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
((Log2_32(Align)+1) << 1));
assert(getAlignment() == Align && "Alignment representation error!");
}
//===----------------------------------------------------------------------===//
// AtomicCmpXchgInst Implementation
//===----------------------------------------------------------------------===//
void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering,
SynchronizationScope SynchScope) {
Op<0>() = Ptr;
Op<1>() = Cmp;
Op<2>() = NewVal;
setSuccessOrdering(SuccessOrdering);
setFailureOrdering(FailureOrdering);
setSynchScope(SynchScope);
assert(getOperand(0) && getOperand(1) && getOperand(2) &&
"All operands must be non-null!");
assert(getOperand(0)->getType()->isPointerTy() &&
"Ptr must have pointer type!");
assert(getOperand(1)->getType() ==
cast<PointerType>(getOperand(0)->getType())->getElementType()
&& "Ptr must be a pointer to Cmp type!");
assert(getOperand(2)->getType() ==
cast<PointerType>(getOperand(0)->getType())->getElementType()
&& "Ptr must be a pointer to NewVal type!");
assert(SuccessOrdering != NotAtomic &&
"AtomicCmpXchg instructions must be atomic!");
assert(FailureOrdering != NotAtomic &&
"AtomicCmpXchg instructions must be atomic!");
assert(SuccessOrdering >= FailureOrdering &&
"AtomicCmpXchg success ordering must be at least as strong as fail");
assert(FailureOrdering != Release && FailureOrdering != AcquireRelease &&
"AtomicCmpXchg failure ordering cannot include release semantics");
}
AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering,
SynchronizationScope SynchScope,
Instruction *InsertBefore)
: Instruction(
StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()),
nullptr),
AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
}
AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering,
SynchronizationScope SynchScope,
BasicBlock *InsertAtEnd)
: Instruction(
StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()),
nullptr),
AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
}
//===----------------------------------------------------------------------===//
// AtomicRMWInst Implementation
//===----------------------------------------------------------------------===//
void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
AtomicOrdering Ordering,
SynchronizationScope SynchScope) {
Op<0>() = Ptr;
Op<1>() = Val;
setOperation(Operation);
setOrdering(Ordering);
setSynchScope(SynchScope);
assert(getOperand(0) && getOperand(1) &&
"All operands must be non-null!");
assert(getOperand(0)->getType()->isPointerTy() &&
"Ptr must have pointer type!");
assert(getOperand(1)->getType() ==
cast<PointerType>(getOperand(0)->getType())->getElementType()
&& "Ptr must be a pointer to Val type!");
assert(Ordering != NotAtomic &&
"AtomicRMW instructions must be atomic!");
}
AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
AtomicOrdering Ordering,
SynchronizationScope SynchScope,
Instruction *InsertBefore)
: Instruction(Val->getType(), AtomicRMW,
OperandTraits<AtomicRMWInst>::op_begin(this),
OperandTraits<AtomicRMWInst>::operands(this),
InsertBefore) {
Init(Operation, Ptr, Val, Ordering, SynchScope);
}
AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
AtomicOrdering Ordering,
SynchronizationScope SynchScope,
BasicBlock *InsertAtEnd)
: Instruction(Val->getType(), AtomicRMW,
OperandTraits<AtomicRMWInst>::op_begin(this),
OperandTraits<AtomicRMWInst>::operands(this),
InsertAtEnd) {
Init(Operation, Ptr, Val, Ordering, SynchScope);
}
//===----------------------------------------------------------------------===//
// FenceInst Implementation
//===----------------------------------------------------------------------===//
FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
SynchronizationScope SynchScope,
Instruction *InsertBefore)
: Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
setOrdering(Ordering);
setSynchScope(SynchScope);
}
FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
SynchronizationScope SynchScope,
BasicBlock *InsertAtEnd)
: Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
setOrdering(Ordering);
setSynchScope(SynchScope);
}
//===----------------------------------------------------------------------===//
// GetElementPtrInst Implementation
//===----------------------------------------------------------------------===//
void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
const Twine &Name) {
assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?");
OperandList[0] = Ptr;
std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
setName(Name);
}
GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
: Instruction(GEPI.getType(), GetElementPtr,
OperandTraits<GetElementPtrInst>::op_end(this)
- GEPI.getNumOperands(),
GEPI.getNumOperands()) {
std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
SubclassOptionalData = GEPI.SubclassOptionalData;
}
/// getIndexedType - Returns the type of the element that would be accessed with
/// a gep instruction with the specified parameters.
///
/// The Idxs pointer should point to a continuous piece of memory containing the
/// indices, either as Value* or uint64_t.
///
/// A null type is returned if the indices are invalid for the specified
/// pointer type.
///
template <typename IndexTy>
static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) {
PointerType *PTy = dyn_cast<PointerType>(Ptr->getScalarType());
if (!PTy) return nullptr; // Type isn't a pointer type!
Type *Agg = PTy->getElementType();
// Handle the special case of the empty set index set, which is always valid.
if (IdxList.empty())
return Agg;
// If there is at least one index, the top level type must be sized, otherwise
// it cannot be 'stepped over'.
if (!Agg->isSized())
return nullptr;
unsigned CurIdx = 1;
for (; CurIdx != IdxList.size(); ++CurIdx) {
CompositeType *CT = dyn_cast<CompositeType>(Agg);
if (!CT || CT->isPointerTy()) return nullptr;
IndexTy Index = IdxList[CurIdx];
if (!CT->indexValid(Index)) return nullptr;
Agg = CT->getTypeAtIndex(Index);
}
return CurIdx == IdxList.size() ? Agg : nullptr;
}
Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) {
return getIndexedTypeInternal(Ptr, IdxList);
}
Type *GetElementPtrInst::getIndexedType(Type *Ptr,
ArrayRef<Constant *> IdxList) {
return getIndexedTypeInternal(Ptr, IdxList);
}
Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) {
return getIndexedTypeInternal(Ptr, IdxList);
}
/// hasAllZeroIndices - Return true if all of the indices of this GEP are
/// zeros. If so, the result pointer and the first operand have the same
/// value, just potentially different types.
bool GetElementPtrInst::hasAllZeroIndices() const {
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
if (!CI->isZero()) return false;
} else {
return false;
}
}
return true;
}
/// hasAllConstantIndices - Return true if all of the indices of this GEP are
/// constant integers. If so, the result pointer and the first operand have
/// a constant offset between them.
bool GetElementPtrInst::hasAllConstantIndices() const {
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
if (!isa<ConstantInt>(getOperand(i)))
return false;
}
return true;
}
void GetElementPtrInst::setIsInBounds(bool B) {
cast<GEPOperator>(this)->setIsInBounds(B);
}
bool GetElementPtrInst::isInBounds() const {
return cast<GEPOperator>(this)->isInBounds();
}
bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
APInt &Offset) const {
// Delegate to the generic GEPOperator implementation.
return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
}
//===----------------------------------------------------------------------===//
// ExtractElementInst Implementation
//===----------------------------------------------------------------------===//
ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
const Twine &Name,
Instruction *InsertBef)
: Instruction(cast<VectorType>(Val->getType())->getElementType(),
ExtractElement,
OperandTraits<ExtractElementInst>::op_begin(this),
2, InsertBef) {
assert(isValidOperands(Val, Index) &&
"Invalid extractelement instruction operands!");
Op<0>() = Val;
Op<1>() = Index;
setName(Name);
}
ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
const Twine &Name,
BasicBlock *InsertAE)
: Instruction(cast<VectorType>(Val->getType())->getElementType(),
ExtractElement,
OperandTraits<ExtractElementInst>::op_begin(this),
2, InsertAE) {
assert(isValidOperands(Val, Index) &&
"Invalid extractelement instruction operands!");
Op<0>() = Val;
Op<1>() = Index;
setName(Name);
}
bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
return false;
return true;
}
//===----------------------------------------------------------------------===//
// InsertElementInst Implementation
//===----------------------------------------------------------------------===//
InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
const Twine &Name,
Instruction *InsertBef)
: Instruction(Vec->getType(), InsertElement,
OperandTraits<InsertElementInst>::op_begin(this),
3, InsertBef) {
assert(isValidOperands(Vec, Elt, Index) &&
"Invalid insertelement instruction operands!");
Op<0>() = Vec;
Op<1>() = Elt;
Op<2>() = Index;
setName(Name);
}
InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
const Twine &Name,
BasicBlock *InsertAE)
: Instruction(Vec->getType(), InsertElement,
OperandTraits<InsertElementInst>::op_begin(this),
3, InsertAE) {
assert(isValidOperands(Vec, Elt, Index) &&
"Invalid insertelement instruction operands!");
Op<0>() = Vec;
Op<1>() = Elt;
Op<2>() = Index;
setName(Name);
}
bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
const Value *Index) {
if (!Vec->getType()->isVectorTy())
return false; // First operand of insertelement must be vector type.
if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
return false;// Second operand of insertelement must be vector element type.
if (!Index->getType()->isIntegerTy())
return false; // Third operand of insertelement must be i32.
return true;
}
//===----------------------------------------------------------------------===//
// ShuffleVectorInst Implementation
//===----------------------------------------------------------------------===//
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
const Twine &Name,
Instruction *InsertBefore)
: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
cast<VectorType>(Mask->getType())->getNumElements()),
ShuffleVector,
OperandTraits<ShuffleVectorInst>::op_begin(this),
OperandTraits<ShuffleVectorInst>::operands(this),
InsertBefore) {
assert(isValidOperands(V1, V2, Mask) &&
"Invalid shuffle vector instruction operands!");
Op<0>() = V1;
Op<1>() = V2;
Op<2>() = Mask;
setName(Name);
}
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
const Twine &Name,
BasicBlock *InsertAtEnd)
: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
cast<VectorType>(Mask->getType())->getNumElements()),
ShuffleVector,
OperandTraits<ShuffleVectorInst>::op_begin(this),
OperandTraits<ShuffleVectorInst>::operands(this),
InsertAtEnd) {
assert(isValidOperands(V1, V2, Mask) &&
"Invalid shuffle vector instruction operands!");
Op<0>() = V1;
Op<1>() = V2;
Op<2>() = Mask;
setName(Name);
}
bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
const Value *Mask) {
// V1 and V2 must be vectors of the same type.
if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
return false;
// Mask must be vector of i32.
VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
return false;
// Check to see if Mask is valid.
if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
return true;
if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
for (Value *Op : MV->operands()) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
if (CI->uge(V1Size*2))
return false;
} else if (!isa<UndefValue>(Op)) {
return false;
}
}
return true;
}
if (const ConstantDataSequential *CDS =
dyn_cast<ConstantDataSequential>(Mask)) {
unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
if (CDS->getElementAsInteger(i) >= V1Size*2)
return false;
return true;
}
// The bitcode reader can create a place holder for a forward reference
// used as the shuffle mask. When this occurs, the shuffle mask will
// fall into this case and fail. To avoid this error, do this bit of
// ugliness to allow such a mask pass.
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
if (CE->getOpcode() == Instruction::UserOp1)
return true;
return false;
}
/// getMaskValue - Return the index from the shuffle mask for the specified
/// output result. This is either -1 if the element is undef or a number less
/// than 2*numelements.
int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
return CDS->getElementAsInteger(i);
Constant *C = Mask->getAggregateElement(i);
if (isa<UndefValue>(C))
return -1;
return cast<ConstantInt>(C)->getZExtValue();
}
/// getShuffleMask - Return the full mask for this instruction, where each
/// element is the element number and undef's are returned as -1.
void ShuffleVectorInst::getShuffleMask(Constant *Mask,
SmallVectorImpl<int> &Result) {
unsigned NumElts = Mask->getType()->getVectorNumElements();
if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
for (unsigned i = 0; i != NumElts; ++i)
Result.push_back(CDS->getElementAsInteger(i));
return;
}
for (unsigned i = 0; i != NumElts; ++i) {
Constant *C = Mask->getAggregateElement(i);
Result.push_back(isa<UndefValue>(C) ? -1 :
cast<ConstantInt>(C)->getZExtValue());
}
}
//===----------------------------------------------------------------------===//
// InsertValueInst Class
//===----------------------------------------------------------------------===//
void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
const Twine &Name) {
assert(NumOperands == 2 && "NumOperands not initialized?");
// There's no fundamental reason why we require at least one index
// (other than weirdness with &*IdxBegin being invalid; see
// getelementptr's init routine for example). But there's no
// present need to support it.
assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
Val->getType() && "Inserted value must match indexed type!");
Op<0>() = Agg;
Op<1>() = Val;
Indices.append(Idxs.begin(), Idxs.end());
setName(Name);
}
InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
: Instruction(IVI.getType(), InsertValue,
OperandTraits<InsertValueInst>::op_begin(this), 2),
Indices(IVI.Indices) {
Op<0>() = IVI.getOperand(0);
Op<1>() = IVI.getOperand(1);
SubclassOptionalData = IVI.SubclassOptionalData;
}
//===----------------------------------------------------------------------===//
// ExtractValueInst Class
//===----------------------------------------------------------------------===//
void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
assert(NumOperands == 1 && "NumOperands not initialized?");
// There's no fundamental reason why we require at least one index.
// But there's no present need to support it.
assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
Indices.append(Idxs.begin(), Idxs.end());
setName(Name);
}
ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
: UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
Indices(EVI.Indices) {
SubclassOptionalData = EVI.SubclassOptionalData;
}
// getIndexedType - Returns the type of the element that would be extracted
// with an extractvalue instruction with the specified parameters.
//
// A null type is returned if the indices are invalid for the specified
// pointer type.
//
Type *ExtractValueInst::getIndexedType(Type *Agg,
ArrayRef<unsigned> Idxs) {
for (unsigned Index : Idxs) {
// We can't use CompositeType::indexValid(Index) here.
// indexValid() always returns true for arrays because getelementptr allows
// out-of-bounds indices. Since we don't allow those for extractvalue and
// insertvalue we need to check array indexing manually.
// Since the only other types we can index into are struct types it's just
// as easy to check those manually as well.
if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
if (Index >= AT->getNumElements())
return nullptr;
} else if (StructType *ST = dyn_cast<StructType>(Agg)) {
if (Index >= ST->getNumElements())
return nullptr;
} else {
// Not a valid type to index into.
return nullptr;
}
Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
}
return const_cast<Type*>(Agg);
}
//===----------------------------------------------------------------------===//
// BinaryOperator Class
//===----------------------------------------------------------------------===//
BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
Type *Ty, const Twine &Name,
Instruction *InsertBefore)
: Instruction(Ty, iType,
OperandTraits<BinaryOperator>::op_begin(this),
OperandTraits<BinaryOperator>::operands(this),
InsertBefore) {
Op<0>() = S1;
Op<1>() = S2;
init(iType);
setName(Name);
}
BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
Type *Ty, const Twine &Name,
BasicBlock *InsertAtEnd)
: Instruction(Ty, iType,
OperandTraits<BinaryOperator>::op_begin(this),
OperandTraits<BinaryOperator>::operands(this),
InsertAtEnd) {
Op<0>() = S1;
Op<1>() = S2;
init(iType);
setName(Name);
}
void BinaryOperator::init(BinaryOps iType) {
Value *LHS = getOperand(0), *RHS = getOperand(1);
(void)LHS; (void)RHS; // Silence warnings.
assert(LHS->getType() == RHS->getType() &&
"Binary operator operand types must match!");
#ifndef NDEBUG
switch (iType) {
case Add: case Sub:
case Mul:
assert(getType() == LHS->getType() &&
"Arithmetic operation should return same type as operands!");
assert(getType()->isIntOrIntVectorTy() &&
"Tried to create an integer operation on a non-integer type!");
break;
case FAdd: case FSub:
case FMul:
assert(getType() == LHS->getType() &&
"Arithmetic operation should return same type as operands!");
assert(getType()->isFPOrFPVectorTy() &&
"Tried to create a floating-point operation on a "
"non-floating-point type!");
break;
case UDiv:
case SDiv:
assert(getType() == LHS->getType() &&
"Arithmetic operation should return same type as operands!");
assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
"Incorrect operand type (not integer) for S/UDIV");
break;
case FDiv:
assert(getType() == LHS->getType() &&
"Arithmetic operation should return same type as operands!");
assert(getType()->isFPOrFPVectorTy() &&
"Incorrect operand type (not floating point) for FDIV");
break;
case URem:
case SRem:
assert(getType() == LHS->getType() &&
"Arithmetic operation should return same type as operands!");
assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
"Incorrect operand type (not integer) for S/UREM");
break;
case FRem:
assert(getType() == LHS->getType() &&
"Arithmetic operation should return same type as operands!");
assert(getType()->isFPOrFPVectorTy() &&
"Incorrect operand type (not floating point) for FREM");
break;
case Shl:
case LShr:
case AShr:
assert(getType() == LHS->getType() &&
"Shift operation should return same type as operands!");
assert((getType()->isIntegerTy() ||
(getType()->isVectorTy() &&
cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
"Tried to create a shift operation on a non-integral type!");
break;
case And: case Or:
case Xor:
assert(getType() == LHS->getType() &&
"Logical operation should return same type as operands!");
assert((getType()->isIntegerTy() ||
(getType()->isVectorTy() &&
cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
"Tried to create a logical operation on a non-integral type!");
break;
default:
break;
}
#endif
}
BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
const Twine &Name,
Instruction *InsertBefore) {
assert(S1->getType() == S2->getType() &&
"Cannot create binary operator with two operands of differing type!");
return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
}
BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
const Twine &Name,
BasicBlock *InsertAtEnd) {
BinaryOperator *Res = Create(Op, S1, S2, Name);
InsertAtEnd->getInstList().push_back(Res);
return Res;
}
BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
Instruction *InsertBefore) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return new BinaryOperator(Instruction::Sub,
zero, Op,
Op->getType(), Name, InsertBefore);
}
BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return new BinaryOperator(Instruction::Sub,
zero, Op,
Op->getType(), Name, InsertAtEnd);
}
BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
Instruction *InsertBefore) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
}
BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
}
BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
Instruction *InsertBefore) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
}
BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
}
BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
Instruction *InsertBefore) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return new BinaryOperator(Instruction::FSub, zero, Op,
Op->getType(), Name, InsertBefore);
}
BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return new BinaryOperator(Instruction::FSub, zero, Op,
Op->getType(), Name, InsertAtEnd);
}
BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
Instruction *InsertBefore) {
Constant *C = Constant::getAllOnesValue(Op->getType());
return new BinaryOperator(Instruction::Xor, Op, C,
Op->getType(), Name, InsertBefore);
}
BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd) {
Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
return new BinaryOperator(Instruction::Xor, Op, AllOnes,
Op->getType(), Name, InsertAtEnd);
}
// isConstantAllOnes - Helper function for several functions below
static inline bool isConstantAllOnes(const Value *V) {
if (const Constant *C = dyn_cast<Constant>(V))
return C->isAllOnesValue();
return false;
}
bool BinaryOperator::isNeg(const Value *V) {
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
if (Bop->getOpcode() == Instruction::Sub)
if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
return C->isNegativeZeroValue();
return false;
}
bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
if (Bop->getOpcode() == Instruction::FSub)
if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) {
if (!IgnoreZeroSign)
IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
}
return false;
}
bool BinaryOperator::isNot(const Value *V) {
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
return (Bop->getOpcode() == Instruction::Xor &&
(isConstantAllOnes(Bop->getOperand(1)) ||
isConstantAllOnes(Bop->getOperand(0))));
return false;
}
Value *BinaryOperator::getNegArgument(Value *BinOp) {
return cast<BinaryOperator>(BinOp)->getOperand(1);
}
const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
return getNegArgument(const_cast<Value*>(BinOp));
}
Value *BinaryOperator::getFNegArgument(Value *BinOp) {
return cast<BinaryOperator>(BinOp)->getOperand(1);
}
const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
return getFNegArgument(const_cast<Value*>(BinOp));
}
Value *BinaryOperator::getNotArgument(Value *BinOp) {
assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
BinaryOperator *BO = cast<BinaryOperator>(BinOp);
Value *Op0 = BO->getOperand(0);
Value *Op1 = BO->getOperand(1);
if (isConstantAllOnes(Op0)) return Op1;
assert(isConstantAllOnes(Op1));
return Op0;
}
const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
return getNotArgument(const_cast<Value*>(BinOp));
}
// swapOperands - Exchange the two operands to this instruction. This
// instruction is safe to use on any binary instruction and does not
// modify the semantics of the instruction. If the instruction is
// order dependent (SetLT f.e.) the opcode is changed.
//
bool BinaryOperator::swapOperands() {
if (!isCommutative())
return true; // Can't commute operands
Op<0>().swap(Op<1>());
return false;
}
void BinaryOperator::setHasNoUnsignedWrap(bool b) {
cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
}
void BinaryOperator::setHasNoSignedWrap(bool b) {
cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
}
void BinaryOperator::setIsExact(bool b) {
cast<PossiblyExactOperator>(this)->setIsExact(b);
}
bool BinaryOperator::hasNoUnsignedWrap() const {
return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
}
bool BinaryOperator::hasNoSignedWrap() const {
return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
}
bool BinaryOperator::isExact() const {
return cast<PossiblyExactOperator>(this)->isExact();
}
void BinaryOperator::copyIRFlags(const Value *V) {
// Copy the wrapping flags.
if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
setHasNoSignedWrap(OB->hasNoSignedWrap());
setHasNoUnsignedWrap(OB->hasNoUnsignedWrap());
}
// Copy the exact flag.
if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
setIsExact(PE->isExact());
// Copy the fast-math flags.
if (auto *FP = dyn_cast<FPMathOperator>(V))
copyFastMathFlags(FP->getFastMathFlags());
}
void BinaryOperator::andIRFlags(const Value *V) {
if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
setHasNoSignedWrap(hasNoSignedWrap() & OB->hasNoSignedWrap());
setHasNoUnsignedWrap(hasNoUnsignedWrap() & OB->hasNoUnsignedWrap());
}
if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
setIsExact(isExact() & PE->isExact());
if (auto *FP = dyn_cast<FPMathOperator>(V)) {
FastMathFlags FM = getFastMathFlags();
FM &= FP->getFastMathFlags();
copyFastMathFlags(FM);
}
}
//===----------------------------------------------------------------------===//
// FPMathOperator Class
//===----------------------------------------------------------------------===//
/// getFPAccuracy - Get the maximum error permitted by this operation in ULPs.
/// An accuracy of 0.0 means that the operation should be performed with the
/// default precision.
float FPMathOperator::getFPAccuracy() const {
const MDNode *MD =
cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
if (!MD)
return 0.0;
ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0));
return Accuracy->getValueAPF().convertToFloat();
}
//===----------------------------------------------------------------------===//
// CastInst Class
//===----------------------------------------------------------------------===//
void CastInst::anchor() {}
// Just determine if this cast only deals with integral->integral conversion.
bool CastInst::isIntegerCast() const {
switch (getOpcode()) {
default: return false;
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::Trunc:
return true;
case Instruction::BitCast:
return getOperand(0)->getType()->isIntegerTy() &&
getType()->isIntegerTy();
}
}
bool CastInst::isLosslessCast() const {
// Only BitCast can be lossless, exit fast if we're not BitCast
if (getOpcode() != Instruction::BitCast)
return false;
// Identity cast is always lossless
Type* SrcTy = getOperand(0)->getType();
Type* DstTy = getType();
if (SrcTy == DstTy)
return true;
// Pointer to pointer is always lossless.
if (SrcTy->isPointerTy())
return DstTy->isPointerTy();
return false; // Other types have no identity values
}
/// This function determines if the CastInst does not require any bits to be
/// changed in order to effect the cast. Essentially, it identifies cases where
/// no code gen is necessary for the cast, hence the name no-op cast. For
/// example, the following are all no-op casts:
/// # bitcast i32* %x to i8*
/// # bitcast <2 x i32> %x to <4 x i16>
/// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
/// @brief Determine if the described cast is a no-op.
bool CastInst::isNoopCast(Instruction::CastOps Opcode,
Type *SrcTy,
Type *DestTy,
Type *IntPtrTy) {
switch (Opcode) {
default: llvm_unreachable("Invalid CastOp");
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::AddrSpaceCast:
// TODO: Target informations may give a more accurate answer here.
return false;
case Instruction::BitCast:
return true; // BitCast never modifies bits.
case Instruction::PtrToInt:
return IntPtrTy->getScalarSizeInBits() ==
DestTy->getScalarSizeInBits();
case Instruction::IntToPtr:
return IntPtrTy->getScalarSizeInBits() ==
SrcTy->getScalarSizeInBits();
}
}
/// @brief Determine if a cast is a no-op.
bool CastInst::isNoopCast(Type *IntPtrTy) const {
return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
}
bool CastInst::isNoopCast(const DataLayout *DL) const {
if (!DL) {
// Assume maximum pointer size.
return isNoopCast(Type::getInt64Ty(getContext()));
}
Type *PtrOpTy = nullptr;
if (getOpcode() == Instruction::PtrToInt)
PtrOpTy = getOperand(0)->getType();
else if (getOpcode() == Instruction::IntToPtr)
PtrOpTy = getType();
Type *IntPtrTy = PtrOpTy
? DL->getIntPtrType(PtrOpTy)
: DL->getIntPtrType(getContext(), 0);
return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
}
/// This function determines if a pair of casts can be eliminated and what
/// opcode should be used in the elimination. This assumes that there are two
/// instructions like this:
/// * %F = firstOpcode SrcTy %x to MidTy
/// * %S = secondOpcode MidTy %F to DstTy
/// The function returns a resultOpcode so these two casts can be replaced with:
/// * %Replacement = resultOpcode %SrcTy %x to DstTy
/// If no such cast is permited, the function returns 0.
unsigned CastInst::isEliminableCastPair(
Instruction::CastOps firstOp, Instruction::CastOps secondOp,
Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
Type *DstIntPtrTy) {
// Define the 144 possibilities for these two cast instructions. The values
// in this matrix determine what to do in a given situation and select the
// case in the switch below. The rows correspond to firstOp, the columns
// correspond to secondOp. In looking at the table below, keep in mind
// the following cast properties:
//
// Size Compare Source Destination
// Operator Src ? Size Type Sign Type Sign
// -------- ------------ ------------------- ---------------------
// TRUNC > Integer Any Integral Any
// ZEXT < Integral Unsigned Integer Any
// SEXT < Integral Signed Integer Any
// FPTOUI n/a FloatPt n/a Integral Unsigned
// FPTOSI n/a FloatPt n/a Integral Signed
// UITOFP n/a Integral Unsigned FloatPt n/a
// SITOFP n/a Integral Signed FloatPt n/a
// FPTRUNC > FloatPt n/a FloatPt n/a
// FPEXT < FloatPt n/a FloatPt n/a
// PTRTOINT n/a Pointer n/a Integral Unsigned
// INTTOPTR n/a Integral Unsigned Pointer n/a
// BITCAST = FirstClass n/a FirstClass n/a
// ADDRSPCST n/a Pointer n/a Pointer n/a
//
// NOTE: some transforms are safe, but we consider them to be non-profitable.
// For example, we could merge "fptoui double to i32" + "zext i32 to i64",
// into "fptoui double to i64", but this loses information about the range
// of the produced value (we no longer know the top-part is all zeros).
// Further this conversion is often much more expensive for typical hardware,
// and causes issues when building libgcc. We disallow fptosi+sext for the
// same reason.
const unsigned numCastOps =
Instruction::CastOpsEnd - Instruction::CastOpsBegin;
static const uint8_t CastResults[numCastOps][numCastOps] = {
// T F F U S F F P I B A -+
// R Z S P P I I T P 2 N T S |
// U E E 2 2 2 2 R E I T C C +- secondOp
// N X X U S F F N X N 2 V V |
// C T T I I P P C T T P T T -+
{ 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
{ 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3, 0}, // ZExt |
{ 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
{ 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
{ 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
{ 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
{ 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
{ 99,99,99, 0, 0,99,99, 1, 0,99,99, 4, 0}, // FPTrunc |
{ 99,99,99, 2, 2,99,99,10, 2,99,99, 4, 0}, // FPExt |
{ 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
{ 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
{ 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
};
// If either of the casts are a bitcast from scalar to vector, disallow the
// merging. However, bitcast of A->B->A are allowed.
bool isFirstBitcast = (firstOp == Instruction::BitCast);
bool isSecondBitcast = (secondOp == Instruction::BitCast);
bool chainedBitcast = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast);
// Check if any of the bitcasts convert scalars<->vectors.
if ((isFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
(isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
// Unless we are bitcasing to the original type, disallow optimizations.
if (!chainedBitcast) return 0;
int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
[secondOp-Instruction::CastOpsBegin];
switch (ElimCase) {
case 0:
// Categorically disallowed.
return 0;
case 1:
// Allowed, use first cast's opcode.
return firstOp;
case 2:
// Allowed, use second cast's opcode.
return secondOp;
case 3:
// No-op cast in second op implies firstOp as long as the DestTy
// is integer and we are not converting between a vector and a
// non-vector type.
if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
return firstOp;
return 0;
case 4:
// No-op cast in second op implies firstOp as long as the DestTy
// is floating point.
if (DstTy->isFloatingPointTy())
return firstOp;
return 0;
case 5:
// No-op cast in first op implies secondOp as long as the SrcTy
// is an integer.
if (SrcTy->isIntegerTy())
return secondOp;
return 0;
case 6:
// No-op cast in first op implies secondOp as long as the SrcTy
// is a floating point.
if (SrcTy->isFloatingPointTy())
return secondOp;
return 0;
case 7: {
// Cannot simplify if address spaces are different!
if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
return 0;
unsigned MidSize = MidTy->getScalarSizeInBits();
// We can still fold this without knowing the actual sizes as long we
// know that the intermediate pointer is the largest possible
// pointer size.
// FIXME: Is this always true?
if (MidSize == 64)
return Instruction::BitCast;
// ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
return 0;
unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
if (MidSize >= PtrSize)
return Instruction::BitCast;
return 0;
}
case 8: {
// ext, trunc -> bitcast, if the SrcTy and DstTy are same size
// ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
// ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
unsigned SrcSize = SrcTy->getScalarSizeInBits();
unsigned DstSize = DstTy->getScalarSizeInBits();
if (SrcSize == DstSize)
return Instruction::BitCast;
else if (SrcSize < DstSize)
return firstOp;
return secondOp;
}
case 9:
// zext, sext -> zext, because sext can't sign extend after zext
return Instruction::ZExt;
case 10:
// fpext followed by ftrunc is allowed if the bit size returned to is
// the same as the original, in which case its just a bitcast
if (SrcTy == DstTy)
return Instruction::BitCast;
return 0; // If the types are not the same we can't eliminate it.
case 11: {
// inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
if (!MidIntPtrTy)
return 0;
unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
unsigned SrcSize = SrcTy->getScalarSizeInBits();
unsigned DstSize = DstTy->getScalarSizeInBits();
if (SrcSize <= PtrSize && SrcSize == DstSize)
return Instruction::BitCast;
return 0;
}
case 12: {
// addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
// addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
return Instruction::AddrSpaceCast;
return Instruction::BitCast;
}
case 13:
// FIXME: this state can be merged with (1), but the following assert
// is useful to check the correcteness of the sequence due to semantic
// change of bitcast.
assert(
SrcTy->isPtrOrPtrVectorTy() &&
MidTy->isPtrOrPtrVectorTy() &&
DstTy->isPtrOrPtrVectorTy() &&
SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
"Illegal addrspacecast, bitcast sequence!");
// Allowed, use first cast's opcode
return firstOp;
case 14:
// bitcast, addrspacecast -> addrspacecast if the element type of
// bitcast's source is the same as that of addrspacecast's destination.
if (SrcTy->getPointerElementType() == DstTy->getPointerElementType())
return Instruction::AddrSpaceCast;
return 0;
case 15:
// FIXME: this state can be merged with (1), but the following assert
// is useful to check the correcteness of the sequence due to semantic
// change of bitcast.
assert(
SrcTy->isIntOrIntVectorTy() &&
MidTy->isPtrOrPtrVectorTy() &&
DstTy->isPtrOrPtrVectorTy() &&
MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
"Illegal inttoptr, bitcast sequence!");
// Allowed, use first cast's opcode
return firstOp;
case 16:
// FIXME: this state can be merged with (2), but the following assert
// is useful to check the correcteness of the sequence due to semantic
// change of bitcast.
assert(
SrcTy->isPtrOrPtrVectorTy() &&
MidTy->isPtrOrPtrVectorTy() &&
DstTy->isIntOrIntVectorTy() &&
SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
"Illegal bitcast, ptrtoint sequence!");
// Allowed, use second cast's opcode
return secondOp;
case 99:
// Cast combination can't happen (error in input). This is for all cases
// where the MidTy is not the same for the two cast instructions.
llvm_unreachable("Invalid Cast Combination");
default:
llvm_unreachable("Error in CastResults table!!!");
}
}
CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
const Twine &Name, Instruction *InsertBefore) {
assert(castIsValid(op, S, Ty) && "Invalid cast!");
// Construct and return the appropriate CastInst subclass
switch (op) {
case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
default: llvm_unreachable("Invalid opcode provided");
}
}
CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
const Twine &Name, BasicBlock *InsertAtEnd) {
assert(castIsValid(op, S, Ty) && "Invalid cast!");
// Construct and return the appropriate CastInst subclass
switch (op) {
case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
default: llvm_unreachable("Invalid opcode provided");
}
}
CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
const Twine &Name,
Instruction *InsertBefore) {
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
}
CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
const Twine &Name,
BasicBlock *InsertAtEnd) {
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
}
CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
const Twine &Name,
Instruction *InsertBefore) {
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
}
CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
const Twine &Name,
BasicBlock *InsertAtEnd) {
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
}
CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
const Twine &Name,
Instruction *InsertBefore) {
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
}
CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
const Twine &Name,
BasicBlock *InsertAtEnd) {
if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
}
CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
const Twine &Name,
BasicBlock *InsertAtEnd) {
assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
"Invalid cast");
assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
assert((!Ty->isVectorTy() ||
Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
"Invalid cast");
if (Ty->isIntOrIntVectorTy())
return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
}
/// @brief Create a BitCast or a PtrToInt cast instruction
CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
const Twine &Name,
Instruction *InsertBefore) {
assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
"Invalid cast");
assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
assert((!Ty->isVectorTy() ||
Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
"Invalid cast");
if (Ty->isIntOrIntVectorTy())
return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
}
CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
Value *S, Type *Ty,
const Twine &Name,
BasicBlock *InsertAtEnd) {
assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
}
CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
Value *S, Type *Ty,
const Twine &Name,
Instruction *InsertBefore) {
assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
}
CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
bool isSigned, const Twine &Name,
Instruction *InsertBefore) {
assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
"Invalid integer cast");
unsigned SrcBits = C->getType()->getScalarSizeInBits();
unsigned DstBits = Ty->getScalarSizeInBits();
Instruction::CastOps opcode =
(SrcBits == DstBits ? Instruction::BitCast :
(SrcBits > DstBits ? Instruction::Trunc :
(isSigned ? Instruction::SExt : Instruction::ZExt)));
return Create(opcode, C, Ty, Name, InsertBefore);
}
CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
bool isSigned, const Twine &Name,
BasicBlock *InsertAtEnd) {
assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
"Invalid cast");
unsigned SrcBits = C->getType()->getScalarSizeInBits();
unsigned DstBits = Ty->getScalarSizeInBits();
Instruction::CastOps opcode =
(SrcBits == DstBits ? Instruction::BitCast :
(SrcBits > DstBits ? Instruction::Trunc :
(isSigned ? Instruction::SExt : Instruction::ZExt)));
return Create(opcode, C, Ty, Name, InsertAtEnd);
}
CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
const Twine &Name,
Instruction *InsertBefore) {
assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
"Invalid cast");
unsigned SrcBits = C->getType()->getScalarSizeInBits();
unsigned DstBits = Ty->getScalarSizeInBits();
Instruction::CastOps opcode =
(SrcBits == DstBits ? Instruction::BitCast :
(SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
return Create(opcode, C, Ty, Name, InsertBefore);
}
CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
const Twine &Name,
BasicBlock *InsertAtEnd) {
assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
"Invalid cast");
unsigned SrcBits = C->getType()->getScalarSizeInBits();
unsigned DstBits = Ty->getScalarSizeInBits();
Instruction::CastOps opcode =
(SrcBits == DstBits ? Instruction::BitCast :
(SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
return Create(opcode, C, Ty, Name, InsertAtEnd);
}
// Check whether it is valid to call getCastOpcode for these types.
// This routine must be kept in sync with getCastOpcode.
bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
return false;
if (SrcTy == DestTy)
return true;
if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
// An element by element cast. Valid if casting the elements is valid.
SrcTy = SrcVecTy->getElementType();
DestTy = DestVecTy->getElementType();
}
// Get the bit sizes, we'll need these
unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
// Run through the possibilities ...
if (DestTy->isIntegerTy()) { // Casting to integral
if (SrcTy->isIntegerTy()) { // Casting from integral
return true;
} else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
return true;
} else if (SrcTy->isVectorTy()) { // Casting from vector
return DestBits == SrcBits;
} else { // Casting from something else
return SrcTy->isPointerTy();
}
} else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
if (SrcTy->isIntegerTy()) { // Casting from integral
return true;
} else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
return true;
} else if (SrcTy->isVectorTy()) { // Casting from vector
return DestBits == SrcBits;
} else { // Casting from something else
return false;
}
} else if (DestTy->isVectorTy()) { // Casting to vector
return DestBits == SrcBits;
} else if (DestTy->isPointerTy()) { // Casting to pointer
if (SrcTy->isPointerTy()) { // Casting from pointer
return true;
} else if (SrcTy->isIntegerTy()) { // Casting from integral
return true;
} else { // Casting from something else
return false;
}
} else if (DestTy->isX86_MMXTy()) {
if (SrcTy->isVectorTy()) {
return DestBits == SrcBits; // 64-bit vector to MMX
} else {
return false;
}
} else { // Casting to something else
return false;
}
}
bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
return false;
if (SrcTy == DestTy)
return true;
if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
// An element by element cast. Valid if casting the elements is valid.
SrcTy = SrcVecTy->getElementType();
DestTy = DestVecTy->getElementType();
}
}
}
if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
}
}
unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
// Could still have vectors of pointers if the number of elements doesn't
// match
if (SrcBits == 0 || DestBits == 0)
return false;
if (SrcBits != DestBits)
return false;
if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
return false;
return true;
}
// Provide a way to get a "cast" where the cast opcode is inferred from the
// types and size of the operand. This, basically, is a parallel of the
// logic in the castIsValid function below. This axiom should hold:
// castIsValid( getCastOpcode(Val, Ty), Val, Ty)
// should not assert in castIsValid. In other words, this produces a "correct"
// casting opcode for the arguments passed to it.
// This routine must be kept in sync with isCastable.
Instruction::CastOps
CastInst::getCastOpcode(
const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
Type *SrcTy = Src->getType();
assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
"Only first class types are castable!");
if (SrcTy == DestTy)
return BitCast;
// FIXME: Check address space sizes here
if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
// An element by element cast. Find the appropriate opcode based on the
// element types.
SrcTy = SrcVecTy->getElementType();
DestTy = DestVecTy->getElementType();
}
// Get the bit sizes, we'll need these
unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
// Run through the possibilities ...
if (DestTy->isIntegerTy()) { // Casting to integral
if (SrcTy->isIntegerTy()) { // Casting from integral
if (DestBits < SrcBits)
return Trunc; // int -> smaller int
else if (DestBits > SrcBits) { // its an extension
if (SrcIsSigned)
return SExt; // signed -> SEXT
else
return ZExt; // unsigned -> ZEXT
} else {
return BitCast; // Same size, No-op cast
}
} else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
if (DestIsSigned)
return FPToSI; // FP -> sint
else
return FPToUI; // FP -> uint
} else if (SrcTy->isVectorTy()) {
assert(DestBits == SrcBits &&
"Casting vector to integer of different width");
return BitCast; // Same size, no-op cast
} else {
assert(SrcTy->isPointerTy() &&
"Casting from a value that is not first-class type");
return PtrToInt; // ptr -> int
}
} else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
if (SrcTy->isIntegerTy()) { // Casting from integral
if (SrcIsSigned)
return SIToFP; // sint -> FP
else
return UIToFP; // uint -> FP
} else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
if (DestBits < SrcBits) {
return FPTrunc; // FP -> smaller FP
} else if (DestBits > SrcBits) {
return FPExt; // FP -> larger FP
} else {
return BitCast; // same size, no-op cast
}
} else if (SrcTy->isVectorTy()) {
assert(DestBits == SrcBits &&
"Casting vector to floating point of different width");
return BitCast; // same size, no-op cast
}
llvm_unreachable("Casting pointer or non-first class to float");
} else if (DestTy->isVectorTy()) {
assert(DestBits == SrcBits &&
"Illegal cast to vector (wrong type or size)");
return BitCast;
} else if (DestTy->isPointerTy()) {
if (SrcTy->isPointerTy()) {
if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
return AddrSpaceCast;
return BitCast; // ptr -> ptr
} else if (SrcTy->isIntegerTy()) {
return IntToPtr; // int -> ptr
}
llvm_unreachable("Casting pointer to other than pointer or int");
} else if (DestTy->isX86_MMXTy()) {
if (SrcTy->isVectorTy()) {
assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
return BitCast; // 64-bit vector to MMX
}
llvm_unreachable("Illegal cast to X86_MMX");
}
llvm_unreachable("Casting to type that is not first-class");
}
//===----------------------------------------------------------------------===//
// CastInst SubClass Constructors
//===----------------------------------------------------------------------===//
/// Check that the construction parameters for a CastInst are correct. This
/// could be broken out into the separate constructors but it is useful to have
/// it in one place and to eliminate the redundant code for getting the sizes
/// of the types involved.
bool
CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
// Check for type sanity on the arguments
Type *SrcTy = S->getType();
// If this is a cast to the same type then it's trivially true.
if (SrcTy == DstTy)
return true;
if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
SrcTy->isAggregateType() || DstTy->isAggregateType())
return false;
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DstBitSize = DstTy->getScalarSizeInBits();
// If these are vector types, get the lengths of the vectors (using zero for
// scalar types means that checking that vector lengths match also checks that
// scalars are not being converted to vectors or vectors to scalars).
unsigned SrcLength = SrcTy->isVectorTy() ?
cast<VectorType>(SrcTy)->getNumElements() : 0;
unsigned DstLength = DstTy->isVectorTy() ?
cast<VectorType>(DstTy)->getNumElements() : 0;
// Switch on the opcode provided
switch (op) {
default: return false; // This is an input error
case Instruction::Trunc:
return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
SrcLength == DstLength && SrcBitSize > DstBitSize;
case Instruction::ZExt:
return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
SrcLength == DstLength && SrcBitSize < DstBitSize;
case Instruction::SExt:
return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
SrcLength == DstLength && SrcBitSize < DstBitSize;
case Instruction::FPTrunc:
return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
SrcLength == DstLength && SrcBitSize > DstBitSize;
case Instruction::FPExt:
return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
SrcLength == DstLength && SrcBitSize < DstBitSize;
case Instruction::UIToFP:
case Instruction::SIToFP:
return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
SrcLength == DstLength;
case Instruction::FPToUI:
case Instruction::FPToSI:
return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
SrcLength == DstLength;
case Instruction::PtrToInt:
if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
return false;
if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
return false;
return SrcTy->getScalarType()->isPointerTy() &&
DstTy->getScalarType()->isIntegerTy();
case Instruction::IntToPtr:
if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
return false;
if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
return false;
return SrcTy->getScalarType()->isIntegerTy() &&
DstTy->getScalarType()->isPointerTy();
case Instruction::BitCast: {
PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
// BitCast implies a no-op cast of type only. No bits change.
// However, you can't cast pointers to anything but pointers.
if (!SrcPtrTy != !DstPtrTy)
return false;
// For non-pointer cases, the cast is okay if the source and destination bit
// widths are identical.
if (!SrcPtrTy)
return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
// If both are pointers then the address spaces must match.
if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
return false;
// A vector of pointers must have the same number of elements.
if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
return false;
}
return true;
}
case Instruction::AddrSpaceCast: {
PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
if (!SrcPtrTy)
return false;
PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
if (!DstPtrTy)
return false;
if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
return false;
if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
return false;
}
return true;
}
}
}
TruncInst::TruncInst(
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
}
TruncInst::TruncInst(
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
}
ZExtInst::ZExtInst(
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
}
ZExtInst::ZExtInst(
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
}
SExtInst::SExtInst(
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, SExt, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
}
SExtInst::SExtInst(
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
}
FPTruncInst::FPTruncInst(
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
}
FPTruncInst::FPTruncInst(
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
}
FPExtInst::FPExtInst(
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
}
FPExtInst::FPExtInst(
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
}
UIToFPInst::UIToFPInst(
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
}
UIToFPInst::UIToFPInst(
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
}
SIToFPInst::SIToFPInst(
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
}
SIToFPInst::SIToFPInst(
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
}
FPToUIInst::FPToUIInst(
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
}
FPToUIInst::FPToUIInst(
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
}
FPToSIInst::FPToSIInst(
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
}
FPToSIInst::FPToSIInst(
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
}
PtrToIntInst::PtrToIntInst(
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
}
PtrToIntInst::PtrToIntInst(
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
}
IntToPtrInst::IntToPtrInst(
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
}
IntToPtrInst::IntToPtrInst(
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
}
BitCastInst::BitCastInst(
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
}
BitCastInst::BitCastInst(
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
}
AddrSpaceCastInst::AddrSpaceCastInst(
Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
}
AddrSpaceCastInst::AddrSpaceCastInst(
Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
}
//===----------------------------------------------------------------------===//
// CmpInst Classes
//===----------------------------------------------------------------------===//
void CmpInst::anchor() {}
CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
Value *LHS, Value *RHS, const Twine &Name,
Instruction *InsertBefore)
: Instruction(ty, op,
OperandTraits<CmpInst>::op_begin(this),
OperandTraits<CmpInst>::operands(this),
InsertBefore) {
Op<0>() = LHS;
Op<1>() = RHS;
setPredicate((Predicate)predicate);
setName(Name);
}
CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
Value *LHS, Value *RHS, const Twine &Name,
BasicBlock *InsertAtEnd)
: Instruction(ty, op,
OperandTraits<CmpInst>::op_begin(this),
OperandTraits<CmpInst>::operands(this),
InsertAtEnd) {
Op<0>() = LHS;
Op<1>() = RHS;
setPredicate((Predicate)predicate);
setName(Name);
}
CmpInst *
CmpInst::Create(OtherOps Op, unsigned short predicate,
Value *S1, Value *S2,
const Twine &Name, Instruction *InsertBefore) {
if (Op == Instruction::ICmp) {
if (InsertBefore)
return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
S1, S2, Name);
else
return new ICmpInst(CmpInst::Predicate(predicate),
S1, S2, Name);
}
if (InsertBefore)
return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
S1, S2, Name);
else
return new FCmpInst(CmpInst::Predicate(predicate),
S1, S2, Name);
}
CmpInst *
CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
const Twine &Name, BasicBlock *InsertAtEnd) {
if (Op == Instruction::ICmp) {
return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
S1, S2, Name);
}
return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
S1, S2, Name);
}
void CmpInst::swapOperands() {
if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
IC->swapOperands();
else
cast<FCmpInst>(this)->swapOperands();
}
bool CmpInst::isCommutative() const {
if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
return IC->isCommutative();
return cast<FCmpInst>(this)->isCommutative();
}
bool CmpInst::isEquality() const {
if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
return IC->isEquality();
return cast<FCmpInst>(this)->isEquality();
}
CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
switch (pred) {
default: llvm_unreachable("Unknown cmp predicate!");
case ICMP_EQ: return ICMP_NE;
case ICMP_NE: return ICMP_EQ;
case ICMP_UGT: return ICMP_ULE;
case ICMP_ULT: return ICMP_UGE;
case ICMP_UGE: return ICMP_ULT;
case ICMP_ULE: return ICMP_UGT;
case ICMP_SGT: return ICMP_SLE;
case ICMP_SLT: return ICMP_SGE;
case ICMP_SGE: return ICMP_SLT;
case ICMP_SLE: return ICMP_SGT;
case FCMP_OEQ: return FCMP_UNE;
case FCMP_ONE: return FCMP_UEQ;
case FCMP_OGT: return FCMP_ULE;
case FCMP_OLT: return FCMP_UGE;
case FCMP_OGE: return FCMP_ULT;
case FCMP_OLE: return FCMP_UGT;
case FCMP_UEQ: return FCMP_ONE;
case FCMP_UNE: return FCMP_OEQ;
case FCMP_UGT: return FCMP_OLE;
case FCMP_ULT: return FCMP_OGE;
case FCMP_UGE: return FCMP_OLT;
case FCMP_ULE: return FCMP_OGT;
case FCMP_ORD: return FCMP_UNO;
case FCMP_UNO: return FCMP_ORD;
case FCMP_TRUE: return FCMP_FALSE;
case FCMP_FALSE: return FCMP_TRUE;
}
}
ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
switch (pred) {
default: llvm_unreachable("Unknown icmp predicate!");
case ICMP_EQ: case ICMP_NE:
case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
return pred;
case ICMP_UGT: return ICMP_SGT;
case ICMP_ULT: return ICMP_SLT;
case ICMP_UGE: return ICMP_SGE;
case ICMP_ULE: return ICMP_SLE;
}
}
ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
switch (pred) {
default: llvm_unreachable("Unknown icmp predicate!");
case ICMP_EQ: case ICMP_NE:
case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
return pred;
case ICMP_SGT: return ICMP_UGT;
case ICMP_SLT: return ICMP_ULT;
case ICMP_SGE: return ICMP_UGE;
case ICMP_SLE: return ICMP_ULE;
}
}
/// Initialize a set of values that all satisfy the condition with C.
///
ConstantRange
ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
APInt Lower(C);
APInt Upper(C);
uint32_t BitWidth = C.getBitWidth();
switch (pred) {
default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
case ICmpInst::ICMP_EQ: ++Upper; break;
case ICmpInst::ICMP_NE: ++Lower; break;
case ICmpInst::ICMP_ULT:
Lower = APInt::getMinValue(BitWidth);
// Check for an empty-set condition.
if (Lower == Upper)
return ConstantRange(BitWidth, /*isFullSet=*/false);
break;
case ICmpInst::ICMP_SLT:
Lower = APInt::getSignedMinValue(BitWidth);
// Check for an empty-set condition.
if (Lower == Upper)
return ConstantRange(BitWidth, /*isFullSet=*/false);
break;
case ICmpInst::ICMP_UGT:
++Lower; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
// Check for an empty-set condition.
if (Lower == Upper)
return ConstantRange(BitWidth, /*isFullSet=*/false);
break;
case ICmpInst::ICMP_SGT:
++Lower; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
// Check for an empty-set condition.
if (Lower == Upper)
return ConstantRange(BitWidth, /*isFullSet=*/false);
break;
case ICmpInst::ICMP_ULE:
Lower = APInt::getMinValue(BitWidth); ++Upper;
// Check for a full-set condition.
if (Lower == Upper)
return ConstantRange(BitWidth, /*isFullSet=*/true);
break;
case ICmpInst::ICMP_SLE:
Lower = APInt::getSignedMinValue(BitWidth); ++Upper;
// Check for a full-set condition.
if (Lower == Upper)
return ConstantRange(BitWidth, /*isFullSet=*/true);
break;
case ICmpInst::ICMP_UGE:
Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
// Check for a full-set condition.
if (Lower == Upper)
return ConstantRange(BitWidth, /*isFullSet=*/true);
break;
case ICmpInst::ICMP_SGE:
Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
// Check for a full-set condition.
if (Lower == Upper)
return ConstantRange(BitWidth, /*isFullSet=*/true);
break;
}
return ConstantRange(Lower, Upper);
}
CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
switch (pred) {
default: llvm_unreachable("Unknown cmp predicate!");
case ICMP_EQ: case ICMP_NE:
return pred;
case ICMP_SGT: return ICMP_SLT;
case ICMP_SLT: return ICMP_SGT;
case ICMP_SGE: return ICMP_SLE;
case ICMP_SLE: return ICMP_SGE;
case ICMP_UGT: return ICMP_ULT;
case ICMP_ULT: return ICMP_UGT;
case ICMP_UGE: return ICMP_ULE;
case ICMP_ULE: return ICMP_UGE;
case FCMP_FALSE: case FCMP_TRUE:
case FCMP_OEQ: case FCMP_ONE:
case FCMP_UEQ: case FCMP_UNE:
case FCMP_ORD: case FCMP_UNO:
return pred;
case FCMP_OGT: return FCMP_OLT;
case FCMP_OLT: return FCMP_OGT;
case FCMP_OGE: return FCMP_OLE;
case FCMP_OLE: return FCMP_OGE;
case FCMP_UGT: return FCMP_ULT;
case FCMP_ULT: return FCMP_UGT;
case FCMP_UGE: return FCMP_ULE;
case FCMP_ULE: return FCMP_UGE;
}
}
bool CmpInst::isUnsigned(unsigned short predicate) {
switch (predicate) {
default: return false;
case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE: return true;
}
}
bool CmpInst::isSigned(unsigned short predicate) {
switch (predicate) {
default: return false;
case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE: return true;
}
}
bool CmpInst::isOrdered(unsigned short predicate) {
switch (predicate) {
default: return false;
case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
case FCmpInst::FCMP_ORD: return true;
}
}
bool CmpInst::isUnordered(unsigned short predicate) {
switch (predicate) {
default: return false;
case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
case FCmpInst::FCMP_UNO: return true;
}
}
bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
switch(predicate) {
default: return false;
case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
}
}
bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
switch(predicate) {
case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
default: return false;
}
}
//===----------------------------------------------------------------------===//
// SwitchInst Implementation
//===----------------------------------------------------------------------===//
void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
assert(Value && Default && NumReserved);
ReservedSpace = NumReserved;
NumOperands = 2;
OperandList = allocHungoffUses(ReservedSpace);
OperandList[0] = Value;
OperandList[1] = Default;
}
/// SwitchInst ctor - Create a new switch instruction, specifying a value to
/// switch on and a default destination. The number of additional cases can
/// be specified here to make memory allocation more efficient. This
/// constructor can also autoinsert before another instruction.
SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
Instruction *InsertBefore)
: TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
nullptr, 0, InsertBefore) {
init(Value, Default, 2+NumCases*2);
}
/// SwitchInst ctor - Create a new switch instruction, specifying a value to
/// switch on and a default destination. The number of additional cases can
/// be specified here to make memory allocation more efficient. This
/// constructor also autoinserts at the end of the specified BasicBlock.
SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
BasicBlock *InsertAtEnd)
: TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
nullptr, 0, InsertAtEnd) {
init(Value, Default, 2+NumCases*2);
}
SwitchInst::SwitchInst(const SwitchInst &SI)
: TerminatorInst(SI.getType(), Instruction::Switch, nullptr, 0) {
init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
NumOperands = SI.getNumOperands();
Use *OL = OperandList, *InOL = SI.OperandList;
for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
OL[i] = InOL[i];
OL[i+1] = InOL[i+1];
}
SubclassOptionalData = SI.SubclassOptionalData;
}
SwitchInst::~SwitchInst() {
dropHungoffUses();
}
/// addCase - Add an entry to the switch instruction...
///
void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
unsigned NewCaseIdx = getNumCases();
unsigned OpNo = NumOperands;
if (OpNo+2 > ReservedSpace)
growOperands(); // Get more space!
// Initialize some new operands.
assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
NumOperands = OpNo+2;
CaseIt Case(this, NewCaseIdx);
Case.setValue(OnVal);
Case.setSuccessor(Dest);
}
/// removeCase - This method removes the specified case and its successor
/// from the switch instruction.
void SwitchInst::removeCase(CaseIt i) {
unsigned idx = i.getCaseIndex();
assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
unsigned NumOps = getNumOperands();
Use *OL = OperandList;
// Overwrite this case with the end of the list.
if (2 + (idx + 1) * 2 != NumOps) {
OL[2 + idx * 2] = OL[NumOps - 2];
OL[2 + idx * 2 + 1] = OL[NumOps - 1];
}
// Nuke the last value.
OL[NumOps-2].set(nullptr);
OL[NumOps-2+1].set(nullptr);
NumOperands = NumOps-2;
}
/// growOperands - grow operands - This grows the operand list in response
/// to a push_back style of operation. This grows the number of ops by 3 times.
///
void SwitchInst::growOperands() {
unsigned e = getNumOperands();
unsigned NumOps = e*3;
ReservedSpace = NumOps;
Use *NewOps = allocHungoffUses(NumOps);
Use *OldOps = OperandList;
for (unsigned i = 0; i != e; ++i) {
NewOps[i] = OldOps[i];
}
OperandList = NewOps;
Use::zap(OldOps, OldOps + e, true);
}
BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
return getSuccessor(idx);
}
unsigned SwitchInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
setSuccessor(idx, B);
}
//===----------------------------------------------------------------------===//
// IndirectBrInst Implementation
//===----------------------------------------------------------------------===//
void IndirectBrInst::init(Value *Address, unsigned NumDests) {
assert(Address && Address->getType()->isPointerTy() &&
"Address of indirectbr must be a pointer");
ReservedSpace = 1+NumDests;
NumOperands = 1;
OperandList = allocHungoffUses(ReservedSpace);
OperandList[0] = Address;
}
/// growOperands - grow operands - This grows the operand list in response
/// to a push_back style of operation. This grows the number of ops by 2 times.
///
void IndirectBrInst::growOperands() {
unsigned e = getNumOperands();
unsigned NumOps = e*2;
ReservedSpace = NumOps;
Use *NewOps = allocHungoffUses(NumOps);
Use *OldOps = OperandList;
for (unsigned i = 0; i != e; ++i)
NewOps[i] = OldOps[i];
OperandList = NewOps;
Use::zap(OldOps, OldOps + e, true);
}
IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
Instruction *InsertBefore)
: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
nullptr, 0, InsertBefore) {
init(Address, NumCases);
}
IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
BasicBlock *InsertAtEnd)
: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
nullptr, 0, InsertAtEnd) {
init(Address, NumCases);
}
IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
: TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
allocHungoffUses(IBI.getNumOperands()),
IBI.getNumOperands()) {
Use *OL = OperandList, *InOL = IBI.OperandList;
for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
OL[i] = InOL[i];
SubclassOptionalData = IBI.SubclassOptionalData;
}
IndirectBrInst::~IndirectBrInst() {
dropHungoffUses();
}
/// addDestination - Add a destination.
///
void IndirectBrInst::addDestination(BasicBlock *DestBB) {
unsigned OpNo = NumOperands;
if (OpNo+1 > ReservedSpace)
growOperands(); // Get more space!
// Initialize some new operands.
assert(OpNo < ReservedSpace && "Growing didn't work!");
NumOperands = OpNo+1;
OperandList[OpNo] = DestBB;
}
/// removeDestination - This method removes the specified successor from the
/// indirectbr instruction.
void IndirectBrInst::removeDestination(unsigned idx) {
assert(idx < getNumOperands()-1 && "Successor index out of range!");
unsigned NumOps = getNumOperands();
Use *OL = OperandList;
// Replace this value with the last one.
OL[idx+1] = OL[NumOps-1];
// Nuke the last value.
OL[NumOps-1].set(nullptr);
NumOperands = NumOps-1;
}
BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
return getSuccessor(idx);
}
unsigned IndirectBrInst::getNumSuccessorsV() const {
return getNumSuccessors();
}
void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
setSuccessor(idx, B);
}
//===----------------------------------------------------------------------===//
// clone_impl() implementations
//===----------------------------------------------------------------------===//
// Define these methods here so vtables don't get emitted into every translation
// unit that uses these classes.
GetElementPtrInst *GetElementPtrInst::clone_impl() const {
return new (getNumOperands()) GetElementPtrInst(*this);
}
BinaryOperator *BinaryOperator::clone_impl() const {
return Create(getOpcode(), Op<0>(), Op<1>());
}
FCmpInst* FCmpInst::clone_impl() const {
return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
}
ICmpInst* ICmpInst::clone_impl() const {
return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
}
ExtractValueInst *ExtractValueInst::clone_impl() const {
return new ExtractValueInst(*this);
}
InsertValueInst *InsertValueInst::clone_impl() const {
return new InsertValueInst(*this);
}
AllocaInst *AllocaInst::clone_impl() const {
AllocaInst *Result = new AllocaInst(getAllocatedType(),
(Value *)getOperand(0), getAlignment());
Result->setUsedWithInAlloca(isUsedWithInAlloca());
return Result;
}
LoadInst *LoadInst::clone_impl() const {
return new LoadInst(getOperand(0), Twine(), isVolatile(),
getAlignment(), getOrdering(), getSynchScope());
}
StoreInst *StoreInst::clone_impl() const {
return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
getAlignment(), getOrdering(), getSynchScope());
}
AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const {
AtomicCmpXchgInst *Result =
new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
getSuccessOrdering(), getFailureOrdering(),
getSynchScope());
Result->setVolatile(isVolatile());
Result->setWeak(isWeak());
return Result;
}
AtomicRMWInst *AtomicRMWInst::clone_impl() const {
AtomicRMWInst *Result =
new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
getOrdering(), getSynchScope());
Result->setVolatile(isVolatile());
return Result;
}
FenceInst *FenceInst::clone_impl() const {
return new FenceInst(getContext(), getOrdering(), getSynchScope());
}
TruncInst *TruncInst::clone_impl() const {
return new TruncInst(getOperand(0), getType());
}
ZExtInst *ZExtInst::clone_impl() const {
return new ZExtInst(getOperand(0), getType());
}
SExtInst *SExtInst::clone_impl() const {
return new SExtInst(getOperand(0), getType());
}
FPTruncInst *FPTruncInst::clone_impl() const {
return new FPTruncInst(getOperand(0), getType());
}
FPExtInst *FPExtInst::clone_impl() const {
return new FPExtInst(getOperand(0), getType());
}
UIToFPInst *UIToFPInst::clone_impl() const {
return new UIToFPInst(getOperand(0), getType());
}
SIToFPInst *SIToFPInst::clone_impl() const {
return new SIToFPInst(getOperand(0), getType());
}
FPToUIInst *FPToUIInst::clone_impl() const {
return new FPToUIInst(getOperand(0), getType());
}
FPToSIInst *FPToSIInst::clone_impl() const {
return new FPToSIInst(getOperand(0), getType());
}
PtrToIntInst *PtrToIntInst::clone_impl() const {
return new PtrToIntInst(getOperand(0), getType());
}
IntToPtrInst *IntToPtrInst::clone_impl() const {
return new IntToPtrInst(getOperand(0), getType());
}
BitCastInst *BitCastInst::clone_impl() const {
return new BitCastInst(getOperand(0), getType());
}
AddrSpaceCastInst *AddrSpaceCastInst::clone_impl() const {
return new AddrSpaceCastInst(getOperand(0), getType());
}
CallInst *CallInst::clone_impl() const {
return new(getNumOperands()) CallInst(*this);
}
SelectInst *SelectInst::clone_impl() const {
return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
}
VAArgInst *VAArgInst::clone_impl() const {
return new VAArgInst(getOperand(0), getType());
}
ExtractElementInst *ExtractElementInst::clone_impl() const {
return ExtractElementInst::Create(getOperand(0), getOperand(1));
}
InsertElementInst *InsertElementInst::clone_impl() const {
return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
}
ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
}
PHINode *PHINode::clone_impl() const {
return new PHINode(*this);
}
LandingPadInst *LandingPadInst::clone_impl() const {
return new LandingPadInst(*this);
}
ReturnInst *ReturnInst::clone_impl() const {
return new(getNumOperands()) ReturnInst(*this);
}
BranchInst *BranchInst::clone_impl() const {
return new(getNumOperands()) BranchInst(*this);
}
SwitchInst *SwitchInst::clone_impl() const {
return new SwitchInst(*this);
}
IndirectBrInst *IndirectBrInst::clone_impl() const {
return new IndirectBrInst(*this);
}
InvokeInst *InvokeInst::clone_impl() const {
return new(getNumOperands()) InvokeInst(*this);
}
ResumeInst *ResumeInst::clone_impl() const {
return new(1) ResumeInst(*this);
}
UnreachableInst *UnreachableInst::clone_impl() const {
LLVMContext &Context = getContext();
return new UnreachableInst(Context);
}