llvm/lib/CodeGen/LiveVariables.cpp
2006-07-21 21:15:20 +00:00

418 lines
16 KiB
C++

//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveVariable analysis pass. For each machine
// instruction in the function, this pass calculates the set of registers that
// are immediately dead after the instruction (i.e., the instruction calculates
// the value, but it is never used) and the set of registers that are used by
// the instruction, but are never used after the instruction (i.e., they are
// killed).
//
// This class computes live variables using are sparse implementation based on
// the machine code SSA form. This class computes live variable information for
// each virtual and _register allocatable_ physical register in a function. It
// uses the dominance properties of SSA form to efficiently compute live
// variables for virtual registers, and assumes that physical registers are only
// live within a single basic block (allowing it to do a single local analysis
// to resolve physical register lifetimes in each basic block). If a physical
// register is not register allocatable, it is not tracked. This is useful for
// things like the stack pointer and condition codes.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/alloca.h"
#include <algorithm>
#include <iostream>
using namespace llvm;
static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis");
void LiveVariables::VarInfo::dump() const {
std::cerr << "Register Defined by: ";
if (DefInst)
std::cerr << *DefInst;
else
std::cerr << "<null>\n";
std::cerr << " Alive in blocks: ";
for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i)
if (AliveBlocks[i]) std::cerr << i << ", ";
std::cerr << "\n Killed by:";
if (Kills.empty())
std::cerr << " No instructions.\n";
else {
for (unsigned i = 0, e = Kills.size(); i != e; ++i)
std::cerr << "\n #" << i << ": " << *Kills[i];
std::cerr << "\n";
}
}
LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
assert(MRegisterInfo::isVirtualRegister(RegIdx) &&
"getVarInfo: not a virtual register!");
RegIdx -= MRegisterInfo::FirstVirtualRegister;
if (RegIdx >= VirtRegInfo.size()) {
if (RegIdx >= 2*VirtRegInfo.size())
VirtRegInfo.resize(RegIdx*2);
else
VirtRegInfo.resize(2*VirtRegInfo.size());
}
return VirtRegInfo[RegIdx];
}
bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const {
std::map<MachineInstr*, std::vector<unsigned> >::const_iterator I =
RegistersKilled.find(MI);
if (I == RegistersKilled.end()) return false;
// Do a binary search, as these lists can grow pretty big, particularly for
// call instructions on targets with lots of call-clobbered registers.
return std::binary_search(I->second.begin(), I->second.end(), Reg);
}
bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const {
std::map<MachineInstr*, std::vector<unsigned> >::const_iterator I =
RegistersDead.find(MI);
if (I == RegistersDead.end()) return false;
// Do a binary search, as these lists can grow pretty big, particularly for
// call instructions on targets with lots of call-clobbered registers.
return std::binary_search(I->second.begin(), I->second.end(), Reg);
}
void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
MachineBasicBlock *MBB) {
unsigned BBNum = MBB->getNumber();
// Check to see if this basic block is one of the killing blocks. If so,
// remove it...
for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
if (VRInfo.Kills[i]->getParent() == MBB) {
VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry
break;
}
if (MBB == VRInfo.DefInst->getParent()) return; // Terminate recursion
if (VRInfo.AliveBlocks.size() <= BBNum)
VRInfo.AliveBlocks.resize(BBNum+1); // Make space...
if (VRInfo.AliveBlocks[BBNum])
return; // We already know the block is live
// Mark the variable known alive in this bb
VRInfo.AliveBlocks[BBNum] = true;
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
E = MBB->pred_end(); PI != E; ++PI)
MarkVirtRegAliveInBlock(VRInfo, *PI);
}
void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
MachineInstr *MI) {
assert(VRInfo.DefInst && "Register use before def!");
// Check to see if this basic block is already a kill block...
if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
// Yes, this register is killed in this basic block already. Increase the
// live range by updating the kill instruction.
VRInfo.Kills.back() = MI;
return;
}
#ifndef NDEBUG
for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
#endif
assert(MBB != VRInfo.DefInst->getParent() &&
"Should have kill for defblock!");
// Add a new kill entry for this basic block.
VRInfo.Kills.push_back(MI);
// Update all dominating blocks to mark them known live.
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
E = MBB->pred_end(); PI != E; ++PI)
MarkVirtRegAliveInBlock(VRInfo, *PI);
}
void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
PhysRegInfo[Reg] = MI;
PhysRegUsed[Reg] = true;
for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
unsigned Alias = *AliasSet; ++AliasSet) {
PhysRegInfo[Alias] = MI;
PhysRegUsed[Alias] = true;
}
}
void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
// Does this kill a previous version of this register?
if (MachineInstr *LastUse = PhysRegInfo[Reg]) {
if (PhysRegUsed[Reg])
RegistersKilled[LastUse].push_back(Reg);
else
RegistersDead[LastUse].push_back(Reg);
}
PhysRegInfo[Reg] = MI;
PhysRegUsed[Reg] = false;
for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
unsigned Alias = *AliasSet; ++AliasSet) {
if (MachineInstr *LastUse = PhysRegInfo[Alias]) {
if (PhysRegUsed[Alias])
RegistersKilled[LastUse].push_back(Alias);
else
RegistersDead[LastUse].push_back(Alias);
}
PhysRegInfo[Alias] = MI;
PhysRegUsed[Alias] = false;
}
}
bool LiveVariables::runOnMachineFunction(MachineFunction &MF) {
const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
RegInfo = MF.getTarget().getRegisterInfo();
assert(RegInfo && "Target doesn't have register information?");
AllocatablePhysicalRegisters = RegInfo->getAllocatableSet(MF);
// PhysRegInfo - Keep track of which instruction was the last use of a
// physical register. This is a purely local property, because all physical
// register references as presumed dead across basic blocks.
//
PhysRegInfo = (MachineInstr**)alloca(sizeof(MachineInstr*) *
RegInfo->getNumRegs());
PhysRegUsed = (bool*)alloca(sizeof(bool)*RegInfo->getNumRegs());
std::fill(PhysRegInfo, PhysRegInfo+RegInfo->getNumRegs(), (MachineInstr*)0);
/// Get some space for a respectable number of registers...
VirtRegInfo.resize(64);
// Mark live-in registers as live-in.
for (MachineFunction::livein_iterator I = MF.livein_begin(),
E = MF.livein_end(); I != E; ++I) {
assert(MRegisterInfo::isPhysicalRegister(I->first) &&
"Cannot have a live-in virtual register!");
HandlePhysRegDef(I->first, 0);
}
// Calculate live variable information in depth first order on the CFG of the
// function. This guarantees that we will see the definition of a virtual
// register before its uses due to dominance properties of SSA (except for PHI
// nodes, which are treated as a special case).
//
MachineBasicBlock *Entry = MF.begin();
std::set<MachineBasicBlock*> Visited;
for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited),
E = df_ext_end(Entry, Visited); DFI != E; ++DFI) {
MachineBasicBlock *MBB = *DFI;
unsigned BBNum = MBB->getNumber();
// Loop over all of the instructions, processing them.
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
I != E; ++I) {
MachineInstr *MI = I;
const TargetInstrDescriptor &MID = TII.get(MI->getOpcode());
// Process all of the operands of the instruction...
unsigned NumOperandsToProcess = MI->getNumOperands();
// Unless it is a PHI node. In this case, ONLY process the DEF, not any
// of the uses. They will be handled in other basic blocks.
if (MI->getOpcode() == TargetInstrInfo::PHI)
NumOperandsToProcess = 1;
// Loop over implicit uses, using them.
if (MID.ImplicitUses) {
for (const unsigned *ImplicitUses = MID.ImplicitUses;
*ImplicitUses; ++ImplicitUses)
HandlePhysRegUse(*ImplicitUses, MI);
}
// Process all explicit uses...
for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isUse() && MO.isRegister() && MO.getReg()) {
if (MRegisterInfo::isVirtualRegister(MO.getReg())){
HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
} else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
AllocatablePhysicalRegisters[MO.getReg()]) {
HandlePhysRegUse(MO.getReg(), MI);
}
}
}
// Loop over implicit defs, defining them.
if (MID.ImplicitDefs) {
for (const unsigned *ImplicitDefs = MID.ImplicitDefs;
*ImplicitDefs; ++ImplicitDefs)
HandlePhysRegDef(*ImplicitDefs, MI);
}
// Process all explicit defs...
for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (MO.isDef() && MO.isRegister() && MO.getReg()) {
if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
VarInfo &VRInfo = getVarInfo(MO.getReg());
assert(VRInfo.DefInst == 0 && "Variable multiply defined!");
VRInfo.DefInst = MI;
// Defaults to dead
VRInfo.Kills.push_back(MI);
} else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
AllocatablePhysicalRegisters[MO.getReg()]) {
HandlePhysRegDef(MO.getReg(), MI);
}
}
}
}
// Handle any virtual assignments from PHI nodes which might be at the
// bottom of this basic block. We check all of our successor blocks to see
// if they have PHI nodes, and if so, we simulate an assignment at the end
// of the current block.
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
E = MBB->succ_end(); SI != E; ++SI) {
MachineBasicBlock *Succ = *SI;
// PHI nodes are guaranteed to be at the top of the block...
for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end();
MI != ME && MI->getOpcode() == TargetInstrInfo::PHI; ++MI) {
for (unsigned i = 1; ; i += 2) {
assert(MI->getNumOperands() > i+1 &&
"Didn't find an entry for our predecessor??");
if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) {
MachineOperand &MO = MI->getOperand(i);
VarInfo &VRInfo = getVarInfo(MO.getReg());
assert(VRInfo.DefInst && "Register use before def (or no def)!");
// Only mark it alive only in the block we are representing.
MarkVirtRegAliveInBlock(VRInfo, MBB);
break; // Found the PHI entry for this block.
}
}
}
}
// Finally, if the last block in the function is a return, make sure to mark
// it as using all of the live-out values in the function.
if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) {
MachineInstr *Ret = &MBB->back();
for (MachineFunction::liveout_iterator I = MF.liveout_begin(),
E = MF.liveout_end(); I != E; ++I) {
assert(MRegisterInfo::isPhysicalRegister(*I) &&
"Cannot have a live-in virtual register!");
HandlePhysRegUse(*I, Ret);
}
}
// Loop over PhysRegInfo, killing any registers that are available at the
// end of the basic block. This also resets the PhysRegInfo map.
for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
if (PhysRegInfo[i])
HandlePhysRegDef(i, 0);
}
// Convert the information we have gathered into VirtRegInfo and transform it
// into a form usable by RegistersKilled.
//
for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i)
for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) {
if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst)
RegistersDead[VirtRegInfo[i].Kills[j]].push_back(
i + MRegisterInfo::FirstVirtualRegister);
else
RegistersKilled[VirtRegInfo[i].Kills[j]].push_back(
i + MRegisterInfo::FirstVirtualRegister);
}
// Walk through the RegistersKilled/Dead sets, and sort the registers killed
// or dead. This allows us to use efficient binary search for membership
// testing.
for (std::map<MachineInstr*, std::vector<unsigned> >::iterator
I = RegistersKilled.begin(), E = RegistersKilled.end(); I != E; ++I)
std::sort(I->second.begin(), I->second.end());
for (std::map<MachineInstr*, std::vector<unsigned> >::iterator
I = RegistersDead.begin(), E = RegistersDead.end(); I != E; ++I)
std::sort(I->second.begin(), I->second.end());
// Check to make sure there are no unreachable blocks in the MC CFG for the
// function. If so, it is due to a bug in the instruction selector or some
// other part of the code generator if this happens.
#ifndef NDEBUG
for(MachineFunction::iterator i = MF.begin(), e = MF.end(); i != e; ++i)
assert(Visited.count(&*i) != 0 && "unreachable basic block found");
#endif
return false;
}
/// instructionChanged - When the address of an instruction changes, this
/// method should be called so that live variables can update its internal
/// data structures. This removes the records for OldMI, transfering them to
/// the records for NewMI.
void LiveVariables::instructionChanged(MachineInstr *OldMI,
MachineInstr *NewMI) {
// If the instruction defines any virtual registers, update the VarInfo for
// the instruction.
for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = OldMI->getOperand(i);
if (MO.isRegister() && MO.getReg() &&
MRegisterInfo::isVirtualRegister(MO.getReg())) {
unsigned Reg = MO.getReg();
VarInfo &VI = getVarInfo(Reg);
if (MO.isDef()) {
// Update the defining instruction.
if (VI.DefInst == OldMI)
VI.DefInst = NewMI;
}
if (MO.isUse()) {
// If this is a kill of the value, update the VI kills list.
if (VI.removeKill(OldMI))
VI.Kills.push_back(NewMI); // Yes, there was a kill of it
}
}
}
// Move the killed information over...
killed_iterator I, E;
tie(I, E) = killed_range(OldMI);
if (I != E) {
std::vector<unsigned> &V = RegistersKilled[NewMI];
bool WasEmpty = V.empty();
V.insert(V.end(), I, E);
if (!WasEmpty)
std::sort(V.begin(), V.end()); // Keep the reg list sorted.
RegistersKilled.erase(OldMI);
}
// Move the dead information over...
tie(I, E) = dead_range(OldMI);
if (I != E) {
std::vector<unsigned> &V = RegistersDead[NewMI];
bool WasEmpty = V.empty();
V.insert(V.end(), I, E);
if (!WasEmpty)
std::sort(V.begin(), V.end()); // Keep the reg list sorted.
RegistersDead.erase(OldMI);
}
}