mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-01 01:14:12 +00:00
6a5a667517
Including following 14 instructions: 4 ld1 insts: load multiple 1-element structure to sequential 1/2/3/4 registers. ld2/ld3/ld4: load multiple N-element structure to sequential N registers (N=2,3,4). 4 st1 insts: store multiple 1-element structure from sequential 1/2/3/4 registers. st2/st3/st4: store multiple N-element structure from sequential N registers (N = 2,3,4). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192361 91177308-0d34-0410-b5e6-96231b3b80d8
859 lines
33 KiB
C++
859 lines
33 KiB
C++
//===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines an instruction selector for the AArch64 target.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "aarch64-isel"
|
|
#include "AArch64.h"
|
|
#include "AArch64InstrInfo.h"
|
|
#include "AArch64Subtarget.h"
|
|
#include "AArch64TargetMachine.h"
|
|
#include "Utils/AArch64BaseInfo.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// AArch64 specific code to select AArch64 machine instructions for
|
|
/// SelectionDAG operations.
|
|
///
|
|
namespace {
|
|
|
|
class AArch64DAGToDAGISel : public SelectionDAGISel {
|
|
AArch64TargetMachine &TM;
|
|
|
|
/// Keep a pointer to the AArch64Subtarget around so that we can
|
|
/// make the right decision when generating code for different targets.
|
|
const AArch64Subtarget *Subtarget;
|
|
|
|
public:
|
|
explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm,
|
|
CodeGenOpt::Level OptLevel)
|
|
: SelectionDAGISel(tm, OptLevel), TM(tm),
|
|
Subtarget(&TM.getSubtarget<AArch64Subtarget>()) {
|
|
}
|
|
|
|
virtual const char *getPassName() const {
|
|
return "AArch64 Instruction Selection";
|
|
}
|
|
|
|
// Include the pieces autogenerated from the target description.
|
|
#include "AArch64GenDAGISel.inc"
|
|
|
|
template<unsigned MemSize>
|
|
bool SelectOffsetUImm12(SDValue N, SDValue &UImm12) {
|
|
const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
|
|
if (!CN || CN->getZExtValue() % MemSize != 0
|
|
|| CN->getZExtValue() / MemSize > 0xfff)
|
|
return false;
|
|
|
|
UImm12 = CurDAG->getTargetConstant(CN->getZExtValue() / MemSize, MVT::i64);
|
|
return true;
|
|
}
|
|
|
|
template<unsigned RegWidth>
|
|
bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) {
|
|
return SelectCVTFixedPosOperand(N, FixedPos, RegWidth);
|
|
}
|
|
|
|
/// Used for pre-lowered address-reference nodes, so we already know
|
|
/// the fields match. This operand's job is simply to add an
|
|
/// appropriate shift operand to the MOVZ/MOVK instruction.
|
|
template<unsigned LogShift>
|
|
bool SelectMOVWAddressRef(SDValue N, SDValue &Imm, SDValue &Shift) {
|
|
Imm = N;
|
|
Shift = CurDAG->getTargetConstant(LogShift, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool SelectFPZeroOperand(SDValue N, SDValue &Dummy);
|
|
|
|
bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
|
|
unsigned RegWidth);
|
|
|
|
bool SelectInlineAsmMemoryOperand(const SDValue &Op,
|
|
char ConstraintCode,
|
|
std::vector<SDValue> &OutOps);
|
|
|
|
bool SelectLogicalImm(SDValue N, SDValue &Imm);
|
|
|
|
template<unsigned RegWidth>
|
|
bool SelectTSTBOperand(SDValue N, SDValue &FixedPos) {
|
|
return SelectTSTBOperand(N, FixedPos, RegWidth);
|
|
}
|
|
|
|
bool SelectTSTBOperand(SDValue N, SDValue &FixedPos, unsigned RegWidth);
|
|
|
|
SDNode *SelectAtomic(SDNode *N, unsigned Op8, unsigned Op16, unsigned Op32,
|
|
unsigned Op64);
|
|
|
|
/// Put the given constant into a pool and return a DAG which will give its
|
|
/// address.
|
|
SDValue getConstantPoolItemAddress(SDLoc DL, const Constant *CV);
|
|
|
|
SDNode *TrySelectToMoveImm(SDNode *N);
|
|
SDNode *LowerToFPLitPool(SDNode *Node);
|
|
SDNode *SelectToLitPool(SDNode *N);
|
|
|
|
SDNode* Select(SDNode*);
|
|
private:
|
|
/// Select NEON load intrinsics. NumVecs should be 1, 2, 3 or 4.
|
|
SDNode *SelectVLD(SDNode *N, unsigned NumVecs, const uint16_t *Opcode);
|
|
|
|
/// Select NEON store intrinsics. NumVecs should be 1, 2, 3 or 4.
|
|
SDNode *SelectVST(SDNode *N, unsigned NumVecs, const uint16_t *Opcodes);
|
|
|
|
// Form pairs of consecutive 64-bit/128-bit registers.
|
|
SDNode *createDPairNode(SDValue V0, SDValue V1);
|
|
SDNode *createQPairNode(SDValue V0, SDValue V1);
|
|
|
|
// Form sequences of 3 consecutive 64-bit/128-bit registers.
|
|
SDNode *createDTripleNode(SDValue V0, SDValue V1, SDValue V2);
|
|
SDNode *createQTripleNode(SDValue V0, SDValue V1, SDValue V2);
|
|
|
|
// Form sequences of 4 consecutive 64-bit/128-bit registers.
|
|
SDNode *createDQuadNode(SDValue V0, SDValue V1, SDValue V2, SDValue V3);
|
|
SDNode *createQQuadNode(SDValue V0, SDValue V1, SDValue V2, SDValue V3);
|
|
};
|
|
}
|
|
|
|
bool
|
|
AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
|
|
unsigned RegWidth) {
|
|
const ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
|
|
if (!CN) return false;
|
|
|
|
// An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
|
|
// is between 1 and 32 for a destination w-register, or 1 and 64 for an
|
|
// x-register.
|
|
//
|
|
// By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
|
|
// want THIS_NODE to be 2^fbits. This is much easier to deal with using
|
|
// integers.
|
|
bool IsExact;
|
|
|
|
// fbits is between 1 and 64 in the worst-case, which means the fmul
|
|
// could have 2^64 as an actual operand. Need 65 bits of precision.
|
|
APSInt IntVal(65, true);
|
|
CN->getValueAPF().convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact);
|
|
|
|
// N.b. isPowerOf2 also checks for > 0.
|
|
if (!IsExact || !IntVal.isPowerOf2()) return false;
|
|
unsigned FBits = IntVal.logBase2();
|
|
|
|
// Checks above should have guaranteed that we haven't lost information in
|
|
// finding FBits, but it must still be in range.
|
|
if (FBits == 0 || FBits > RegWidth) return false;
|
|
|
|
FixedPos = CurDAG->getTargetConstant(64 - FBits, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(const SDValue &Op,
|
|
char ConstraintCode,
|
|
std::vector<SDValue> &OutOps) {
|
|
switch (ConstraintCode) {
|
|
default: llvm_unreachable("Unrecognised AArch64 memory constraint");
|
|
case 'm':
|
|
// FIXME: more freedom is actually permitted for 'm'. We can go
|
|
// hunting for a base and an offset if we want. Of course, since
|
|
// we don't really know how the operand is going to be used we're
|
|
// probably restricted to the load/store pair's simm7 as an offset
|
|
// range anyway.
|
|
case 'Q':
|
|
OutOps.push_back(Op);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
AArch64DAGToDAGISel::SelectFPZeroOperand(SDValue N, SDValue &Dummy) {
|
|
ConstantFPSDNode *Imm = dyn_cast<ConstantFPSDNode>(N);
|
|
if (!Imm || !Imm->getValueAPF().isPosZero())
|
|
return false;
|
|
|
|
// Doesn't actually carry any information, but keeps TableGen quiet.
|
|
Dummy = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool AArch64DAGToDAGISel::SelectLogicalImm(SDValue N, SDValue &Imm) {
|
|
uint32_t Bits;
|
|
uint32_t RegWidth = N.getValueType().getSizeInBits();
|
|
|
|
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
|
|
if (!CN) return false;
|
|
|
|
if (!A64Imms::isLogicalImm(RegWidth, CN->getZExtValue(), Bits))
|
|
return false;
|
|
|
|
Imm = CurDAG->getTargetConstant(Bits, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
SDNode *AArch64DAGToDAGISel::TrySelectToMoveImm(SDNode *Node) {
|
|
SDNode *ResNode;
|
|
SDLoc dl(Node);
|
|
EVT DestType = Node->getValueType(0);
|
|
unsigned DestWidth = DestType.getSizeInBits();
|
|
|
|
unsigned MOVOpcode;
|
|
EVT MOVType;
|
|
int UImm16, Shift;
|
|
uint32_t LogicalBits;
|
|
|
|
uint64_t BitPat = cast<ConstantSDNode>(Node)->getZExtValue();
|
|
if (A64Imms::isMOVZImm(DestWidth, BitPat, UImm16, Shift)) {
|
|
MOVType = DestType;
|
|
MOVOpcode = DestWidth == 64 ? AArch64::MOVZxii : AArch64::MOVZwii;
|
|
} else if (A64Imms::isMOVNImm(DestWidth, BitPat, UImm16, Shift)) {
|
|
MOVType = DestType;
|
|
MOVOpcode = DestWidth == 64 ? AArch64::MOVNxii : AArch64::MOVNwii;
|
|
} else if (DestWidth == 64 && A64Imms::isMOVNImm(32, BitPat, UImm16, Shift)) {
|
|
// To get something like 0x0000_0000_ffff_1234 into a 64-bit register we can
|
|
// use a 32-bit instruction: "movn w0, 0xedbc".
|
|
MOVType = MVT::i32;
|
|
MOVOpcode = AArch64::MOVNwii;
|
|
} else if (A64Imms::isLogicalImm(DestWidth, BitPat, LogicalBits)) {
|
|
MOVOpcode = DestWidth == 64 ? AArch64::ORRxxi : AArch64::ORRwwi;
|
|
uint16_t ZR = DestWidth == 64 ? AArch64::XZR : AArch64::WZR;
|
|
|
|
return CurDAG->getMachineNode(MOVOpcode, dl, DestType,
|
|
CurDAG->getRegister(ZR, DestType),
|
|
CurDAG->getTargetConstant(LogicalBits, MVT::i32));
|
|
} else {
|
|
// Can't handle it in one instruction. There's scope for permitting two (or
|
|
// more) instructions, but that'll need more thought.
|
|
return NULL;
|
|
}
|
|
|
|
ResNode = CurDAG->getMachineNode(MOVOpcode, dl, MOVType,
|
|
CurDAG->getTargetConstant(UImm16, MVT::i32),
|
|
CurDAG->getTargetConstant(Shift, MVT::i32));
|
|
|
|
if (MOVType != DestType) {
|
|
ResNode = CurDAG->getMachineNode(TargetOpcode::SUBREG_TO_REG, dl,
|
|
MVT::i64, MVT::i32, MVT::Other,
|
|
CurDAG->getTargetConstant(0, MVT::i64),
|
|
SDValue(ResNode, 0),
|
|
CurDAG->getTargetConstant(AArch64::sub_32, MVT::i32));
|
|
}
|
|
|
|
return ResNode;
|
|
}
|
|
|
|
SDValue
|
|
AArch64DAGToDAGISel::getConstantPoolItemAddress(SDLoc DL,
|
|
const Constant *CV) {
|
|
EVT PtrVT = getTargetLowering()->getPointerTy();
|
|
|
|
switch (getTargetLowering()->getTargetMachine().getCodeModel()) {
|
|
case CodeModel::Small: {
|
|
unsigned Alignment =
|
|
getTargetLowering()->getDataLayout()->getABITypeAlignment(CV->getType());
|
|
return CurDAG->getNode(
|
|
AArch64ISD::WrapperSmall, DL, PtrVT,
|
|
CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_NO_FLAG),
|
|
CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_LO12),
|
|
CurDAG->getConstant(Alignment, MVT::i32));
|
|
}
|
|
case CodeModel::Large: {
|
|
SDNode *LitAddr;
|
|
LitAddr = CurDAG->getMachineNode(
|
|
AArch64::MOVZxii, DL, PtrVT,
|
|
CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G3),
|
|
CurDAG->getTargetConstant(3, MVT::i32));
|
|
LitAddr = CurDAG->getMachineNode(
|
|
AArch64::MOVKxii, DL, PtrVT, SDValue(LitAddr, 0),
|
|
CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G2_NC),
|
|
CurDAG->getTargetConstant(2, MVT::i32));
|
|
LitAddr = CurDAG->getMachineNode(
|
|
AArch64::MOVKxii, DL, PtrVT, SDValue(LitAddr, 0),
|
|
CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G1_NC),
|
|
CurDAG->getTargetConstant(1, MVT::i32));
|
|
LitAddr = CurDAG->getMachineNode(
|
|
AArch64::MOVKxii, DL, PtrVT, SDValue(LitAddr, 0),
|
|
CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G0_NC),
|
|
CurDAG->getTargetConstant(0, MVT::i32));
|
|
return SDValue(LitAddr, 0);
|
|
}
|
|
default:
|
|
llvm_unreachable("Only small and large code models supported now");
|
|
}
|
|
}
|
|
|
|
SDNode *AArch64DAGToDAGISel::SelectToLitPool(SDNode *Node) {
|
|
SDLoc DL(Node);
|
|
uint64_t UnsignedVal = cast<ConstantSDNode>(Node)->getZExtValue();
|
|
int64_t SignedVal = cast<ConstantSDNode>(Node)->getSExtValue();
|
|
EVT DestType = Node->getValueType(0);
|
|
|
|
// Since we may end up loading a 64-bit constant from a 32-bit entry the
|
|
// constant in the pool may have a different type to the eventual node.
|
|
ISD::LoadExtType Extension;
|
|
EVT MemType;
|
|
|
|
assert((DestType == MVT::i64 || DestType == MVT::i32)
|
|
&& "Only expect integer constants at the moment");
|
|
|
|
if (DestType == MVT::i32) {
|
|
Extension = ISD::NON_EXTLOAD;
|
|
MemType = MVT::i32;
|
|
} else if (UnsignedVal <= UINT32_MAX) {
|
|
Extension = ISD::ZEXTLOAD;
|
|
MemType = MVT::i32;
|
|
} else if (SignedVal >= INT32_MIN && SignedVal <= INT32_MAX) {
|
|
Extension = ISD::SEXTLOAD;
|
|
MemType = MVT::i32;
|
|
} else {
|
|
Extension = ISD::NON_EXTLOAD;
|
|
MemType = MVT::i64;
|
|
}
|
|
|
|
Constant *CV = ConstantInt::get(Type::getIntNTy(*CurDAG->getContext(),
|
|
MemType.getSizeInBits()),
|
|
UnsignedVal);
|
|
SDValue PoolAddr = getConstantPoolItemAddress(DL, CV);
|
|
unsigned Alignment =
|
|
getTargetLowering()->getDataLayout()->getABITypeAlignment(CV->getType());
|
|
|
|
return CurDAG->getExtLoad(Extension, DL, DestType, CurDAG->getEntryNode(),
|
|
PoolAddr,
|
|
MachinePointerInfo::getConstantPool(), MemType,
|
|
/* isVolatile = */ false,
|
|
/* isNonTemporal = */ false,
|
|
Alignment).getNode();
|
|
}
|
|
|
|
SDNode *AArch64DAGToDAGISel::LowerToFPLitPool(SDNode *Node) {
|
|
SDLoc DL(Node);
|
|
const ConstantFP *FV = cast<ConstantFPSDNode>(Node)->getConstantFPValue();
|
|
EVT DestType = Node->getValueType(0);
|
|
|
|
unsigned Alignment =
|
|
getTargetLowering()->getDataLayout()->getABITypeAlignment(FV->getType());
|
|
SDValue PoolAddr = getConstantPoolItemAddress(DL, FV);
|
|
|
|
return CurDAG->getLoad(DestType, DL, CurDAG->getEntryNode(), PoolAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
/* isVolatile = */ false,
|
|
/* isNonTemporal = */ false,
|
|
/* isInvariant = */ true,
|
|
Alignment).getNode();
|
|
}
|
|
|
|
bool
|
|
AArch64DAGToDAGISel::SelectTSTBOperand(SDValue N, SDValue &FixedPos,
|
|
unsigned RegWidth) {
|
|
const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
|
|
if (!CN) return false;
|
|
|
|
uint64_t Val = CN->getZExtValue();
|
|
|
|
if (!isPowerOf2_64(Val)) return false;
|
|
|
|
unsigned TestedBit = Log2_64(Val);
|
|
// Checks above should have guaranteed that we haven't lost information in
|
|
// finding TestedBit, but it must still be in range.
|
|
if (TestedBit >= RegWidth) return false;
|
|
|
|
FixedPos = CurDAG->getTargetConstant(TestedBit, MVT::i64);
|
|
return true;
|
|
}
|
|
|
|
SDNode *AArch64DAGToDAGISel::SelectAtomic(SDNode *Node, unsigned Op8,
|
|
unsigned Op16,unsigned Op32,
|
|
unsigned Op64) {
|
|
// Mostly direct translation to the given operations, except that we preserve
|
|
// the AtomicOrdering for use later on.
|
|
AtomicSDNode *AN = cast<AtomicSDNode>(Node);
|
|
EVT VT = AN->getMemoryVT();
|
|
|
|
unsigned Op;
|
|
if (VT == MVT::i8)
|
|
Op = Op8;
|
|
else if (VT == MVT::i16)
|
|
Op = Op16;
|
|
else if (VT == MVT::i32)
|
|
Op = Op32;
|
|
else if (VT == MVT::i64)
|
|
Op = Op64;
|
|
else
|
|
llvm_unreachable("Unexpected atomic operation");
|
|
|
|
SmallVector<SDValue, 4> Ops;
|
|
for (unsigned i = 1; i < AN->getNumOperands(); ++i)
|
|
Ops.push_back(AN->getOperand(i));
|
|
|
|
Ops.push_back(CurDAG->getTargetConstant(AN->getOrdering(), MVT::i32));
|
|
Ops.push_back(AN->getOperand(0)); // Chain moves to the end
|
|
|
|
return CurDAG->SelectNodeTo(Node, Op,
|
|
AN->getValueType(0), MVT::Other,
|
|
&Ops[0], Ops.size());
|
|
}
|
|
|
|
SDNode *AArch64DAGToDAGISel::createDPairNode(SDValue V0, SDValue V1) {
|
|
SDLoc dl(V0.getNode());
|
|
SDValue RegClass =
|
|
CurDAG->getTargetConstant(AArch64::DPairRegClassID, MVT::i32);
|
|
SDValue SubReg0 = CurDAG->getTargetConstant(AArch64::dsub_0, MVT::i32);
|
|
SDValue SubReg1 = CurDAG->getTargetConstant(AArch64::dsub_1, MVT::i32);
|
|
const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
|
|
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::v2i64,
|
|
Ops);
|
|
}
|
|
|
|
SDNode *AArch64DAGToDAGISel::createQPairNode(SDValue V0, SDValue V1) {
|
|
SDLoc dl(V0.getNode());
|
|
SDValue RegClass =
|
|
CurDAG->getTargetConstant(AArch64::QPairRegClassID, MVT::i32);
|
|
SDValue SubReg0 = CurDAG->getTargetConstant(AArch64::qsub_0, MVT::i32);
|
|
SDValue SubReg1 = CurDAG->getTargetConstant(AArch64::qsub_1, MVT::i32);
|
|
const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
|
|
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::v4i64,
|
|
Ops);
|
|
}
|
|
|
|
SDNode *AArch64DAGToDAGISel::createDTripleNode(SDValue V0, SDValue V1,
|
|
SDValue V2) {
|
|
SDLoc dl(V0.getNode());
|
|
SDValue RegClass =
|
|
CurDAG->getTargetConstant(AArch64::DTripleRegClassID, MVT::i32);
|
|
SDValue SubReg0 = CurDAG->getTargetConstant(AArch64::dsub_0, MVT::i32);
|
|
SDValue SubReg1 = CurDAG->getTargetConstant(AArch64::dsub_1, MVT::i32);
|
|
SDValue SubReg2 = CurDAG->getTargetConstant(AArch64::dsub_2, MVT::i32);
|
|
const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1, V2, SubReg2 };
|
|
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped,
|
|
Ops);
|
|
}
|
|
|
|
SDNode *AArch64DAGToDAGISel::createQTripleNode(SDValue V0, SDValue V1,
|
|
SDValue V2) {
|
|
SDLoc dl(V0.getNode());
|
|
SDValue RegClass =
|
|
CurDAG->getTargetConstant(AArch64::QTripleRegClassID, MVT::i32);
|
|
SDValue SubReg0 = CurDAG->getTargetConstant(AArch64::qsub_0, MVT::i32);
|
|
SDValue SubReg1 = CurDAG->getTargetConstant(AArch64::qsub_1, MVT::i32);
|
|
SDValue SubReg2 = CurDAG->getTargetConstant(AArch64::qsub_2, MVT::i32);
|
|
const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1, V2, SubReg2 };
|
|
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped,
|
|
Ops);
|
|
}
|
|
|
|
SDNode *AArch64DAGToDAGISel::createDQuadNode(SDValue V0, SDValue V1, SDValue V2,
|
|
SDValue V3) {
|
|
SDLoc dl(V0.getNode());
|
|
SDValue RegClass =
|
|
CurDAG->getTargetConstant(AArch64::DQuadRegClassID, MVT::i32);
|
|
SDValue SubReg0 = CurDAG->getTargetConstant(AArch64::dsub_0, MVT::i32);
|
|
SDValue SubReg1 = CurDAG->getTargetConstant(AArch64::dsub_1, MVT::i32);
|
|
SDValue SubReg2 = CurDAG->getTargetConstant(AArch64::dsub_2, MVT::i32);
|
|
SDValue SubReg3 = CurDAG->getTargetConstant(AArch64::dsub_3, MVT::i32);
|
|
const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1, V2, SubReg2, V3,
|
|
SubReg3 };
|
|
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::v4i64,
|
|
Ops);
|
|
}
|
|
|
|
SDNode *AArch64DAGToDAGISel::createQQuadNode(SDValue V0, SDValue V1, SDValue V2,
|
|
SDValue V3) {
|
|
SDLoc dl(V0.getNode());
|
|
SDValue RegClass =
|
|
CurDAG->getTargetConstant(AArch64::QQuadRegClassID, MVT::i32);
|
|
SDValue SubReg0 = CurDAG->getTargetConstant(AArch64::qsub_0, MVT::i32);
|
|
SDValue SubReg1 = CurDAG->getTargetConstant(AArch64::qsub_1, MVT::i32);
|
|
SDValue SubReg2 = CurDAG->getTargetConstant(AArch64::qsub_2, MVT::i32);
|
|
SDValue SubReg3 = CurDAG->getTargetConstant(AArch64::qsub_3, MVT::i32);
|
|
const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1, V2, SubReg2, V3,
|
|
SubReg3 };
|
|
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::v8i64,
|
|
Ops);
|
|
}
|
|
|
|
SDNode *AArch64DAGToDAGISel::SelectVLD(SDNode *N, unsigned NumVecs,
|
|
const uint16_t *Opcodes) {
|
|
assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
|
|
|
|
EVT VT = N->getValueType(0);
|
|
unsigned OpcodeIndex;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("unhandled vector load type");
|
|
case MVT::v8i8: OpcodeIndex = 0; break;
|
|
case MVT::v4i16: OpcodeIndex = 1; break;
|
|
case MVT::v2f32:
|
|
case MVT::v2i32: OpcodeIndex = 2; break;
|
|
case MVT::v1f64:
|
|
case MVT::v1i64: OpcodeIndex = 3; break;
|
|
case MVT::v16i8: OpcodeIndex = 4; break;
|
|
case MVT::v8f16:
|
|
case MVT::v8i16: OpcodeIndex = 5; break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32: OpcodeIndex = 6; break;
|
|
case MVT::v2f64:
|
|
case MVT::v2i64: OpcodeIndex = 7; break;
|
|
}
|
|
unsigned Opc = Opcodes[OpcodeIndex];
|
|
|
|
SmallVector<SDValue, 2> Ops;
|
|
Ops.push_back(N->getOperand(2)); // Push back the Memory Address
|
|
Ops.push_back(N->getOperand(0)); // Push back the Chain
|
|
|
|
std::vector<EVT> ResTys;
|
|
bool is64BitVector = VT.is64BitVector();
|
|
|
|
if (NumVecs == 1)
|
|
ResTys.push_back(VT);
|
|
else if (NumVecs == 3)
|
|
ResTys.push_back(MVT::Untyped);
|
|
else {
|
|
EVT ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,
|
|
is64BitVector ? NumVecs : NumVecs * 2);
|
|
ResTys.push_back(ResTy);
|
|
}
|
|
|
|
ResTys.push_back(MVT::Other); // Type of the Chain
|
|
SDLoc dl(N);
|
|
SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
|
|
|
|
// Transfer memoperands.
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
|
|
cast<MachineSDNode>(VLd)->setMemRefs(MemOp, MemOp + 1);
|
|
|
|
if (NumVecs == 1)
|
|
return VLd;
|
|
|
|
// If NumVecs > 1, the return result is a super register containing 2-4
|
|
// consecutive vector registers.
|
|
SDValue SuperReg = SDValue(VLd, 0);
|
|
|
|
unsigned Sub0 = is64BitVector ? AArch64::dsub_0 : AArch64::qsub_0;
|
|
for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
|
|
ReplaceUses(SDValue(N, Vec),
|
|
CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
|
|
// Update users of the Chain
|
|
ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
|
|
|
|
return NULL;
|
|
}
|
|
|
|
SDNode *AArch64DAGToDAGISel::SelectVST(SDNode *N, unsigned NumVecs,
|
|
const uint16_t *Opcodes) {
|
|
assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
|
|
SDLoc dl(N);
|
|
|
|
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
|
|
MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
|
|
|
|
unsigned Vec0Idx = 3;
|
|
EVT VT = N->getOperand(Vec0Idx).getValueType();
|
|
unsigned OpcodeIndex;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("unhandled vector store type");
|
|
case MVT::v8i8: OpcodeIndex = 0; break;
|
|
case MVT::v4i16: OpcodeIndex = 1; break;
|
|
case MVT::v2f32:
|
|
case MVT::v2i32: OpcodeIndex = 2; break;
|
|
case MVT::v1f64:
|
|
case MVT::v1i64: OpcodeIndex = 3; break;
|
|
case MVT::v16i8: OpcodeIndex = 4; break;
|
|
case MVT::v8f16:
|
|
case MVT::v8i16: OpcodeIndex = 5; break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32: OpcodeIndex = 6; break;
|
|
case MVT::v2f64:
|
|
case MVT::v2i64: OpcodeIndex = 7; break;
|
|
}
|
|
unsigned Opc = Opcodes[OpcodeIndex];
|
|
|
|
std::vector<EVT> ResTys;
|
|
ResTys.push_back(MVT::Other); // Type for the Chain
|
|
|
|
SmallVector<SDValue, 6> Ops;
|
|
Ops.push_back(N->getOperand(2)); // Push back the Memory Address
|
|
|
|
bool is64BitVector = VT.is64BitVector();
|
|
|
|
SDValue V0 = N->getOperand(Vec0Idx + 0);
|
|
SDValue SrcReg;
|
|
if (NumVecs == 1)
|
|
SrcReg = V0;
|
|
else {
|
|
SDValue V1 = N->getOperand(Vec0Idx + 1);
|
|
if (NumVecs == 2)
|
|
SrcReg = is64BitVector ? SDValue(createDPairNode(V0, V1), 0)
|
|
: SDValue(createQPairNode(V0, V1), 0);
|
|
else {
|
|
SDValue V2 = N->getOperand(Vec0Idx + 2);
|
|
if (NumVecs == 3)
|
|
SrcReg = is64BitVector ? SDValue(createDTripleNode(V0, V1, V2), 0)
|
|
: SDValue(createQTripleNode(V0, V1, V2), 0);
|
|
else {
|
|
SDValue V3 = N->getOperand(Vec0Idx + 3);
|
|
SrcReg = is64BitVector ? SDValue(createDQuadNode(V0, V1, V2, V3), 0)
|
|
: SDValue(createQQuadNode(V0, V1, V2, V3), 0);
|
|
}
|
|
}
|
|
}
|
|
Ops.push_back(SrcReg);
|
|
|
|
// Push back the Chain
|
|
Ops.push_back(N->getOperand(0));
|
|
|
|
// Transfer memoperands.
|
|
SDNode *VSt = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
|
|
cast<MachineSDNode>(VSt)->setMemRefs(MemOp, MemOp + 1);
|
|
|
|
return VSt;
|
|
}
|
|
|
|
SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
|
|
// Dump information about the Node being selected
|
|
DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << "\n");
|
|
|
|
if (Node->isMachineOpcode()) {
|
|
DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << "\n");
|
|
Node->setNodeId(-1);
|
|
return NULL;
|
|
}
|
|
|
|
switch (Node->getOpcode()) {
|
|
case ISD::ATOMIC_LOAD_ADD:
|
|
return SelectAtomic(Node,
|
|
AArch64::ATOMIC_LOAD_ADD_I8,
|
|
AArch64::ATOMIC_LOAD_ADD_I16,
|
|
AArch64::ATOMIC_LOAD_ADD_I32,
|
|
AArch64::ATOMIC_LOAD_ADD_I64);
|
|
case ISD::ATOMIC_LOAD_SUB:
|
|
return SelectAtomic(Node,
|
|
AArch64::ATOMIC_LOAD_SUB_I8,
|
|
AArch64::ATOMIC_LOAD_SUB_I16,
|
|
AArch64::ATOMIC_LOAD_SUB_I32,
|
|
AArch64::ATOMIC_LOAD_SUB_I64);
|
|
case ISD::ATOMIC_LOAD_AND:
|
|
return SelectAtomic(Node,
|
|
AArch64::ATOMIC_LOAD_AND_I8,
|
|
AArch64::ATOMIC_LOAD_AND_I16,
|
|
AArch64::ATOMIC_LOAD_AND_I32,
|
|
AArch64::ATOMIC_LOAD_AND_I64);
|
|
case ISD::ATOMIC_LOAD_OR:
|
|
return SelectAtomic(Node,
|
|
AArch64::ATOMIC_LOAD_OR_I8,
|
|
AArch64::ATOMIC_LOAD_OR_I16,
|
|
AArch64::ATOMIC_LOAD_OR_I32,
|
|
AArch64::ATOMIC_LOAD_OR_I64);
|
|
case ISD::ATOMIC_LOAD_XOR:
|
|
return SelectAtomic(Node,
|
|
AArch64::ATOMIC_LOAD_XOR_I8,
|
|
AArch64::ATOMIC_LOAD_XOR_I16,
|
|
AArch64::ATOMIC_LOAD_XOR_I32,
|
|
AArch64::ATOMIC_LOAD_XOR_I64);
|
|
case ISD::ATOMIC_LOAD_NAND:
|
|
return SelectAtomic(Node,
|
|
AArch64::ATOMIC_LOAD_NAND_I8,
|
|
AArch64::ATOMIC_LOAD_NAND_I16,
|
|
AArch64::ATOMIC_LOAD_NAND_I32,
|
|
AArch64::ATOMIC_LOAD_NAND_I64);
|
|
case ISD::ATOMIC_LOAD_MIN:
|
|
return SelectAtomic(Node,
|
|
AArch64::ATOMIC_LOAD_MIN_I8,
|
|
AArch64::ATOMIC_LOAD_MIN_I16,
|
|
AArch64::ATOMIC_LOAD_MIN_I32,
|
|
AArch64::ATOMIC_LOAD_MIN_I64);
|
|
case ISD::ATOMIC_LOAD_MAX:
|
|
return SelectAtomic(Node,
|
|
AArch64::ATOMIC_LOAD_MAX_I8,
|
|
AArch64::ATOMIC_LOAD_MAX_I16,
|
|
AArch64::ATOMIC_LOAD_MAX_I32,
|
|
AArch64::ATOMIC_LOAD_MAX_I64);
|
|
case ISD::ATOMIC_LOAD_UMIN:
|
|
return SelectAtomic(Node,
|
|
AArch64::ATOMIC_LOAD_UMIN_I8,
|
|
AArch64::ATOMIC_LOAD_UMIN_I16,
|
|
AArch64::ATOMIC_LOAD_UMIN_I32,
|
|
AArch64::ATOMIC_LOAD_UMIN_I64);
|
|
case ISD::ATOMIC_LOAD_UMAX:
|
|
return SelectAtomic(Node,
|
|
AArch64::ATOMIC_LOAD_UMAX_I8,
|
|
AArch64::ATOMIC_LOAD_UMAX_I16,
|
|
AArch64::ATOMIC_LOAD_UMAX_I32,
|
|
AArch64::ATOMIC_LOAD_UMAX_I64);
|
|
case ISD::ATOMIC_SWAP:
|
|
return SelectAtomic(Node,
|
|
AArch64::ATOMIC_SWAP_I8,
|
|
AArch64::ATOMIC_SWAP_I16,
|
|
AArch64::ATOMIC_SWAP_I32,
|
|
AArch64::ATOMIC_SWAP_I64);
|
|
case ISD::ATOMIC_CMP_SWAP:
|
|
return SelectAtomic(Node,
|
|
AArch64::ATOMIC_CMP_SWAP_I8,
|
|
AArch64::ATOMIC_CMP_SWAP_I16,
|
|
AArch64::ATOMIC_CMP_SWAP_I32,
|
|
AArch64::ATOMIC_CMP_SWAP_I64);
|
|
case ISD::FrameIndex: {
|
|
int FI = cast<FrameIndexSDNode>(Node)->getIndex();
|
|
EVT PtrTy = getTargetLowering()->getPointerTy();
|
|
SDValue TFI = CurDAG->getTargetFrameIndex(FI, PtrTy);
|
|
return CurDAG->SelectNodeTo(Node, AArch64::ADDxxi_lsl0_s, PtrTy,
|
|
TFI, CurDAG->getTargetConstant(0, PtrTy));
|
|
}
|
|
case ISD::ConstantPool: {
|
|
// Constant pools are fine, just create a Target entry.
|
|
ConstantPoolSDNode *CN = cast<ConstantPoolSDNode>(Node);
|
|
const Constant *C = CN->getConstVal();
|
|
SDValue CP = CurDAG->getTargetConstantPool(C, CN->getValueType(0));
|
|
|
|
ReplaceUses(SDValue(Node, 0), CP);
|
|
return NULL;
|
|
}
|
|
case ISD::Constant: {
|
|
SDNode *ResNode = 0;
|
|
if (cast<ConstantSDNode>(Node)->getZExtValue() == 0) {
|
|
// XZR and WZR are probably even better than an actual move: most of the
|
|
// time they can be folded into another instruction with *no* cost.
|
|
|
|
EVT Ty = Node->getValueType(0);
|
|
assert((Ty == MVT::i32 || Ty == MVT::i64) && "unexpected type");
|
|
uint16_t Register = Ty == MVT::i32 ? AArch64::WZR : AArch64::XZR;
|
|
ResNode = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
|
|
SDLoc(Node),
|
|
Register, Ty).getNode();
|
|
}
|
|
|
|
// Next best option is a move-immediate, see if we can do that.
|
|
if (!ResNode) {
|
|
ResNode = TrySelectToMoveImm(Node);
|
|
}
|
|
|
|
if (ResNode)
|
|
return ResNode;
|
|
|
|
// If even that fails we fall back to a lit-pool entry at the moment. Future
|
|
// tuning may change this to a sequence of MOVZ/MOVN/MOVK instructions.
|
|
ResNode = SelectToLitPool(Node);
|
|
assert(ResNode && "We need *some* way to materialise a constant");
|
|
|
|
// We want to continue selection at this point since the litpool access
|
|
// generated used generic nodes for simplicity.
|
|
ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
|
|
Node = ResNode;
|
|
break;
|
|
}
|
|
case ISD::ConstantFP: {
|
|
if (A64Imms::isFPImm(cast<ConstantFPSDNode>(Node)->getValueAPF())) {
|
|
// FMOV will take care of it from TableGen
|
|
break;
|
|
}
|
|
|
|
SDNode *ResNode = LowerToFPLitPool(Node);
|
|
ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
|
|
|
|
// We want to continue selection at this point since the litpool access
|
|
// generated used generic nodes for simplicity.
|
|
Node = ResNode;
|
|
break;
|
|
}
|
|
case ISD::INTRINSIC_VOID:
|
|
case ISD::INTRINSIC_W_CHAIN: {
|
|
unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
|
|
switch (IntNo) {
|
|
default:
|
|
break;
|
|
|
|
case Intrinsic::arm_neon_vld1: {
|
|
static const uint16_t Opcodes[] = { AArch64::LD1_8B, AArch64::LD1_4H,
|
|
AArch64::LD1_2S, AArch64::LD1_1D,
|
|
AArch64::LD1_16B, AArch64::LD1_8H,
|
|
AArch64::LD1_4S, AArch64::LD1_2D };
|
|
return SelectVLD(Node, 1, Opcodes);
|
|
}
|
|
case Intrinsic::arm_neon_vld2: {
|
|
static const uint16_t Opcodes[] = { AArch64::LD2_8B, AArch64::LD2_4H,
|
|
AArch64::LD2_2S, AArch64::LD1_2V_1D,
|
|
AArch64::LD2_16B, AArch64::LD2_8H,
|
|
AArch64::LD2_4S, AArch64::LD2_2D };
|
|
return SelectVLD(Node, 2, Opcodes);
|
|
}
|
|
case Intrinsic::arm_neon_vld3: {
|
|
static const uint16_t Opcodes[] = { AArch64::LD3_8B, AArch64::LD3_4H,
|
|
AArch64::LD3_2S, AArch64::LD1_3V_1D,
|
|
AArch64::LD3_16B, AArch64::LD3_8H,
|
|
AArch64::LD3_4S, AArch64::LD3_2D };
|
|
return SelectVLD(Node, 3, Opcodes);
|
|
}
|
|
case Intrinsic::arm_neon_vld4: {
|
|
static const uint16_t Opcodes[] = { AArch64::LD4_8B, AArch64::LD4_4H,
|
|
AArch64::LD4_2S, AArch64::LD1_4V_1D,
|
|
AArch64::LD4_16B, AArch64::LD4_8H,
|
|
AArch64::LD4_4S, AArch64::LD4_2D };
|
|
return SelectVLD(Node, 4, Opcodes);
|
|
}
|
|
case Intrinsic::arm_neon_vst1: {
|
|
static const uint16_t Opcodes[] = { AArch64::ST1_8B, AArch64::ST1_4H,
|
|
AArch64::ST1_2S, AArch64::ST1_1D,
|
|
AArch64::ST1_16B, AArch64::ST1_8H,
|
|
AArch64::ST1_4S, AArch64::ST1_2D };
|
|
return SelectVST(Node, 1, Opcodes);
|
|
}
|
|
case Intrinsic::arm_neon_vst2: {
|
|
static const uint16_t Opcodes[] = { AArch64::ST2_8B, AArch64::ST2_4H,
|
|
AArch64::ST2_2S, AArch64::ST1_2V_1D,
|
|
AArch64::ST2_16B, AArch64::ST2_8H,
|
|
AArch64::ST2_4S, AArch64::ST2_2D };
|
|
return SelectVST(Node, 2, Opcodes);
|
|
}
|
|
case Intrinsic::arm_neon_vst3: {
|
|
static const uint16_t Opcodes[] = { AArch64::ST3_8B, AArch64::ST3_4H,
|
|
AArch64::ST3_2S, AArch64::ST1_3V_1D,
|
|
AArch64::ST3_16B, AArch64::ST3_8H,
|
|
AArch64::ST3_4S, AArch64::ST3_2D };
|
|
return SelectVST(Node, 3, Opcodes);
|
|
}
|
|
case Intrinsic::arm_neon_vst4: {
|
|
static const uint16_t Opcodes[] = { AArch64::ST4_8B, AArch64::ST4_4H,
|
|
AArch64::ST4_2S, AArch64::ST1_4V_1D,
|
|
AArch64::ST4_16B, AArch64::ST4_8H,
|
|
AArch64::ST4_4S, AArch64::ST4_2D };
|
|
return SelectVST(Node, 4, Opcodes);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break; // Let generic code handle it
|
|
}
|
|
|
|
SDNode *ResNode = SelectCode(Node);
|
|
|
|
DEBUG(dbgs() << "=> ";
|
|
if (ResNode == NULL || ResNode == Node)
|
|
Node->dump(CurDAG);
|
|
else
|
|
ResNode->dump(CurDAG);
|
|
dbgs() << "\n");
|
|
|
|
return ResNode;
|
|
}
|
|
|
|
/// This pass converts a legalized DAG into a AArch64-specific DAG, ready for
|
|
/// instruction scheduling.
|
|
FunctionPass *llvm::createAArch64ISelDAG(AArch64TargetMachine &TM,
|
|
CodeGenOpt::Level OptLevel) {
|
|
return new AArch64DAGToDAGISel(TM, OptLevel);
|
|
}
|