llvm/lib/Target/AArch64/AArch64InstrInfo.td
Jiangning Liu 477fc628b3 Initial support for Neon scalar instructions.
Patch by Ana Pazos.

1.Added support for v1ix and v1fx types.
2.Added Scalar Pairwise Reduce instructions.
3.Added initial implementation of Scalar Arithmetic instructions.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191263 91177308-0d34-0410-b5e6-96231b3b80d8
2013-09-24 02:47:27 +00:00

5168 lines
212 KiB
TableGen

//===----- AArch64InstrInfo.td - AArch64 Instruction Info ----*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the AArch64 scalar instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ARM Instruction Predicate Definitions.
//
def HasNEON : Predicate<"Subtarget->hasNEON()">,
AssemblerPredicate<"FeatureNEON", "neon">;
def HasCrypto : Predicate<"Subtarget->hasCrypto()">,
AssemblerPredicate<"FeatureCrypto","crypto">;
// Use fused MAC if more precision in FP computation is allowed.
def UseFusedMAC : Predicate<"(TM.Options.AllowFPOpFusion =="
" FPOpFusion::Fast)">;
include "AArch64InstrFormats.td"
//===----------------------------------------------------------------------===//
// Target-specific ISD nodes and profiles
//===----------------------------------------------------------------------===//
def SDT_A64ret : SDTypeProfile<0, 0, []>;
def A64ret : SDNode<"AArch64ISD::Ret", SDT_A64ret, [SDNPHasChain,
SDNPOptInGlue,
SDNPVariadic]>;
// (ins NZCV, Condition, Dest)
def SDT_A64br_cc : SDTypeProfile<0, 3, [SDTCisVT<0, i32>]>;
def A64br_cc : SDNode<"AArch64ISD::BR_CC", SDT_A64br_cc, [SDNPHasChain]>;
// (outs Result), (ins NZCV, IfTrue, IfFalse, Condition)
def SDT_A64select_cc : SDTypeProfile<1, 4, [SDTCisVT<1, i32>,
SDTCisSameAs<0, 2>,
SDTCisSameAs<2, 3>]>;
def A64select_cc : SDNode<"AArch64ISD::SELECT_CC", SDT_A64select_cc>;
// (outs NZCV), (ins LHS, RHS, Condition)
def SDT_A64setcc : SDTypeProfile<1, 3, [SDTCisVT<0, i32>,
SDTCisSameAs<1, 2>]>;
def A64setcc : SDNode<"AArch64ISD::SETCC", SDT_A64setcc>;
// (outs GPR64), (ins)
def A64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>;
// A64 compares don't care about the cond really (they set all flags) so a
// simple binary operator is useful.
def A64cmp : PatFrag<(ops node:$lhs, node:$rhs),
(A64setcc node:$lhs, node:$rhs, cond)>;
// When matching a notional (CMP op1, (sub 0, op2)), we'd like to use a CMN
// instruction on the grounds that "op1 - (-op2) == op1 + op2". However, the C
// and V flags can be set differently by this operation. It comes down to
// whether "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are
// then everything is fine. If not then the optimization is wrong. Thus general
// comparisons are only valid if op2 != 0.
// So, finally, the only LLVM-native comparisons that don't mention C and V are
// SETEQ and SETNE. They're the only ones we can safely use CMN for in the
// absence of information about op2.
def equality_cond : PatLeaf<(cond), [{
return N->get() == ISD::SETEQ || N->get() == ISD::SETNE;
}]>;
def A64cmn : PatFrag<(ops node:$lhs, node:$rhs),
(A64setcc node:$lhs, (sub 0, node:$rhs), equality_cond)>;
// There are two layers of indirection here, driven by the following
// considerations.
// + TableGen does not know CodeModel or Reloc so that decision should be
// made for a variable/address at ISelLowering.
// + The output of ISelLowering should be selectable (hence the Wrapper,
// rather than a bare target opcode)
def SDTAArch64WrapperLarge : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
SDTCisSameAs<0, 2>,
SDTCisSameAs<0, 3>,
SDTCisSameAs<0, 4>,
SDTCisPtrTy<0>]>;
def A64WrapperLarge :SDNode<"AArch64ISD::WrapperLarge", SDTAArch64WrapperLarge>;
def SDTAArch64WrapperSmall : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>,
SDTCisSameAs<1, 2>,
SDTCisVT<3, i32>,
SDTCisPtrTy<0>]>;
def A64WrapperSmall :SDNode<"AArch64ISD::WrapperSmall", SDTAArch64WrapperSmall>;
def SDTAArch64GOTLoad : SDTypeProfile<1, 1, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
def A64GOTLoad : SDNode<"AArch64ISD::GOTLoad", SDTAArch64GOTLoad,
[SDNPHasChain]>;
// (A64BFI LHS, RHS, LSB, Width)
def SDTA64BFI : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
SDTCisSameAs<1, 2>,
SDTCisVT<3, i64>,
SDTCisVT<4, i64>]>;
def A64Bfi : SDNode<"AArch64ISD::BFI", SDTA64BFI>;
// (A64EXTR HiReg, LoReg, LSB)
def SDTA64EXTR : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>,
SDTCisVT<3, i64>]>;
def A64Extr : SDNode<"AArch64ISD::EXTR", SDTA64EXTR>;
// (A64[SU]BFX Field, ImmR, ImmS).
//
// Note that ImmR and ImmS are already encoded for the actual instructions. The
// more natural LSB and Width mix together to form ImmR and ImmS, something
// which TableGen can't handle.
def SDTA64BFX : SDTypeProfile<1, 3, [SDTCisVT<2, i64>, SDTCisVT<3, i64>]>;
def A64Sbfx : SDNode<"AArch64ISD::SBFX", SDTA64BFX>;
def A64Ubfx : SDNode<"AArch64ISD::UBFX", SDTA64BFX>;
class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>;
//===----------------------------------------------------------------------===//
// Call sequence pseudo-instructions
//===----------------------------------------------------------------------===//
def SDT_AArch64Call : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>;
def AArch64Call : SDNode<"AArch64ISD::Call", SDT_AArch64Call,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
def AArch64tcret : SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64Call,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
// The TLSDESCCALL node is a variant call which goes to an indirectly calculated
// destination but needs a relocation against a fixed symbol. As such it has two
// certain operands: the callee and the relocated variable.
//
// The TLS ABI only allows it to be selected to a BLR instructin (with
// appropriate relocation).
def SDTTLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
def A64tlsdesc_blr : SDNode<"AArch64ISD::TLSDESCCALL", SDTTLSDescCall,
[SDNPInGlue, SDNPOutGlue, SDNPHasChain,
SDNPVariadic]>;
def SDT_AArch64CallSeqStart : SDCallSeqStart<[ SDTCisPtrTy<0> ]>;
def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_AArch64CallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def SDT_AArch64CallSeqEnd : SDCallSeqEnd<[ SDTCisPtrTy<0>, SDTCisPtrTy<1> ]>;
def AArch64callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_AArch64CallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
// These pseudo-instructions have special semantics by virtue of being passed to
// the InstrInfo constructor. CALLSEQ_START/CALLSEQ_END are produced by
// LowerCall to (in our case) tell the back-end about stack adjustments for
// arguments passed on the stack. Here we select those markers to
// pseudo-instructions which explicitly set the stack, and finally in the
// RegisterInfo we convert them to a true stack adjustment.
let Defs = [XSP], Uses = [XSP] in {
def ADJCALLSTACKDOWN : PseudoInst<(outs), (ins i64imm:$amt),
[(AArch64callseq_start timm:$amt)]>;
def ADJCALLSTACKUP : PseudoInst<(outs), (ins i64imm:$amt1, i64imm:$amt2),
[(AArch64callseq_end timm:$amt1, timm:$amt2)]>;
}
//===----------------------------------------------------------------------===//
// Atomic operation pseudo-instructions
//===----------------------------------------------------------------------===//
// These get selected from C++ code as a pretty much direct translation from the
// generic DAG nodes. The one exception is the AtomicOrdering is added as an
// operand so that the eventual lowering can make use of it and choose
// acquire/release operations when required.
let usesCustomInserter = 1, hasCtrlDep = 1, mayLoad = 1, mayStore = 1 in {
multiclass AtomicSizes {
def _I8 : PseudoInst<(outs GPR32:$dst),
(ins GPR64xsp:$ptr, GPR32:$incr, i32imm:$ordering), []>;
def _I16 : PseudoInst<(outs GPR32:$dst),
(ins GPR64xsp:$ptr, GPR32:$incr, i32imm:$ordering), []>;
def _I32 : PseudoInst<(outs GPR32:$dst),
(ins GPR64xsp:$ptr, GPR32:$incr, i32imm:$ordering), []>;
def _I64 : PseudoInst<(outs GPR64:$dst),
(ins GPR64xsp:$ptr, GPR64:$incr, i32imm:$ordering), []>;
}
}
defm ATOMIC_LOAD_ADD : AtomicSizes;
defm ATOMIC_LOAD_SUB : AtomicSizes;
defm ATOMIC_LOAD_AND : AtomicSizes;
defm ATOMIC_LOAD_OR : AtomicSizes;
defm ATOMIC_LOAD_XOR : AtomicSizes;
defm ATOMIC_LOAD_NAND : AtomicSizes;
defm ATOMIC_SWAP : AtomicSizes;
let Defs = [NZCV] in {
// These operations need a CMP to calculate the correct value
defm ATOMIC_LOAD_MIN : AtomicSizes;
defm ATOMIC_LOAD_MAX : AtomicSizes;
defm ATOMIC_LOAD_UMIN : AtomicSizes;
defm ATOMIC_LOAD_UMAX : AtomicSizes;
}
class AtomicCmpSwap<RegisterClass GPRData>
: PseudoInst<(outs GPRData:$dst),
(ins GPR64xsp:$ptr, GPRData:$old, GPRData:$new,
i32imm:$ordering), []> {
let usesCustomInserter = 1;
let hasCtrlDep = 1;
let mayLoad = 1;
let mayStore = 1;
let Defs = [NZCV];
}
def ATOMIC_CMP_SWAP_I8 : AtomicCmpSwap<GPR32>;
def ATOMIC_CMP_SWAP_I16 : AtomicCmpSwap<GPR32>;
def ATOMIC_CMP_SWAP_I32 : AtomicCmpSwap<GPR32>;
def ATOMIC_CMP_SWAP_I64 : AtomicCmpSwap<GPR64>;
//===----------------------------------------------------------------------===//
// Add-subtract (extended register) instructions
//===----------------------------------------------------------------------===//
// Contains: ADD, ADDS, SUB, SUBS + aliases CMN, CMP
// The RHS of these operations is conceptually a sign/zero-extended
// register, optionally shifted left by 1-4. The extension can be a
// NOP (e.g. "sxtx" sign-extending a 64-bit register to 64-bits) but
// must be specified with one exception:
// If one of the registers is sp/wsp then LSL is an alias for UXTW in
// 32-bit instructions and UXTX in 64-bit versions, the shift amount
// is not optional in that case (but can explicitly be 0), and the
// entire suffix can be skipped (e.g. "add sp, x3, x2").
multiclass extend_operands<string PREFIX, string Diag> {
def _asmoperand : AsmOperandClass {
let Name = PREFIX;
let RenderMethod = "addRegExtendOperands";
let PredicateMethod = "isRegExtend<A64SE::" # PREFIX # ">";
let DiagnosticType = "AddSubRegExtend" # Diag;
}
def _operand : Operand<i64>,
ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 4; }]> {
let PrintMethod = "printRegExtendOperand<A64SE::" # PREFIX # ">";
let DecoderMethod = "DecodeRegExtendOperand";
let ParserMatchClass = !cast<AsmOperandClass>(PREFIX # "_asmoperand");
}
}
defm UXTB : extend_operands<"UXTB", "Small">;
defm UXTH : extend_operands<"UXTH", "Small">;
defm UXTW : extend_operands<"UXTW", "Small">;
defm UXTX : extend_operands<"UXTX", "Large">;
defm SXTB : extend_operands<"SXTB", "Small">;
defm SXTH : extend_operands<"SXTH", "Small">;
defm SXTW : extend_operands<"SXTW", "Small">;
defm SXTX : extend_operands<"SXTX", "Large">;
def LSL_extasmoperand : AsmOperandClass {
let Name = "RegExtendLSL";
let RenderMethod = "addRegExtendOperands";
let DiagnosticType = "AddSubRegExtendLarge";
}
def LSL_extoperand : Operand<i64> {
let ParserMatchClass = LSL_extasmoperand;
}
// The patterns for various sign-extensions are a little ugly and
// non-uniform because everything has already been promoted to the
// legal i64 and i32 types. We'll wrap the various variants up in a
// class for use later.
class extend_types {
dag uxtb; dag uxth; dag uxtw; dag uxtx;
dag sxtb; dag sxth; dag sxtw; dag sxtx;
ValueType ty;
RegisterClass GPR;
}
def extends_to_i64 : extend_types {
let uxtb = (and (anyext i32:$Rm), 255);
let uxth = (and (anyext i32:$Rm), 65535);
let uxtw = (zext i32:$Rm);
let uxtx = (i64 $Rm);
let sxtb = (sext_inreg (anyext i32:$Rm), i8);
let sxth = (sext_inreg (anyext i32:$Rm), i16);
let sxtw = (sext i32:$Rm);
let sxtx = (i64 $Rm);
let ty = i64;
let GPR = GPR64xsp;
}
def extends_to_i32 : extend_types {
let uxtb = (and i32:$Rm, 255);
let uxth = (and i32:$Rm, 65535);
let uxtw = (i32 i32:$Rm);
let uxtx = (i32 i32:$Rm);
let sxtb = (sext_inreg i32:$Rm, i8);
let sxth = (sext_inreg i32:$Rm, i16);
let sxtw = (i32 i32:$Rm);
let sxtx = (i32 i32:$Rm);
let ty = i32;
let GPR = GPR32wsp;
}
// Now, six of the extensions supported are easy and uniform: if the source size
// is 32-bits or less, then Rm is always a 32-bit register. We'll instantiate
// those instructions in one block.
// The uxtx/sxtx could potentially be merged in, but three facts dissuaded me:
// + It would break the naming scheme: either ADDxx_uxtx or ADDww_uxtx would
// be impossible.
// + Patterns are very different as well.
// + Passing different registers would be ugly (more fields in extend_types
// would probably be the best option).
multiclass addsub_exts<bit sf, bit op, bit S, string asmop,
SDPatternOperator opfrag,
dag outs, extend_types exts> {
def w_uxtb : A64I_addsubext<sf, op, S, 0b00, 0b000,
outs, (ins exts.GPR:$Rn, GPR32:$Rm, UXTB_operand:$Imm3),
!strconcat(asmop, "$Rn, $Rm, $Imm3"),
[(opfrag exts.ty:$Rn, (shl exts.uxtb, UXTB_operand:$Imm3))],
NoItinerary>;
def w_uxth : A64I_addsubext<sf, op, S, 0b00, 0b001,
outs, (ins exts.GPR:$Rn, GPR32:$Rm, UXTH_operand:$Imm3),
!strconcat(asmop, "$Rn, $Rm, $Imm3"),
[(opfrag exts.ty:$Rn, (shl exts.uxth, UXTH_operand:$Imm3))],
NoItinerary>;
def w_uxtw : A64I_addsubext<sf, op, S, 0b00, 0b010,
outs, (ins exts.GPR:$Rn, GPR32:$Rm, UXTW_operand:$Imm3),
!strconcat(asmop, "$Rn, $Rm, $Imm3"),
[(opfrag exts.ty:$Rn, (shl exts.uxtw, UXTW_operand:$Imm3))],
NoItinerary>;
def w_sxtb : A64I_addsubext<sf, op, S, 0b00, 0b100,
outs, (ins exts.GPR:$Rn, GPR32:$Rm, SXTB_operand:$Imm3),
!strconcat(asmop, "$Rn, $Rm, $Imm3"),
[(opfrag exts.ty:$Rn, (shl exts.sxtb, SXTB_operand:$Imm3))],
NoItinerary>;
def w_sxth : A64I_addsubext<sf, op, S, 0b00, 0b101,
outs, (ins exts.GPR:$Rn, GPR32:$Rm, SXTH_operand:$Imm3),
!strconcat(asmop, "$Rn, $Rm, $Imm3"),
[(opfrag exts.ty:$Rn, (shl exts.sxth, SXTH_operand:$Imm3))],
NoItinerary>;
def w_sxtw : A64I_addsubext<sf, op, S, 0b00, 0b110,
outs, (ins exts.GPR:$Rn, GPR32:$Rm, SXTW_operand:$Imm3),
!strconcat(asmop, "$Rn, $Rm, $Imm3"),
[(opfrag exts.ty:$Rn, (shl exts.sxtw, SXTW_operand:$Imm3))],
NoItinerary>;
}
// These two could be merge in with the above, but their patterns aren't really
// necessary and the naming-scheme would necessarily break:
multiclass addsub_xxtx<bit op, bit S, string asmop, SDPatternOperator opfrag,
dag outs> {
def x_uxtx : A64I_addsubext<0b1, op, S, 0b00, 0b011,
outs,
(ins GPR64xsp:$Rn, GPR64:$Rm, UXTX_operand:$Imm3),
!strconcat(asmop, "$Rn, $Rm, $Imm3"),
[(opfrag i64:$Rn, (shl i64:$Rm, UXTX_operand:$Imm3))],
NoItinerary>;
def x_sxtx : A64I_addsubext<0b1, op, S, 0b00, 0b111,
outs,
(ins GPR64xsp:$Rn, GPR64:$Rm, SXTX_operand:$Imm3),
!strconcat(asmop, "$Rn, $Rm, $Imm3"),
[/* No Pattern: same as uxtx */],
NoItinerary>;
}
multiclass addsub_wxtx<bit op, bit S, string asmop, dag outs> {
def w_uxtx : A64I_addsubext<0b0, op, S, 0b00, 0b011,
outs,
(ins GPR32wsp:$Rn, GPR32:$Rm, UXTX_operand:$Imm3),
!strconcat(asmop, "$Rn, $Rm, $Imm3"),
[/* No pattern: probably same as uxtw */],
NoItinerary>;
def w_sxtx : A64I_addsubext<0b0, op, S, 0b00, 0b111,
outs,
(ins GPR32wsp:$Rn, GPR32:$Rm, SXTX_operand:$Imm3),
!strconcat(asmop, "$Rn, $Rm, $Imm3"),
[/* No Pattern: probably same as uxtw */],
NoItinerary>;
}
class SetRD<RegisterClass RC, SDPatternOperator op>
: PatFrag<(ops node:$lhs, node:$rhs), (set RC:$Rd, (op node:$lhs, node:$rhs))>;
class SetNZCV<SDPatternOperator op>
: PatFrag<(ops node:$lhs, node:$rhs), (set NZCV, (op node:$lhs, node:$rhs))>;
defm ADDxx :addsub_exts<0b1, 0b0, 0b0, "add\t$Rd, ", SetRD<GPR64xsp, add>,
(outs GPR64xsp:$Rd), extends_to_i64>,
addsub_xxtx< 0b0, 0b0, "add\t$Rd, ", SetRD<GPR64xsp, add>,
(outs GPR64xsp:$Rd)>;
defm ADDww :addsub_exts<0b0, 0b0, 0b0, "add\t$Rd, ", SetRD<GPR32wsp, add>,
(outs GPR32wsp:$Rd), extends_to_i32>,
addsub_wxtx< 0b0, 0b0, "add\t$Rd, ",
(outs GPR32wsp:$Rd)>;
defm SUBxx :addsub_exts<0b1, 0b1, 0b0, "sub\t$Rd, ", SetRD<GPR64xsp, sub>,
(outs GPR64xsp:$Rd), extends_to_i64>,
addsub_xxtx< 0b1, 0b0, "sub\t$Rd, ", SetRD<GPR64xsp, sub>,
(outs GPR64xsp:$Rd)>;
defm SUBww :addsub_exts<0b0, 0b1, 0b0, "sub\t$Rd, ", SetRD<GPR32wsp, sub>,
(outs GPR32wsp:$Rd), extends_to_i32>,
addsub_wxtx< 0b1, 0b0, "sub\t$Rd, ",
(outs GPR32wsp:$Rd)>;
let Defs = [NZCV] in {
defm ADDSxx :addsub_exts<0b1, 0b0, 0b1, "adds\t$Rd, ", SetRD<GPR64, addc>,
(outs GPR64:$Rd), extends_to_i64>,
addsub_xxtx< 0b0, 0b1, "adds\t$Rd, ", SetRD<GPR64, addc>,
(outs GPR64:$Rd)>;
defm ADDSww :addsub_exts<0b0, 0b0, 0b1, "adds\t$Rd, ", SetRD<GPR32, addc>,
(outs GPR32:$Rd), extends_to_i32>,
addsub_wxtx< 0b0, 0b1, "adds\t$Rd, ",
(outs GPR32:$Rd)>;
defm SUBSxx :addsub_exts<0b1, 0b1, 0b1, "subs\t$Rd, ", SetRD<GPR64, subc>,
(outs GPR64:$Rd), extends_to_i64>,
addsub_xxtx< 0b1, 0b1, "subs\t$Rd, ", SetRD<GPR64, subc>,
(outs GPR64:$Rd)>;
defm SUBSww :addsub_exts<0b0, 0b1, 0b1, "subs\t$Rd, ", SetRD<GPR32, subc>,
(outs GPR32:$Rd), extends_to_i32>,
addsub_wxtx< 0b1, 0b1, "subs\t$Rd, ",
(outs GPR32:$Rd)>;
let Rd = 0b11111, isCompare = 1 in {
defm CMNx : addsub_exts<0b1, 0b0, 0b1, "cmn\t", SetNZCV<A64cmn>,
(outs), extends_to_i64>,
addsub_xxtx< 0b0, 0b1, "cmn\t", SetNZCV<A64cmn>, (outs)>;
defm CMNw : addsub_exts<0b0, 0b0, 0b1, "cmn\t", SetNZCV<A64cmn>,
(outs), extends_to_i32>,
addsub_wxtx< 0b0, 0b1, "cmn\t", (outs)>;
defm CMPx : addsub_exts<0b1, 0b1, 0b1, "cmp\t", SetNZCV<A64cmp>,
(outs), extends_to_i64>,
addsub_xxtx< 0b1, 0b1, "cmp\t", SetNZCV<A64cmp>, (outs)>;
defm CMPw : addsub_exts<0b0, 0b1, 0b1, "cmp\t", SetNZCV<A64cmp>,
(outs), extends_to_i32>,
addsub_wxtx< 0b1, 0b1, "cmp\t", (outs)>;
}
}
// Now patterns for the operation without a shift being needed. No patterns are
// created for uxtx/sxtx since they're non-uniform and it's expected that
// add/sub (shifted register) will handle those cases anyway.
multiclass addsubext_noshift_patterns<string prefix, SDPatternOperator nodeop,
extend_types exts> {
def : Pat<(nodeop exts.ty:$Rn, exts.uxtb),
(!cast<Instruction>(prefix # "w_uxtb") $Rn, $Rm, 0)>;
def : Pat<(nodeop exts.ty:$Rn, exts.uxth),
(!cast<Instruction>(prefix # "w_uxth") $Rn, $Rm, 0)>;
def : Pat<(nodeop exts.ty:$Rn, exts.uxtw),
(!cast<Instruction>(prefix # "w_uxtw") $Rn, $Rm, 0)>;
def : Pat<(nodeop exts.ty:$Rn, exts.sxtb),
(!cast<Instruction>(prefix # "w_sxtb") $Rn, $Rm, 0)>;
def : Pat<(nodeop exts.ty:$Rn, exts.sxth),
(!cast<Instruction>(prefix # "w_sxth") $Rn, $Rm, 0)>;
def : Pat<(nodeop exts.ty:$Rn, exts.sxtw),
(!cast<Instruction>(prefix # "w_sxtw") $Rn, $Rm, 0)>;
}
defm : addsubext_noshift_patterns<"ADDxx", add, extends_to_i64>;
defm : addsubext_noshift_patterns<"ADDww", add, extends_to_i32>;
defm : addsubext_noshift_patterns<"SUBxx", sub, extends_to_i64>;
defm : addsubext_noshift_patterns<"SUBww", sub, extends_to_i32>;
defm : addsubext_noshift_patterns<"CMNx", A64cmn, extends_to_i64>;
defm : addsubext_noshift_patterns<"CMNw", A64cmn, extends_to_i32>;
defm : addsubext_noshift_patterns<"CMPx", A64cmp, extends_to_i64>;
defm : addsubext_noshift_patterns<"CMPw", A64cmp, extends_to_i32>;
// An extend of "lsl #imm" is valid if and only if one of Rn and Rd is
// sp/wsp. It is synonymous with uxtx/uxtw depending on the size of the
// operation. Also permitted in this case is complete omission of the argument,
// which implies "lsl #0".
multiclass lsl_aliases<string asmop, Instruction inst, RegisterClass GPR_Rd,
RegisterClass GPR_Rn, RegisterClass GPR_Rm> {
def : InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm"),
(inst GPR_Rd:$Rd, GPR_Rn:$Rn, GPR_Rm:$Rm, 0)>;
def : InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm, $LSL"),
(inst GPR_Rd:$Rd, GPR_Rn:$Rn, GPR_Rm:$Rm, LSL_extoperand:$LSL)>;
}
defm : lsl_aliases<"add", ADDxxx_uxtx, Rxsp, GPR64xsp, GPR64>;
defm : lsl_aliases<"add", ADDxxx_uxtx, GPR64xsp, Rxsp, GPR64>;
defm : lsl_aliases<"add", ADDwww_uxtw, Rwsp, GPR32wsp, GPR32>;
defm : lsl_aliases<"add", ADDwww_uxtw, GPR32wsp, Rwsp, GPR32>;
defm : lsl_aliases<"sub", SUBxxx_uxtx, Rxsp, GPR64xsp, GPR64>;
defm : lsl_aliases<"sub", SUBxxx_uxtx, GPR64xsp, Rxsp, GPR64>;
defm : lsl_aliases<"sub", SUBwww_uxtw, Rwsp, GPR32wsp, GPR32>;
defm : lsl_aliases<"sub", SUBwww_uxtw, GPR32wsp, Rwsp, GPR32>;
// Rd cannot be sp for flag-setting variants so only half of the aliases are
// needed.
defm : lsl_aliases<"adds", ADDSxxx_uxtx, GPR64, Rxsp, GPR64>;
defm : lsl_aliases<"adds", ADDSwww_uxtw, GPR32, Rwsp, GPR32>;
defm : lsl_aliases<"subs", SUBSxxx_uxtx, GPR64, Rxsp, GPR64>;
defm : lsl_aliases<"subs", SUBSwww_uxtw, GPR32, Rwsp, GPR32>;
// CMP unfortunately has to be different because the instruction doesn't have a
// dest register.
multiclass cmp_lsl_aliases<string asmop, Instruction inst,
RegisterClass GPR_Rn, RegisterClass GPR_Rm> {
def : InstAlias<!strconcat(asmop, " $Rn, $Rm"),
(inst GPR_Rn:$Rn, GPR_Rm:$Rm, 0)>;
def : InstAlias<!strconcat(asmop, " $Rn, $Rm, $LSL"),
(inst GPR_Rn:$Rn, GPR_Rm:$Rm, LSL_extoperand:$LSL)>;
}
defm : cmp_lsl_aliases<"cmp", CMPxx_uxtx, Rxsp, GPR64>;
defm : cmp_lsl_aliases<"cmp", CMPww_uxtw, Rwsp, GPR32>;
defm : cmp_lsl_aliases<"cmn", CMNxx_uxtx, Rxsp, GPR64>;
defm : cmp_lsl_aliases<"cmn", CMNww_uxtw, Rwsp, GPR32>;
//===----------------------------------------------------------------------===//
// Add-subtract (immediate) instructions
//===----------------------------------------------------------------------===//
// Contains: ADD, ADDS, SUB, SUBS + aliases CMN, CMP, MOV
// These instructions accept a 12-bit unsigned immediate, optionally shifted
// left by 12 bits. Official assembly format specifies a 12 bit immediate with
// one of "", "LSL #0", "LSL #12" supplementary operands.
// There are surprisingly few ways to make this work with TableGen, so this
// implementation has separate instructions for the "LSL #0" and "LSL #12"
// variants.
// If the MCInst retained a single combined immediate (which could be 0x123000,
// for example) then both components (imm & shift) would have to be delegated to
// a single assembly operand. This would entail a separate operand parser
// (because the LSL would have to live in the same AArch64Operand as the
// immediate to be accessible); assembly parsing is rather complex and
// error-prone C++ code.
//
// By splitting the immediate, we can delegate handling this optional operand to
// an InstAlias. Supporting functions to generate the correct MCInst are still
// required, but these are essentially trivial and parsing can remain generic.
//
// Rejected plans with rationale:
// ------------------------------
//
// In an ideal world you'de have two first class immediate operands (in
// InOperandList, specifying imm12 and shift). Unfortunately this is not
// selectable by any means I could discover.
//
// An Instruction with two MCOperands hidden behind a single entry in
// InOperandList (expanded by ComplexPatterns and MIOperandInfo) was functional,
// but required more C++ code to handle encoding/decoding. Parsing (the intended
// main beneficiary) ended up equally complex because of the optional nature of
// "LSL #0".
//
// Attempting to circumvent the need for a custom OperandParser above by giving
// InstAliases without the "lsl #0" failed. add/sub could be accommodated but
// the cmp/cmn aliases didn't use the MIOperandInfo to determine how operands
// should be parsed: there was no way to accommodate an "lsl #12".
let ParserMethod = "ParseImmWithLSLOperand",
RenderMethod = "addImmWithLSLOperands" in {
// Derived PredicateMethod fields are different for each
def addsubimm_lsl0_asmoperand : AsmOperandClass {
let Name = "AddSubImmLSL0";
// If an error is reported against this operand, instruction could also be a
// register variant.
let DiagnosticType = "AddSubSecondSource";
}
def addsubimm_lsl12_asmoperand : AsmOperandClass {
let Name = "AddSubImmLSL12";
let DiagnosticType = "AddSubSecondSource";
}
}
def shr_12_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getSExtValue() >> 12, MVT::i32);
}]>;
def shr_12_neg_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((-N->getSExtValue()) >> 12, MVT::i32);
}]>;
def neg_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(-N->getSExtValue(), MVT::i32);
}]>;
multiclass addsub_imm_operands<ValueType ty> {
let PrintMethod = "printAddSubImmLSL0Operand",
EncoderMethod = "getAddSubImmOpValue",
ParserMatchClass = addsubimm_lsl0_asmoperand in {
def _posimm_lsl0 : Operand<ty>,
ImmLeaf<ty, [{ return Imm >= 0 && (Imm & ~0xfff) == 0; }]>;
def _negimm_lsl0 : Operand<ty>,
ImmLeaf<ty, [{ return Imm < 0 && (-Imm & ~0xfff) == 0; }],
neg_XFORM>;
}
let PrintMethod = "printAddSubImmLSL12Operand",
EncoderMethod = "getAddSubImmOpValue",
ParserMatchClass = addsubimm_lsl12_asmoperand in {
def _posimm_lsl12 : Operand<ty>,
ImmLeaf<ty, [{ return Imm >= 0 && (Imm & ~0xfff000) == 0; }],
shr_12_XFORM>;
def _negimm_lsl12 : Operand<ty>,
ImmLeaf<ty, [{ return Imm < 0 && (-Imm & ~0xfff000) == 0; }],
shr_12_neg_XFORM>;
}
}
// The add operands don't need any transformation
defm addsubimm_operand_i32 : addsub_imm_operands<i32>;
defm addsubimm_operand_i64 : addsub_imm_operands<i64>;
multiclass addsubimm_varieties<string prefix, bit sf, bit op, bits<2> shift,
string asmop, string cmpasmop,
Operand imm_operand, Operand cmp_imm_operand,
RegisterClass GPR, RegisterClass GPRsp,
AArch64Reg ZR, ValueType Ty> {
// All registers for non-S variants allow SP
def _s : A64I_addsubimm<sf, op, 0b0, shift,
(outs GPRsp:$Rd),
(ins GPRsp:$Rn, imm_operand:$Imm12),
!strconcat(asmop, "\t$Rd, $Rn, $Imm12"),
[(set Ty:$Rd, (add Ty:$Rn, imm_operand:$Imm12))],
NoItinerary>;
// S variants can read SP but would write to ZR
def _S : A64I_addsubimm<sf, op, 0b1, shift,
(outs GPR:$Rd),
(ins GPRsp:$Rn, imm_operand:$Imm12),
!strconcat(asmop, "s\t$Rd, $Rn, $Imm12"),
[(set Ty:$Rd, (addc Ty:$Rn, imm_operand:$Imm12))],
NoItinerary> {
let Defs = [NZCV];
}
// Note that the pattern here for ADDS is subtle. Canonically CMP
// a, b becomes SUBS a, b. If b < 0 then this is equivalent to
// ADDS a, (-b). This is not true in general.
def _cmp : A64I_addsubimm<sf, op, 0b1, shift,
(outs), (ins GPRsp:$Rn, imm_operand:$Imm12),
!strconcat(cmpasmop, " $Rn, $Imm12"),
[(set NZCV,
(A64cmp Ty:$Rn, cmp_imm_operand:$Imm12))],
NoItinerary> {
let Rd = 0b11111;
let Defs = [NZCV];
let isCompare = 1;
}
}
multiclass addsubimm_shifts<string prefix, bit sf, bit op,
string asmop, string cmpasmop, string operand, string cmpoperand,
RegisterClass GPR, RegisterClass GPRsp, AArch64Reg ZR,
ValueType Ty> {
defm _lsl0 : addsubimm_varieties<prefix # "_lsl0", sf, op, 0b00,
asmop, cmpasmop,
!cast<Operand>(operand # "_lsl0"),
!cast<Operand>(cmpoperand # "_lsl0"),
GPR, GPRsp, ZR, Ty>;
defm _lsl12 : addsubimm_varieties<prefix # "_lsl12", sf, op, 0b01,
asmop, cmpasmop,
!cast<Operand>(operand # "_lsl12"),
!cast<Operand>(cmpoperand # "_lsl12"),
GPR, GPRsp, ZR, Ty>;
}
defm ADDwwi : addsubimm_shifts<"ADDwi", 0b0, 0b0, "add", "cmn",
"addsubimm_operand_i32_posimm",
"addsubimm_operand_i32_negimm",
GPR32, GPR32wsp, WZR, i32>;
defm ADDxxi : addsubimm_shifts<"ADDxi", 0b1, 0b0, "add", "cmn",
"addsubimm_operand_i64_posimm",
"addsubimm_operand_i64_negimm",
GPR64, GPR64xsp, XZR, i64>;
defm SUBwwi : addsubimm_shifts<"SUBwi", 0b0, 0b1, "sub", "cmp",
"addsubimm_operand_i32_negimm",
"addsubimm_operand_i32_posimm",
GPR32, GPR32wsp, WZR, i32>;
defm SUBxxi : addsubimm_shifts<"SUBxi", 0b1, 0b1, "sub", "cmp",
"addsubimm_operand_i64_negimm",
"addsubimm_operand_i64_posimm",
GPR64, GPR64xsp, XZR, i64>;
multiclass MOVsp<RegisterClass GPRsp, RegisterClass SP, Instruction addop> {
def _fromsp : InstAlias<"mov $Rd, $Rn",
(addop GPRsp:$Rd, SP:$Rn, 0),
0b1>;
def _tosp : InstAlias<"mov $Rd, $Rn",
(addop SP:$Rd, GPRsp:$Rn, 0),
0b1>;
}
// Recall Rxsp is a RegisterClass containing *just* xsp.
defm MOVxx : MOVsp<GPR64xsp, Rxsp, ADDxxi_lsl0_s>;
defm MOVww : MOVsp<GPR32wsp, Rwsp, ADDwwi_lsl0_s>;
//===----------------------------------------------------------------------===//
// Add-subtract (shifted register) instructions
//===----------------------------------------------------------------------===//
// Contains: ADD, ADDS, SUB, SUBS + aliases CMN, CMP, NEG, NEGS
//===-------------------------------
// 1. The "shifed register" operands. Shared with logical insts.
//===-------------------------------
multiclass shift_operands<string prefix, string form> {
def _asmoperand_i32 : AsmOperandClass {
let Name = "Shift" # form # "i32";
let RenderMethod = "addShiftOperands";
let PredicateMethod = "isShift<A64SE::" # form # ", false>";
let DiagnosticType = "AddSubRegShift32";
}
// Note that the operand type is intentionally i64 because the DAGCombiner
// puts these into a canonical form.
def _i32 : Operand<i64>, ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 31; }]> {
let ParserMatchClass
= !cast<AsmOperandClass>(prefix # "_asmoperand_i32");
let PrintMethod = "printShiftOperand<A64SE::" # form # ">";
let DecoderMethod = "Decode32BitShiftOperand";
}
def _asmoperand_i64 : AsmOperandClass {
let Name = "Shift" # form # "i64";
let RenderMethod = "addShiftOperands";
let PredicateMethod = "isShift<A64SE::" # form # ", true>";
let DiagnosticType = "AddSubRegShift64";
}
def _i64 : Operand<i64>, ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 63; }]> {
let ParserMatchClass
= !cast<AsmOperandClass>(prefix # "_asmoperand_i64");
let PrintMethod = "printShiftOperand<A64SE::" # form # ">";
}
}
defm lsl_operand : shift_operands<"lsl_operand", "LSL">;
defm lsr_operand : shift_operands<"lsr_operand", "LSR">;
defm asr_operand : shift_operands<"asr_operand", "ASR">;
// Not used for add/sub, but defined here for completeness. The "logical
// (shifted register)" instructions *do* have an ROR variant.
defm ror_operand : shift_operands<"ror_operand", "ROR">;
//===-------------------------------
// 2. The basic 3.5-operand ADD/SUB/ADDS/SUBS instructions.
//===-------------------------------
// N.b. the commutable parameter is just !N. It will be first against the wall
// when the revolution comes.
multiclass addsub_shifts<string prefix, bit sf, bit op, bit s, bit commutable,
string asmop, SDPatternOperator opfrag, ValueType ty,
RegisterClass GPR, list<Register> defs> {
let isCommutable = commutable, Defs = defs in {
def _lsl : A64I_addsubshift<sf, op, s, 0b00,
(outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6),
!strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
[(set GPR:$Rd, (opfrag ty:$Rn, (shl ty:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6))
)],
NoItinerary>;
def _lsr : A64I_addsubshift<sf, op, s, 0b01,
(outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("lsr_operand_" # ty):$Imm6),
!strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
[(set ty:$Rd, (opfrag ty:$Rn, (srl ty:$Rm,
!cast<Operand>("lsr_operand_" # ty):$Imm6))
)],
NoItinerary>;
def _asr : A64I_addsubshift<sf, op, s, 0b10,
(outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("asr_operand_" # ty):$Imm6),
!strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
[(set ty:$Rd, (opfrag ty:$Rn, (sra ty:$Rm,
!cast<Operand>("asr_operand_" # ty):$Imm6))
)],
NoItinerary>;
}
def _noshift
: InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm"),
(!cast<Instruction>(prefix # "_lsl") GPR:$Rd, GPR:$Rn,
GPR:$Rm, 0)>;
def : Pat<(opfrag ty:$Rn, ty:$Rm),
(!cast<Instruction>(prefix # "_lsl") $Rn, $Rm, 0)>;
}
multiclass addsub_sizes<string prefix, bit op, bit s, bit commutable,
string asmop, SDPatternOperator opfrag,
list<Register> defs> {
defm xxx : addsub_shifts<prefix # "xxx", 0b1, op, s,
commutable, asmop, opfrag, i64, GPR64, defs>;
defm www : addsub_shifts<prefix # "www", 0b0, op, s,
commutable, asmop, opfrag, i32, GPR32, defs>;
}
defm ADD : addsub_sizes<"ADD", 0b0, 0b0, 0b1, "add", add, []>;
defm SUB : addsub_sizes<"SUB", 0b1, 0b0, 0b0, "sub", sub, []>;
defm ADDS : addsub_sizes<"ADDS", 0b0, 0b1, 0b1, "adds", addc, [NZCV]>;
defm SUBS : addsub_sizes<"SUBS", 0b1, 0b1, 0b0, "subs", subc, [NZCV]>;
//===-------------------------------
// 1. The NEG/NEGS aliases
//===-------------------------------
multiclass neg_alias<Instruction INST, RegisterClass GPR, Register ZR,
ValueType ty, Operand shift_operand, SDNode shiftop> {
def : InstAlias<"neg $Rd, $Rm, $Imm6",
(INST GPR:$Rd, ZR, GPR:$Rm, shift_operand:$Imm6)>;
def : Pat<(sub 0, (shiftop ty:$Rm, shift_operand:$Imm6)),
(INST ZR, $Rm, shift_operand:$Imm6)>;
}
defm : neg_alias<SUBwww_lsl, GPR32, WZR, i32, lsl_operand_i32, shl>;
defm : neg_alias<SUBwww_lsr, GPR32, WZR, i32, lsr_operand_i32, srl>;
defm : neg_alias<SUBwww_asr, GPR32, WZR, i32, asr_operand_i32, sra>;
def : InstAlias<"neg $Rd, $Rm", (SUBwww_lsl GPR32:$Rd, WZR, GPR32:$Rm, 0)>;
def : Pat<(sub 0, i32:$Rm), (SUBwww_lsl WZR, $Rm, 0)>;
defm : neg_alias<SUBxxx_lsl, GPR64, XZR, i64, lsl_operand_i64, shl>;
defm : neg_alias<SUBxxx_lsr, GPR64, XZR, i64, lsr_operand_i64, srl>;
defm : neg_alias<SUBxxx_asr, GPR64, XZR, i64, asr_operand_i64, sra>;
def : InstAlias<"neg $Rd, $Rm", (SUBxxx_lsl GPR64:$Rd, XZR, GPR64:$Rm, 0)>;
def : Pat<(sub 0, i64:$Rm), (SUBxxx_lsl XZR, $Rm, 0)>;
// NEGS doesn't get any patterns yet: defining multiple outputs means C++ has to
// be involved.
class negs_alias<Instruction INST, RegisterClass GPR,
Register ZR, Operand shift_operand, SDNode shiftop>
: InstAlias<"negs $Rd, $Rm, $Imm6",
(INST GPR:$Rd, ZR, GPR:$Rm, shift_operand:$Imm6)>;
def : negs_alias<SUBSwww_lsl, GPR32, WZR, lsl_operand_i32, shl>;
def : negs_alias<SUBSwww_lsr, GPR32, WZR, lsr_operand_i32, srl>;
def : negs_alias<SUBSwww_asr, GPR32, WZR, asr_operand_i32, sra>;
def : InstAlias<"negs $Rd, $Rm", (SUBSwww_lsl GPR32:$Rd, WZR, GPR32:$Rm, 0)>;
def : negs_alias<SUBSxxx_lsl, GPR64, XZR, lsl_operand_i64, shl>;
def : negs_alias<SUBSxxx_lsr, GPR64, XZR, lsr_operand_i64, srl>;
def : negs_alias<SUBSxxx_asr, GPR64, XZR, asr_operand_i64, sra>;
def : InstAlias<"negs $Rd, $Rm", (SUBSxxx_lsl GPR64:$Rd, XZR, GPR64:$Rm, 0)>;
//===-------------------------------
// 1. The CMP/CMN aliases
//===-------------------------------
multiclass cmp_shifts<string prefix, bit sf, bit op, bit commutable,
string asmop, SDPatternOperator opfrag, ValueType ty,
RegisterClass GPR> {
let isCommutable = commutable, Rd = 0b11111, Defs = [NZCV] in {
def _lsl : A64I_addsubshift<sf, op, 0b1, 0b00,
(outs),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6),
!strconcat(asmop, "\t$Rn, $Rm, $Imm6"),
[(set NZCV, (opfrag ty:$Rn, (shl ty:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6))
)],
NoItinerary>;
def _lsr : A64I_addsubshift<sf, op, 0b1, 0b01,
(outs),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("lsr_operand_" # ty):$Imm6),
!strconcat(asmop, "\t$Rn, $Rm, $Imm6"),
[(set NZCV, (opfrag ty:$Rn, (srl ty:$Rm,
!cast<Operand>("lsr_operand_" # ty):$Imm6))
)],
NoItinerary>;
def _asr : A64I_addsubshift<sf, op, 0b1, 0b10,
(outs),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("asr_operand_" # ty):$Imm6),
!strconcat(asmop, "\t$Rn, $Rm, $Imm6"),
[(set NZCV, (opfrag ty:$Rn, (sra ty:$Rm,
!cast<Operand>("asr_operand_" # ty):$Imm6))
)],
NoItinerary>;
}
def _noshift
: InstAlias<!strconcat(asmop, " $Rn, $Rm"),
(!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>;
def : Pat<(opfrag ty:$Rn, ty:$Rm),
(!cast<Instruction>(prefix # "_lsl") $Rn, $Rm, 0)>;
}
defm CMPww : cmp_shifts<"CMPww", 0b0, 0b1, 0b0, "cmp", A64cmp, i32, GPR32>;
defm CMPxx : cmp_shifts<"CMPxx", 0b1, 0b1, 0b0, "cmp", A64cmp, i64, GPR64>;
defm CMNww : cmp_shifts<"CMNww", 0b0, 0b0, 0b1, "cmn", A64cmn, i32, GPR32>;
defm CMNxx : cmp_shifts<"CMNxx", 0b1, 0b0, 0b1, "cmn", A64cmn, i64, GPR64>;
//===----------------------------------------------------------------------===//
// Add-subtract (with carry) instructions
//===----------------------------------------------------------------------===//
// Contains: ADC, ADCS, SBC, SBCS + aliases NGC, NGCS
multiclass A64I_addsubcarrySizes<bit op, bit s, string asmop> {
let Uses = [NZCV] in {
def www : A64I_addsubcarry<0b0, op, s, 0b000000,
(outs GPR32:$Rd), (ins GPR32:$Rn, GPR32:$Rm),
!strconcat(asmop, "\t$Rd, $Rn, $Rm"),
[], NoItinerary>;
def xxx : A64I_addsubcarry<0b1, op, s, 0b000000,
(outs GPR64:$Rd), (ins GPR64:$Rn, GPR64:$Rm),
!strconcat(asmop, "\t$Rd, $Rn, $Rm"),
[], NoItinerary>;
}
}
let isCommutable = 1 in {
defm ADC : A64I_addsubcarrySizes<0b0, 0b0, "adc">;
}
defm SBC : A64I_addsubcarrySizes<0b1, 0b0, "sbc">;
let Defs = [NZCV] in {
let isCommutable = 1 in {
defm ADCS : A64I_addsubcarrySizes<0b0, 0b1, "adcs">;
}
defm SBCS : A64I_addsubcarrySizes<0b1, 0b1, "sbcs">;
}
def : InstAlias<"ngc $Rd, $Rm", (SBCwww GPR32:$Rd, WZR, GPR32:$Rm)>;
def : InstAlias<"ngc $Rd, $Rm", (SBCxxx GPR64:$Rd, XZR, GPR64:$Rm)>;
def : InstAlias<"ngcs $Rd, $Rm", (SBCSwww GPR32:$Rd, WZR, GPR32:$Rm)>;
def : InstAlias<"ngcs $Rd, $Rm", (SBCSxxx GPR64:$Rd, XZR, GPR64:$Rm)>;
// Note that adde and sube can form a chain longer than two (e.g. for 256-bit
// addition). So the flag-setting instructions are appropriate.
def : Pat<(adde i32:$Rn, i32:$Rm), (ADCSwww $Rn, $Rm)>;
def : Pat<(adde i64:$Rn, i64:$Rm), (ADCSxxx $Rn, $Rm)>;
def : Pat<(sube i32:$Rn, i32:$Rm), (SBCSwww $Rn, $Rm)>;
def : Pat<(sube i64:$Rn, i64:$Rm), (SBCSxxx $Rn, $Rm)>;
//===----------------------------------------------------------------------===//
// Bitfield
//===----------------------------------------------------------------------===//
// Contains: SBFM, BFM, UBFM, [SU]XT[BHW], ASR, LSR, LSL, SBFI[ZX], BFI, BFXIL,
// UBFIZ, UBFX
// Because of the rather complicated nearly-overlapping aliases, the decoding of
// this range of instructions is handled manually. The architectural
// instructions are BFM, SBFM and UBFM but a disassembler should never produce
// these.
//
// In the end, the best option was to use BFM instructions for decoding under
// almost all circumstances, but to create aliasing *Instructions* for each of
// the canonical forms and specify a completely custom decoder which would
// substitute the correct MCInst as needed.
//
// This also simplifies instruction selection, parsing etc because the MCInsts
// have a shape that's closer to their use in code.
//===-------------------------------
// 1. The architectural BFM instructions
//===-------------------------------
def uimm5_asmoperand : AsmOperandClass {
let Name = "UImm5";
let PredicateMethod = "isUImm<5>";
let RenderMethod = "addImmOperands";
let DiagnosticType = "UImm5";
}
def uimm6_asmoperand : AsmOperandClass {
let Name = "UImm6";
let PredicateMethod = "isUImm<6>";
let RenderMethod = "addImmOperands";
let DiagnosticType = "UImm6";
}
def bitfield32_imm : Operand<i64>,
ImmLeaf<i64, [{ return Imm >= 0 && Imm < 32; }]> {
let ParserMatchClass = uimm5_asmoperand;
let DecoderMethod = "DecodeBitfield32ImmOperand";
}
def bitfield64_imm : Operand<i64>,
ImmLeaf<i64, [{ return Imm >= 0 && Imm < 64; }]> {
let ParserMatchClass = uimm6_asmoperand;
// Default decoder works in 64-bit case: the 6-bit field can take any value.
}
multiclass A64I_bitfieldSizes<bits<2> opc, string asmop> {
def wwii : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd),
(ins GPR32:$Rn, bitfield32_imm:$ImmR, bitfield32_imm:$ImmS),
!strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
[], NoItinerary> {
let DecoderMethod = "DecodeBitfieldInstruction";
}
def xxii : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd),
(ins GPR64:$Rn, bitfield64_imm:$ImmR, bitfield64_imm:$ImmS),
!strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
[], NoItinerary> {
let DecoderMethod = "DecodeBitfieldInstruction";
}
}
defm SBFM : A64I_bitfieldSizes<0b00, "sbfm">;
defm UBFM : A64I_bitfieldSizes<0b10, "ubfm">;
// BFM instructions modify the destination register rather than defining it
// completely.
def BFMwwii :
A64I_bitfield<0b0, 0b01, 0b0, (outs GPR32:$Rd),
(ins GPR32:$src, GPR32:$Rn, bitfield32_imm:$ImmR, bitfield32_imm:$ImmS),
"bfm\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
let DecoderMethod = "DecodeBitfieldInstruction";
let Constraints = "$src = $Rd";
}
def BFMxxii :
A64I_bitfield<0b1, 0b01, 0b1, (outs GPR64:$Rd),
(ins GPR64:$src, GPR64:$Rn, bitfield64_imm:$ImmR, bitfield64_imm:$ImmS),
"bfm\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
let DecoderMethod = "DecodeBitfieldInstruction";
let Constraints = "$src = $Rd";
}
//===-------------------------------
// 2. Extend aliases to 64-bit dest
//===-------------------------------
// Unfortunately the extensions that end up as 64-bits cannot be handled by an
// instruction alias: their syntax is (for example) "SXTB x0, w0", which needs
// to be mapped to "SBFM x0, x0, #0, 7" (changing the class of Rn). InstAlias is
// not capable of such a map as far as I'm aware
// Note that these instructions are strictly more specific than the
// BFM ones (in ImmR) so they can handle their own decoding.
class A64I_bf_ext<bit sf, bits<2> opc, RegisterClass GPRDest, ValueType dty,
string asmop, bits<6> imms, dag pattern>
: A64I_bitfield<sf, opc, sf,
(outs GPRDest:$Rd), (ins GPR32:$Rn),
!strconcat(asmop, "\t$Rd, $Rn"),
[(set dty:$Rd, pattern)], NoItinerary> {
let ImmR = 0b000000;
let ImmS = imms;
}
// Signed extensions
def SXTBxw : A64I_bf_ext<0b1, 0b00, GPR64, i64, "sxtb", 7,
(sext_inreg (anyext i32:$Rn), i8)>;
def SXTBww : A64I_bf_ext<0b0, 0b00, GPR32, i32, "sxtb", 7,
(sext_inreg i32:$Rn, i8)>;
def SXTHxw : A64I_bf_ext<0b1, 0b00, GPR64, i64, "sxth", 15,
(sext_inreg (anyext i32:$Rn), i16)>;
def SXTHww : A64I_bf_ext<0b0, 0b00, GPR32, i32, "sxth", 15,
(sext_inreg i32:$Rn, i16)>;
def SXTWxw : A64I_bf_ext<0b1, 0b00, GPR64, i64, "sxtw", 31, (sext i32:$Rn)>;
// Unsigned extensions
def UXTBww : A64I_bf_ext<0b0, 0b10, GPR32, i32, "uxtb", 7,
(and i32:$Rn, 255)>;
def UXTHww : A64I_bf_ext<0b0, 0b10, GPR32, i32, "uxth", 15,
(and i32:$Rn, 65535)>;
// The 64-bit unsigned variants are not strictly architectural but recommended
// for consistency.
let isAsmParserOnly = 1 in {
def UXTBxw : A64I_bf_ext<0b0, 0b10, GPR64, i64, "uxtb", 7,
(and (anyext i32:$Rn), 255)>;
def UXTHxw : A64I_bf_ext<0b0, 0b10, GPR64, i64, "uxth", 15,
(and (anyext i32:$Rn), 65535)>;
}
// Extra patterns for when the source register is actually 64-bits
// too. There's no architectural difference here, it's just LLVM
// shinanigans. There's no need for equivalent zero-extension patterns
// because they'll already be caught by logical (immediate) matching.
def : Pat<(sext_inreg i64:$Rn, i8),
(SXTBxw (EXTRACT_SUBREG $Rn, sub_32))>;
def : Pat<(sext_inreg i64:$Rn, i16),
(SXTHxw (EXTRACT_SUBREG $Rn, sub_32))>;
def : Pat<(sext_inreg i64:$Rn, i32),
(SXTWxw (EXTRACT_SUBREG $Rn, sub_32))>;
//===-------------------------------
// 3. Aliases for ASR and LSR (the simple shifts)
//===-------------------------------
// These also handle their own decoding because ImmS being set makes
// them take precedence over BFM.
multiclass A64I_shift<bits<2> opc, string asmop, SDNode opnode> {
def wwi : A64I_bitfield<0b0, opc, 0b0,
(outs GPR32:$Rd), (ins GPR32:$Rn, bitfield32_imm:$ImmR),
!strconcat(asmop, "\t$Rd, $Rn, $ImmR"),
[(set i32:$Rd, (opnode i32:$Rn, bitfield32_imm:$ImmR))],
NoItinerary> {
let ImmS = 31;
}
def xxi : A64I_bitfield<0b1, opc, 0b1,
(outs GPR64:$Rd), (ins GPR64:$Rn, bitfield64_imm:$ImmR),
!strconcat(asmop, "\t$Rd, $Rn, $ImmR"),
[(set i64:$Rd, (opnode i64:$Rn, bitfield64_imm:$ImmR))],
NoItinerary> {
let ImmS = 63;
}
}
defm ASR : A64I_shift<0b00, "asr", sra>;
defm LSR : A64I_shift<0b10, "lsr", srl>;
//===-------------------------------
// 4. Aliases for LSL
//===-------------------------------
// Unfortunately LSL and subsequent aliases are much more complicated. We need
// to be able to say certain output instruction fields depend in a complex
// manner on combinations of input assembly fields).
//
// MIOperandInfo *might* have been able to do it, but at the cost of
// significantly more C++ code.
// N.b. contrary to usual practice these operands store the shift rather than
// the machine bits in an MCInst. The complexity overhead of consistency
// outweighed the benefits in this case (custom asmparser, printer and selection
// vs custom encoder).
def bitfield32_lsl_imm : Operand<i64>,
ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 31; }]> {
let ParserMatchClass = uimm5_asmoperand;
let EncoderMethod = "getBitfield32LSLOpValue";
}
def bitfield64_lsl_imm : Operand<i64>,
ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 63; }]> {
let ParserMatchClass = uimm6_asmoperand;
let EncoderMethod = "getBitfield64LSLOpValue";
}
class A64I_bitfield_lsl<bit sf, RegisterClass GPR, ValueType ty,
Operand operand>
: A64I_bitfield<sf, 0b10, sf, (outs GPR:$Rd), (ins GPR:$Rn, operand:$FullImm),
"lsl\t$Rd, $Rn, $FullImm",
[(set ty:$Rd, (shl ty:$Rn, operand:$FullImm))],
NoItinerary> {
bits<12> FullImm;
let ImmR = FullImm{5-0};
let ImmS = FullImm{11-6};
// No disassembler allowed because it would overlap with BFM which does the
// actual work.
let isAsmParserOnly = 1;
}
def LSLwwi : A64I_bitfield_lsl<0b0, GPR32, i32, bitfield32_lsl_imm>;
def LSLxxi : A64I_bitfield_lsl<0b1, GPR64, i64, bitfield64_lsl_imm>;
//===-------------------------------
// 5. Aliases for bitfield extract instructions
//===-------------------------------
def bfx32_width_asmoperand : AsmOperandClass {
let Name = "BFX32Width";
let PredicateMethod = "isBitfieldWidth<32>";
let RenderMethod = "addBFXWidthOperands";
let DiagnosticType = "Width32";
}
def bfx32_width : Operand<i64>, ImmLeaf<i64, [{ return true; }]> {
let PrintMethod = "printBFXWidthOperand";
let ParserMatchClass = bfx32_width_asmoperand;
}
def bfx64_width_asmoperand : AsmOperandClass {
let Name = "BFX64Width";
let PredicateMethod = "isBitfieldWidth<64>";
let RenderMethod = "addBFXWidthOperands";
let DiagnosticType = "Width64";
}
def bfx64_width : Operand<i64> {
let PrintMethod = "printBFXWidthOperand";
let ParserMatchClass = bfx64_width_asmoperand;
}
multiclass A64I_bitfield_extract<bits<2> opc, string asmop, SDNode op> {
def wwii : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd),
(ins GPR32:$Rn, bitfield32_imm:$ImmR, bfx32_width:$ImmS),
!strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
[(set i32:$Rd, (op i32:$Rn, imm:$ImmR, imm:$ImmS))],
NoItinerary> {
// As above, no disassembler allowed.
let isAsmParserOnly = 1;
}
def xxii : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd),
(ins GPR64:$Rn, bitfield64_imm:$ImmR, bfx64_width:$ImmS),
!strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
[(set i64:$Rd, (op i64:$Rn, imm:$ImmR, imm:$ImmS))],
NoItinerary> {
// As above, no disassembler allowed.
let isAsmParserOnly = 1;
}
}
defm SBFX : A64I_bitfield_extract<0b00, "sbfx", A64Sbfx>;
defm UBFX : A64I_bitfield_extract<0b10, "ubfx", A64Ubfx>;
// Again, variants based on BFM modify Rd so need it as an input too.
def BFXILwwii : A64I_bitfield<0b0, 0b01, 0b0, (outs GPR32:$Rd),
(ins GPR32:$src, GPR32:$Rn, bitfield32_imm:$ImmR, bfx32_width:$ImmS),
"bfxil\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
// As above, no disassembler allowed.
let isAsmParserOnly = 1;
let Constraints = "$src = $Rd";
}
def BFXILxxii : A64I_bitfield<0b1, 0b01, 0b1, (outs GPR64:$Rd),
(ins GPR64:$src, GPR64:$Rn, bitfield64_imm:$ImmR, bfx64_width:$ImmS),
"bfxil\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
// As above, no disassembler allowed.
let isAsmParserOnly = 1;
let Constraints = "$src = $Rd";
}
// SBFX instructions can do a 1-instruction sign-extension of boolean values.
def : Pat<(sext_inreg i64:$Rn, i1), (SBFXxxii $Rn, 0, 0)>;
def : Pat<(sext_inreg i32:$Rn, i1), (SBFXwwii $Rn, 0, 0)>;
def : Pat<(i64 (sext_inreg (anyext i32:$Rn), i1)),
(SBFXxxii (SUBREG_TO_REG (i64 0), $Rn, sub_32), 0, 0)>;
// UBFX makes sense as an implementation of a 64-bit zero-extension too. Could
// use either 64-bit or 32-bit variant, but 32-bit might be more efficient.
def : Pat<(zext i32:$Rn), (SUBREG_TO_REG (i64 0), (UBFXwwii $Rn, 0, 31),
sub_32)>;
//===-------------------------------
// 6. Aliases for bitfield insert instructions
//===-------------------------------
def bfi32_lsb_asmoperand : AsmOperandClass {
let Name = "BFI32LSB";
let PredicateMethod = "isUImm<5>";
let RenderMethod = "addBFILSBOperands<32>";
let DiagnosticType = "UImm5";
}
def bfi32_lsb : Operand<i64>,
ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 31; }]> {
let PrintMethod = "printBFILSBOperand<32>";
let ParserMatchClass = bfi32_lsb_asmoperand;
}
def bfi64_lsb_asmoperand : AsmOperandClass {
let Name = "BFI64LSB";
let PredicateMethod = "isUImm<6>";
let RenderMethod = "addBFILSBOperands<64>";
let DiagnosticType = "UImm6";
}
def bfi64_lsb : Operand<i64>,
ImmLeaf<i64, [{ return Imm >= 0 && Imm <= 63; }]> {
let PrintMethod = "printBFILSBOperand<64>";
let ParserMatchClass = bfi64_lsb_asmoperand;
}
// Width verification is performed during conversion so width operand can be
// shared between 32/64-bit cases. Still needed for the print method though
// because ImmR encodes "width - 1".
def bfi32_width_asmoperand : AsmOperandClass {
let Name = "BFI32Width";
let PredicateMethod = "isBitfieldWidth<32>";
let RenderMethod = "addBFIWidthOperands";
let DiagnosticType = "Width32";
}
def bfi32_width : Operand<i64>,
ImmLeaf<i64, [{ return Imm >= 1 && Imm <= 32; }]> {
let PrintMethod = "printBFIWidthOperand";
let ParserMatchClass = bfi32_width_asmoperand;
}
def bfi64_width_asmoperand : AsmOperandClass {
let Name = "BFI64Width";
let PredicateMethod = "isBitfieldWidth<64>";
let RenderMethod = "addBFIWidthOperands";
let DiagnosticType = "Width64";
}
def bfi64_width : Operand<i64>,
ImmLeaf<i64, [{ return Imm >= 1 && Imm <= 64; }]> {
let PrintMethod = "printBFIWidthOperand";
let ParserMatchClass = bfi64_width_asmoperand;
}
multiclass A64I_bitfield_insert<bits<2> opc, string asmop> {
def wwii : A64I_bitfield<0b0, opc, 0b0, (outs GPR32:$Rd),
(ins GPR32:$Rn, bfi32_lsb:$ImmR, bfi32_width:$ImmS),
!strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
[], NoItinerary> {
// As above, no disassembler allowed.
let isAsmParserOnly = 1;
}
def xxii : A64I_bitfield<0b1, opc, 0b1, (outs GPR64:$Rd),
(ins GPR64:$Rn, bfi64_lsb:$ImmR, bfi64_width:$ImmS),
!strconcat(asmop, "\t$Rd, $Rn, $ImmR, $ImmS"),
[], NoItinerary> {
// As above, no disassembler allowed.
let isAsmParserOnly = 1;
}
}
defm SBFIZ : A64I_bitfield_insert<0b00, "sbfiz">;
defm UBFIZ : A64I_bitfield_insert<0b10, "ubfiz">;
def BFIwwii : A64I_bitfield<0b0, 0b01, 0b0, (outs GPR32:$Rd),
(ins GPR32:$src, GPR32:$Rn, bfi32_lsb:$ImmR, bfi32_width:$ImmS),
"bfi\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
// As above, no disassembler allowed.
let isAsmParserOnly = 1;
let Constraints = "$src = $Rd";
}
def BFIxxii : A64I_bitfield<0b1, 0b01, 0b1, (outs GPR64:$Rd),
(ins GPR64:$src, GPR64:$Rn, bfi64_lsb:$ImmR, bfi64_width:$ImmS),
"bfi\t$Rd, $Rn, $ImmR, $ImmS", [], NoItinerary> {
// As above, no disassembler allowed.
let isAsmParserOnly = 1;
let Constraints = "$src = $Rd";
}
//===----------------------------------------------------------------------===//
// Compare and branch (immediate)
//===----------------------------------------------------------------------===//
// Contains: CBZ, CBNZ
class label_asmoperand<int width, int scale> : AsmOperandClass {
let Name = "Label" # width # "_" # scale;
let PredicateMethod = "isLabel<" # width # "," # scale # ">";
let RenderMethod = "addLabelOperands<" # width # ", " # scale # ">";
let DiagnosticType = "Label";
}
def label_wid19_scal4_asmoperand : label_asmoperand<19, 4>;
// All conditional immediate branches are the same really: 19 signed bits scaled
// by the instruction-size (4).
def bcc_target : Operand<OtherVT> {
// This label is a 19-bit offset from PC, scaled by the instruction-width: 4.
let ParserMatchClass = label_wid19_scal4_asmoperand;
let PrintMethod = "printLabelOperand<19, 4>";
let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_condbr>";
let OperandType = "OPERAND_PCREL";
}
multiclass cmpbr_sizes<bit op, string asmop, ImmLeaf SETOP> {
let isBranch = 1, isTerminator = 1 in {
def x : A64I_cmpbr<0b1, op,
(outs),
(ins GPR64:$Rt, bcc_target:$Label),
!strconcat(asmop,"\t$Rt, $Label"),
[(A64br_cc (A64cmp i64:$Rt, 0), SETOP, bb:$Label)],
NoItinerary>;
def w : A64I_cmpbr<0b0, op,
(outs),
(ins GPR32:$Rt, bcc_target:$Label),
!strconcat(asmop,"\t$Rt, $Label"),
[(A64br_cc (A64cmp i32:$Rt, 0), SETOP, bb:$Label)],
NoItinerary>;
}
}
defm CBZ : cmpbr_sizes<0b0, "cbz", ImmLeaf<i32, [{
return Imm == A64CC::EQ;
}]> >;
defm CBNZ : cmpbr_sizes<0b1, "cbnz", ImmLeaf<i32, [{
return Imm == A64CC::NE;
}]> >;
//===----------------------------------------------------------------------===//
// Conditional branch (immediate) instructions
//===----------------------------------------------------------------------===//
// Contains: B.cc
def cond_code_asmoperand : AsmOperandClass {
let Name = "CondCode";
let DiagnosticType = "CondCode";
}
def cond_code : Operand<i32>, ImmLeaf<i32, [{
return Imm >= 0 && Imm <= 15;
}]> {
let PrintMethod = "printCondCodeOperand";
let ParserMatchClass = cond_code_asmoperand;
}
def Bcc : A64I_condbr<0b0, 0b0, (outs),
(ins cond_code:$Cond, bcc_target:$Label),
"b.$Cond $Label", [(A64br_cc NZCV, (i32 imm:$Cond), bb:$Label)],
NoItinerary> {
let Uses = [NZCV];
let isBranch = 1;
let isTerminator = 1;
}
//===----------------------------------------------------------------------===//
// Conditional compare (immediate) instructions
//===----------------------------------------------------------------------===//
// Contains: CCMN, CCMP
def uimm4_asmoperand : AsmOperandClass {
let Name = "UImm4";
let PredicateMethod = "isUImm<4>";
let RenderMethod = "addImmOperands";
let DiagnosticType = "UImm4";
}
def uimm4 : Operand<i32> {
let ParserMatchClass = uimm4_asmoperand;
}
def uimm5 : Operand<i32> {
let ParserMatchClass = uimm5_asmoperand;
}
// The only difference between this operand and the one for instructions like
// B.cc is that it's parsed manually. The other get parsed implicitly as part of
// the mnemonic handling.
def cond_code_op_asmoperand : AsmOperandClass {
let Name = "CondCodeOp";
let RenderMethod = "addCondCodeOperands";
let PredicateMethod = "isCondCode";
let ParserMethod = "ParseCondCodeOperand";
let DiagnosticType = "CondCode";
}
def cond_code_op : Operand<i32> {
let PrintMethod = "printCondCodeOperand";
let ParserMatchClass = cond_code_op_asmoperand;
}
class A64I_condcmpimmImpl<bit sf, bit op, RegisterClass GPR, string asmop>
: A64I_condcmpimm<sf, op, 0b0, 0b0, 0b1, (outs),
(ins GPR:$Rn, uimm5:$UImm5, uimm4:$NZCVImm, cond_code_op:$Cond),
!strconcat(asmop, "\t$Rn, $UImm5, $NZCVImm, $Cond"),
[], NoItinerary> {
let Defs = [NZCV];
}
def CCMNwi : A64I_condcmpimmImpl<0b0, 0b0, GPR32, "ccmn">;
def CCMNxi : A64I_condcmpimmImpl<0b1, 0b0, GPR64, "ccmn">;
def CCMPwi : A64I_condcmpimmImpl<0b0, 0b1, GPR32, "ccmp">;
def CCMPxi : A64I_condcmpimmImpl<0b1, 0b1, GPR64, "ccmp">;
//===----------------------------------------------------------------------===//
// Conditional compare (register) instructions
//===----------------------------------------------------------------------===//
// Contains: CCMN, CCMP
class A64I_condcmpregImpl<bit sf, bit op, RegisterClass GPR, string asmop>
: A64I_condcmpreg<sf, op, 0b0, 0b0, 0b1,
(outs),
(ins GPR:$Rn, GPR:$Rm, uimm4:$NZCVImm, cond_code_op:$Cond),
!strconcat(asmop, "\t$Rn, $Rm, $NZCVImm, $Cond"),
[], NoItinerary> {
let Defs = [NZCV];
}
def CCMNww : A64I_condcmpregImpl<0b0, 0b0, GPR32, "ccmn">;
def CCMNxx : A64I_condcmpregImpl<0b1, 0b0, GPR64, "ccmn">;
def CCMPww : A64I_condcmpregImpl<0b0, 0b1, GPR32, "ccmp">;
def CCMPxx : A64I_condcmpregImpl<0b1, 0b1, GPR64, "ccmp">;
//===----------------------------------------------------------------------===//
// Conditional select instructions
//===----------------------------------------------------------------------===//
// Contains: CSEL, CSINC, CSINV, CSNEG + aliases CSET, CSETM, CINC, CINV, CNEG
// Condition code which is encoded as the inversion (semantically rather than
// bitwise) in the instruction.
def inv_cond_code_op_asmoperand : AsmOperandClass {
let Name = "InvCondCodeOp";
let RenderMethod = "addInvCondCodeOperands";
let PredicateMethod = "isCondCode";
let ParserMethod = "ParseCondCodeOperand";
let DiagnosticType = "CondCode";
}
def inv_cond_code_op : Operand<i32> {
let ParserMatchClass = inv_cond_code_op_asmoperand;
}
// Having a separate operand for the selectable use-case is debatable, but gives
// consistency with cond_code.
def inv_cond_XFORM : SDNodeXForm<imm, [{
A64CC::CondCodes CC = static_cast<A64CC::CondCodes>(N->getZExtValue());
return CurDAG->getTargetConstant(A64InvertCondCode(CC), MVT::i32);
}]>;
def inv_cond_code
: ImmLeaf<i32, [{ return Imm >= 0 && Imm <= 15; }], inv_cond_XFORM>;
multiclass A64I_condselSizes<bit op, bits<2> op2, string asmop,
SDPatternOperator select> {
let Uses = [NZCV] in {
def wwwc : A64I_condsel<0b0, op, 0b0, op2,
(outs GPR32:$Rd),
(ins GPR32:$Rn, GPR32:$Rm, cond_code_op:$Cond),
!strconcat(asmop, "\t$Rd, $Rn, $Rm, $Cond"),
[(set i32:$Rd, (select i32:$Rn, i32:$Rm))],
NoItinerary>;
def xxxc : A64I_condsel<0b1, op, 0b0, op2,
(outs GPR64:$Rd),
(ins GPR64:$Rn, GPR64:$Rm, cond_code_op:$Cond),
!strconcat(asmop, "\t$Rd, $Rn, $Rm, $Cond"),
[(set i64:$Rd, (select i64:$Rn, i64:$Rm))],
NoItinerary>;
}
}
def simple_select
: PatFrag<(ops node:$lhs, node:$rhs),
(A64select_cc NZCV, node:$lhs, node:$rhs, (i32 imm:$Cond))>;
class complex_select<SDPatternOperator opnode>
: PatFrag<(ops node:$lhs, node:$rhs),
(A64select_cc NZCV, node:$lhs, (opnode node:$rhs), (i32 imm:$Cond))>;
defm CSEL : A64I_condselSizes<0b0, 0b00, "csel", simple_select>;
defm CSINC : A64I_condselSizes<0b0, 0b01, "csinc",
complex_select<PatFrag<(ops node:$val),
(add node:$val, 1)>>>;
defm CSINV : A64I_condselSizes<0b1, 0b00, "csinv", complex_select<not>>;
defm CSNEG : A64I_condselSizes<0b1, 0b01, "csneg", complex_select<ineg>>;
// Now the instruction aliases, which fit nicely into LLVM's model:
def : InstAlias<"cset $Rd, $Cond",
(CSINCwwwc GPR32:$Rd, WZR, WZR, inv_cond_code_op:$Cond)>;
def : InstAlias<"cset $Rd, $Cond",
(CSINCxxxc GPR64:$Rd, XZR, XZR, inv_cond_code_op:$Cond)>;
def : InstAlias<"csetm $Rd, $Cond",
(CSINVwwwc GPR32:$Rd, WZR, WZR, inv_cond_code_op:$Cond)>;
def : InstAlias<"csetm $Rd, $Cond",
(CSINVxxxc GPR64:$Rd, XZR, XZR, inv_cond_code_op:$Cond)>;
def : InstAlias<"cinc $Rd, $Rn, $Cond",
(CSINCwwwc GPR32:$Rd, GPR32:$Rn, GPR32:$Rn, inv_cond_code_op:$Cond)>;
def : InstAlias<"cinc $Rd, $Rn, $Cond",
(CSINCxxxc GPR64:$Rd, GPR64:$Rn, GPR64:$Rn, inv_cond_code_op:$Cond)>;
def : InstAlias<"cinv $Rd, $Rn, $Cond",
(CSINVwwwc GPR32:$Rd, GPR32:$Rn, GPR32:$Rn, inv_cond_code_op:$Cond)>;
def : InstAlias<"cinv $Rd, $Rn, $Cond",
(CSINVxxxc GPR64:$Rd, GPR64:$Rn, GPR64:$Rn, inv_cond_code_op:$Cond)>;
def : InstAlias<"cneg $Rd, $Rn, $Cond",
(CSNEGwwwc GPR32:$Rd, GPR32:$Rn, GPR32:$Rn, inv_cond_code_op:$Cond)>;
def : InstAlias<"cneg $Rd, $Rn, $Cond",
(CSNEGxxxc GPR64:$Rd, GPR64:$Rn, GPR64:$Rn, inv_cond_code_op:$Cond)>;
// Finally some helper patterns.
// For CSET (a.k.a. zero-extension of icmp)
def : Pat<(A64select_cc NZCV, 0, 1, cond_code:$Cond),
(CSINCwwwc WZR, WZR, cond_code:$Cond)>;
def : Pat<(A64select_cc NZCV, 1, 0, inv_cond_code:$Cond),
(CSINCwwwc WZR, WZR, inv_cond_code:$Cond)>;
def : Pat<(A64select_cc NZCV, 0, 1, cond_code:$Cond),
(CSINCxxxc XZR, XZR, cond_code:$Cond)>;
def : Pat<(A64select_cc NZCV, 1, 0, inv_cond_code:$Cond),
(CSINCxxxc XZR, XZR, inv_cond_code:$Cond)>;
// For CSETM (a.k.a. sign-extension of icmp)
def : Pat<(A64select_cc NZCV, 0, -1, cond_code:$Cond),
(CSINVwwwc WZR, WZR, cond_code:$Cond)>;
def : Pat<(A64select_cc NZCV, -1, 0, inv_cond_code:$Cond),
(CSINVwwwc WZR, WZR, inv_cond_code:$Cond)>;
def : Pat<(A64select_cc NZCV, 0, -1, cond_code:$Cond),
(CSINVxxxc XZR, XZR, cond_code:$Cond)>;
def : Pat<(A64select_cc NZCV, -1, 0, inv_cond_code:$Cond),
(CSINVxxxc XZR, XZR, inv_cond_code:$Cond)>;
// CINC, CINV and CNEG get dealt with automatically, which leaves the issue of
// commutativity. The instructions are to complex for isCommutable to be used,
// so we have to create the patterns manually:
// No commutable pattern for CSEL since the commuted version is isomorphic.
// CSINC
def :Pat<(A64select_cc NZCV, (add i32:$Rm, 1), i32:$Rn, inv_cond_code:$Cond),
(CSINCwwwc $Rn, $Rm, inv_cond_code:$Cond)>;
def :Pat<(A64select_cc NZCV, (add i64:$Rm, 1), i64:$Rn, inv_cond_code:$Cond),
(CSINCxxxc $Rn, $Rm, inv_cond_code:$Cond)>;
// CSINV
def :Pat<(A64select_cc NZCV, (not i32:$Rm), i32:$Rn, inv_cond_code:$Cond),
(CSINVwwwc $Rn, $Rm, inv_cond_code:$Cond)>;
def :Pat<(A64select_cc NZCV, (not i64:$Rm), i64:$Rn, inv_cond_code:$Cond),
(CSINVxxxc $Rn, $Rm, inv_cond_code:$Cond)>;
// CSNEG
def :Pat<(A64select_cc NZCV, (ineg i32:$Rm), i32:$Rn, inv_cond_code:$Cond),
(CSNEGwwwc $Rn, $Rm, inv_cond_code:$Cond)>;
def :Pat<(A64select_cc NZCV, (ineg i64:$Rm), i64:$Rn, inv_cond_code:$Cond),
(CSNEGxxxc $Rn, $Rm, inv_cond_code:$Cond)>;
//===----------------------------------------------------------------------===//
// Data Processing (1 source) instructions
//===----------------------------------------------------------------------===//
// Contains: RBIT, REV16, REV, REV32, CLZ, CLS.
// We define an unary operator which always fails. We will use this to
// define unary operators that cannot be matched.
class A64I_dp_1src_impl<bit sf, bits<6> opcode, string asmop,
list<dag> patterns, RegisterClass GPRrc,
InstrItinClass itin>:
A64I_dp_1src<sf,
0,
0b00000,
opcode,
!strconcat(asmop, "\t$Rd, $Rn"),
(outs GPRrc:$Rd),
(ins GPRrc:$Rn),
patterns,
itin>;
multiclass A64I_dp_1src <bits<6> opcode, string asmop> {
let hasSideEffects = 0 in {
def ww : A64I_dp_1src_impl<0b0, opcode, asmop, [], GPR32, NoItinerary>;
def xx : A64I_dp_1src_impl<0b1, opcode, asmop, [], GPR64, NoItinerary>;
}
}
defm RBIT : A64I_dp_1src<0b000000, "rbit">;
defm CLS : A64I_dp_1src<0b000101, "cls">;
defm CLZ : A64I_dp_1src<0b000100, "clz">;
def : Pat<(ctlz i32:$Rn), (CLZww $Rn)>;
def : Pat<(ctlz i64:$Rn), (CLZxx $Rn)>;
def : Pat<(ctlz_zero_undef i32:$Rn), (CLZww $Rn)>;
def : Pat<(ctlz_zero_undef i64:$Rn), (CLZxx $Rn)>;
def : Pat<(cttz i32:$Rn), (CLZww (RBITww $Rn))>;
def : Pat<(cttz i64:$Rn), (CLZxx (RBITxx $Rn))>;
def : Pat<(cttz_zero_undef i32:$Rn), (CLZww (RBITww $Rn))>;
def : Pat<(cttz_zero_undef i64:$Rn), (CLZxx (RBITxx $Rn))>;
def REVww : A64I_dp_1src_impl<0b0, 0b000010, "rev",
[(set i32:$Rd, (bswap i32:$Rn))],
GPR32, NoItinerary>;
def REVxx : A64I_dp_1src_impl<0b1, 0b000011, "rev",
[(set i64:$Rd, (bswap i64:$Rn))],
GPR64, NoItinerary>;
def REV32xx : A64I_dp_1src_impl<0b1, 0b000010, "rev32",
[(set i64:$Rd, (bswap (rotr i64:$Rn, (i64 32))))],
GPR64, NoItinerary>;
def REV16ww : A64I_dp_1src_impl<0b0, 0b000001, "rev16",
[(set i32:$Rd, (bswap (rotr i32:$Rn, (i64 16))))],
GPR32,
NoItinerary>;
def REV16xx : A64I_dp_1src_impl<0b1, 0b000001, "rev16", [], GPR64, NoItinerary>;
//===----------------------------------------------------------------------===//
// Data Processing (2 sources) instructions
//===----------------------------------------------------------------------===//
// Contains: CRC32C?[BHWX], UDIV, SDIV, LSLV, LSRV, ASRV, RORV + aliases LSL,
// LSR, ASR, ROR
class dp_2src_impl<bit sf, bits<6> opcode, string asmop, list<dag> patterns,
RegisterClass GPRsp,
InstrItinClass itin>:
A64I_dp_2src<sf,
opcode,
0,
!strconcat(asmop, "\t$Rd, $Rn, $Rm"),
(outs GPRsp:$Rd),
(ins GPRsp:$Rn, GPRsp:$Rm),
patterns,
itin>;
multiclass dp_2src_crc<bit c, string asmop> {
def B_www : dp_2src_impl<0b0, {0, 1, 0, c, 0, 0},
!strconcat(asmop, "b"), [], GPR32, NoItinerary>;
def H_www : dp_2src_impl<0b0, {0, 1, 0, c, 0, 1},
!strconcat(asmop, "h"), [], GPR32, NoItinerary>;
def W_www : dp_2src_impl<0b0, {0, 1, 0, c, 1, 0},
!strconcat(asmop, "w"), [], GPR32, NoItinerary>;
def X_wwx : A64I_dp_2src<0b1, {0, 1, 0, c, 1, 1}, 0b0,
!strconcat(asmop, "x\t$Rd, $Rn, $Rm"),
(outs GPR32:$Rd), (ins GPR32:$Rn, GPR64:$Rm), [],
NoItinerary>;
}
multiclass dp_2src_zext <bits<6> opcode, string asmop, SDPatternOperator op> {
def www : dp_2src_impl<0b0,
opcode,
asmop,
[(set i32:$Rd,
(op i32:$Rn, (i64 (zext i32:$Rm))))],
GPR32,
NoItinerary>;
def xxx : dp_2src_impl<0b1,
opcode,
asmop,
[(set i64:$Rd, (op i64:$Rn, i64:$Rm))],
GPR64,
NoItinerary>;
}
multiclass dp_2src <bits<6> opcode, string asmop, SDPatternOperator op> {
def www : dp_2src_impl<0b0,
opcode,
asmop,
[(set i32:$Rd, (op i32:$Rn, i32:$Rm))],
GPR32,
NoItinerary>;
def xxx : dp_2src_impl<0b1,
opcode,
asmop,
[(set i64:$Rd, (op i64:$Rn, i64:$Rm))],
GPR64,
NoItinerary>;
}
// Here we define the data processing 2 source instructions.
defm CRC32 : dp_2src_crc<0b0, "crc32">;
defm CRC32C : dp_2src_crc<0b1, "crc32c">;
defm UDIV : dp_2src<0b000010, "udiv", udiv>;
defm SDIV : dp_2src<0b000011, "sdiv", sdiv>;
defm LSLV : dp_2src_zext<0b001000, "lsl", shl>;
defm LSRV : dp_2src_zext<0b001001, "lsr", srl>;
defm ASRV : dp_2src_zext<0b001010, "asr", sra>;
defm RORV : dp_2src_zext<0b001011, "ror", rotr>;
// Extra patterns for an incoming 64-bit value for a 32-bit
// operation. Since the LLVM operations are undefined (as in C) if the
// RHS is out of range, it's perfectly permissible to discard the high
// bits of the GPR64.
def : Pat<(shl i32:$Rn, i64:$Rm),
(LSLVwww $Rn, (EXTRACT_SUBREG $Rm, sub_32))>;
def : Pat<(srl i32:$Rn, i64:$Rm),
(LSRVwww $Rn, (EXTRACT_SUBREG $Rm, sub_32))>;
def : Pat<(sra i32:$Rn, i64:$Rm),
(ASRVwww $Rn, (EXTRACT_SUBREG $Rm, sub_32))>;
def : Pat<(rotr i32:$Rn, i64:$Rm),
(RORVwww $Rn, (EXTRACT_SUBREG $Rm, sub_32))>;
// Here we define the aliases for the data processing 2 source instructions.
def LSL_mnemonic : MnemonicAlias<"lslv", "lsl">;
def LSR_mnemonic : MnemonicAlias<"lsrv", "lsr">;
def ASR_menmonic : MnemonicAlias<"asrv", "asr">;
def ROR_menmonic : MnemonicAlias<"rorv", "ror">;
//===----------------------------------------------------------------------===//
// Data Processing (3 sources) instructions
//===----------------------------------------------------------------------===//
// Contains: MADD, MSUB, SMADDL, SMSUBL, SMULH, UMADDL, UMSUBL, UMULH
// + aliases MUL, MNEG, SMULL, SMNEGL, UMULL, UMNEGL
class A64I_dp3_4operand<bit sf, bits<6> opcode, RegisterClass AccReg,
ValueType AccTy, RegisterClass SrcReg,
string asmop, dag pattern>
: A64I_dp3<sf, opcode,
(outs AccReg:$Rd), (ins SrcReg:$Rn, SrcReg:$Rm, AccReg:$Ra),
!strconcat(asmop, "\t$Rd, $Rn, $Rm, $Ra"),
[(set AccTy:$Rd, pattern)], NoItinerary> {
RegisterClass AccGPR = AccReg;
RegisterClass SrcGPR = SrcReg;
}
def MADDwwww : A64I_dp3_4operand<0b0, 0b000000, GPR32, i32, GPR32, "madd",
(add i32:$Ra, (mul i32:$Rn, i32:$Rm))>;
def MADDxxxx : A64I_dp3_4operand<0b1, 0b000000, GPR64, i64, GPR64, "madd",
(add i64:$Ra, (mul i64:$Rn, i64:$Rm))>;
def MSUBwwww : A64I_dp3_4operand<0b0, 0b000001, GPR32, i32, GPR32, "msub",
(sub i32:$Ra, (mul i32:$Rn, i32:$Rm))>;
def MSUBxxxx : A64I_dp3_4operand<0b1, 0b000001, GPR64, i64, GPR64, "msub",
(sub i64:$Ra, (mul i64:$Rn, i64:$Rm))>;
def SMADDLxwwx : A64I_dp3_4operand<0b1, 0b000010, GPR64, i64, GPR32, "smaddl",
(add i64:$Ra, (mul (i64 (sext i32:$Rn)), (sext i32:$Rm)))>;
def SMSUBLxwwx : A64I_dp3_4operand<0b1, 0b000011, GPR64, i64, GPR32, "smsubl",
(sub i64:$Ra, (mul (i64 (sext i32:$Rn)), (sext i32:$Rm)))>;
def UMADDLxwwx : A64I_dp3_4operand<0b1, 0b001010, GPR64, i64, GPR32, "umaddl",
(add i64:$Ra, (mul (i64 (zext i32:$Rn)), (zext i32:$Rm)))>;
def UMSUBLxwwx : A64I_dp3_4operand<0b1, 0b001011, GPR64, i64, GPR32, "umsubl",
(sub i64:$Ra, (mul (i64 (zext i32:$Rn)), (zext i32:$Rm)))>;
let isCommutable = 1, PostEncoderMethod = "fixMulHigh" in {
def UMULHxxx : A64I_dp3<0b1, 0b001100, (outs GPR64:$Rd),
(ins GPR64:$Rn, GPR64:$Rm),
"umulh\t$Rd, $Rn, $Rm",
[(set i64:$Rd, (mulhu i64:$Rn, i64:$Rm))],
NoItinerary>;
def SMULHxxx : A64I_dp3<0b1, 0b000100, (outs GPR64:$Rd),
(ins GPR64:$Rn, GPR64:$Rm),
"smulh\t$Rd, $Rn, $Rm",
[(set i64:$Rd, (mulhs i64:$Rn, i64:$Rm))],
NoItinerary>;
}
multiclass A64I_dp3_3operand<string asmop, A64I_dp3_4operand INST,
Register ZR, dag pattern> {
def : InstAlias<asmop # " $Rd, $Rn, $Rm",
(INST INST.AccGPR:$Rd, INST.SrcGPR:$Rn, INST.SrcGPR:$Rm, ZR)>;
def : Pat<pattern, (INST $Rn, $Rm, ZR)>;
}
defm : A64I_dp3_3operand<"mul", MADDwwww, WZR, (mul i32:$Rn, i32:$Rm)>;
defm : A64I_dp3_3operand<"mul", MADDxxxx, XZR, (mul i64:$Rn, i64:$Rm)>;
defm : A64I_dp3_3operand<"mneg", MSUBwwww, WZR,
(sub 0, (mul i32:$Rn, i32:$Rm))>;
defm : A64I_dp3_3operand<"mneg", MSUBxxxx, XZR,
(sub 0, (mul i64:$Rn, i64:$Rm))>;
defm : A64I_dp3_3operand<"smull", SMADDLxwwx, XZR,
(mul (i64 (sext i32:$Rn)), (sext i32:$Rm))>;
defm : A64I_dp3_3operand<"smnegl", SMSUBLxwwx, XZR,
(sub 0, (mul (i64 (sext i32:$Rn)), (sext i32:$Rm)))>;
defm : A64I_dp3_3operand<"umull", UMADDLxwwx, XZR,
(mul (i64 (zext i32:$Rn)), (zext i32:$Rm))>;
defm : A64I_dp3_3operand<"umnegl", UMSUBLxwwx, XZR,
(sub 0, (mul (i64 (zext i32:$Rn)), (zext i32:$Rm)))>;
//===----------------------------------------------------------------------===//
// Exception generation
//===----------------------------------------------------------------------===//
// Contains: SVC, HVC, SMC, BRK, HLT, DCPS1, DCPS2, DCPS3
def uimm16_asmoperand : AsmOperandClass {
let Name = "UImm16";
let PredicateMethod = "isUImm<16>";
let RenderMethod = "addImmOperands";
let DiagnosticType = "UImm16";
}
def uimm16 : Operand<i32> {
let ParserMatchClass = uimm16_asmoperand;
}
class A64I_exceptImpl<bits<3> opc, bits<2> ll, string asmop>
: A64I_exception<opc, 0b000, ll, (outs), (ins uimm16:$UImm16),
!strconcat(asmop, "\t$UImm16"), [], NoItinerary> {
let isBranch = 1;
let isTerminator = 1;
}
def SVCi : A64I_exceptImpl<0b000, 0b01, "svc">;
def HVCi : A64I_exceptImpl<0b000, 0b10, "hvc">;
def SMCi : A64I_exceptImpl<0b000, 0b11, "smc">;
def BRKi : A64I_exceptImpl<0b001, 0b00, "brk">;
def HLTi : A64I_exceptImpl<0b010, 0b00, "hlt">;
def DCPS1i : A64I_exceptImpl<0b101, 0b01, "dcps1">;
def DCPS2i : A64I_exceptImpl<0b101, 0b10, "dcps2">;
def DCPS3i : A64I_exceptImpl<0b101, 0b11, "dcps3">;
// The immediate is optional for the DCPS instructions, defaulting to 0.
def : InstAlias<"dcps1", (DCPS1i 0)>;
def : InstAlias<"dcps2", (DCPS2i 0)>;
def : InstAlias<"dcps3", (DCPS3i 0)>;
//===----------------------------------------------------------------------===//
// Extract (immediate)
//===----------------------------------------------------------------------===//
// Contains: EXTR + alias ROR
def EXTRwwwi : A64I_extract<0b0, 0b000, 0b0,
(outs GPR32:$Rd),
(ins GPR32:$Rn, GPR32:$Rm, bitfield32_imm:$LSB),
"extr\t$Rd, $Rn, $Rm, $LSB",
[(set i32:$Rd,
(A64Extr i32:$Rn, i32:$Rm, imm:$LSB))],
NoItinerary>;
def EXTRxxxi : A64I_extract<0b1, 0b000, 0b1,
(outs GPR64:$Rd),
(ins GPR64:$Rn, GPR64:$Rm, bitfield64_imm:$LSB),
"extr\t$Rd, $Rn, $Rm, $LSB",
[(set i64:$Rd,
(A64Extr i64:$Rn, i64:$Rm, imm:$LSB))],
NoItinerary>;
def : InstAlias<"ror $Rd, $Rs, $LSB",
(EXTRwwwi GPR32:$Rd, GPR32:$Rs, GPR32:$Rs, bitfield32_imm:$LSB)>;
def : InstAlias<"ror $Rd, $Rs, $LSB",
(EXTRxxxi GPR64:$Rd, GPR64:$Rs, GPR64:$Rs, bitfield64_imm:$LSB)>;
def : Pat<(rotr i32:$Rn, bitfield32_imm:$LSB),
(EXTRwwwi $Rn, $Rn, bitfield32_imm:$LSB)>;
def : Pat<(rotr i64:$Rn, bitfield64_imm:$LSB),
(EXTRxxxi $Rn, $Rn, bitfield64_imm:$LSB)>;
//===----------------------------------------------------------------------===//
// Floating-point compare instructions
//===----------------------------------------------------------------------===//
// Contains: FCMP, FCMPE
def fpzero_asmoperand : AsmOperandClass {
let Name = "FPZero";
let ParserMethod = "ParseFPImmOperand";
let DiagnosticType = "FPZero";
}
def fpz32 : Operand<f32>,
ComplexPattern<f32, 1, "SelectFPZeroOperand", [fpimm]> {
let ParserMatchClass = fpzero_asmoperand;
let PrintMethod = "printFPZeroOperand";
let DecoderMethod = "DecodeFPZeroOperand";
}
def fpz64 : Operand<f64>,
ComplexPattern<f64, 1, "SelectFPZeroOperand", [fpimm]> {
let ParserMatchClass = fpzero_asmoperand;
let PrintMethod = "printFPZeroOperand";
let DecoderMethod = "DecodeFPZeroOperand";
}
multiclass A64I_fpcmpSignal<bits<2> type, bit imm, dag ins, dag pattern> {
def _quiet : A64I_fpcmp<0b0, 0b0, type, 0b00, {0b0, imm, 0b0, 0b0, 0b0},
(outs), ins, "fcmp\t$Rn, $Rm", [pattern],
NoItinerary> {
let Defs = [NZCV];
}
def _sig : A64I_fpcmp<0b0, 0b0, type, 0b00, {0b1, imm, 0b0, 0b0, 0b0},
(outs), ins, "fcmpe\t$Rn, $Rm", [], NoItinerary> {
let Defs = [NZCV];
}
}
defm FCMPss : A64I_fpcmpSignal<0b00, 0b0, (ins FPR32:$Rn, FPR32:$Rm),
(set NZCV, (A64cmp f32:$Rn, f32:$Rm))>;
defm FCMPdd : A64I_fpcmpSignal<0b01, 0b0, (ins FPR64:$Rn, FPR64:$Rm),
(set NZCV, (A64cmp f64:$Rn, f64:$Rm))>;
// What would be Rm should be written as 0; note that even though it's called
// "$Rm" here to fit in with the InstrFormats, it's actually an immediate.
defm FCMPsi : A64I_fpcmpSignal<0b00, 0b1, (ins FPR32:$Rn, fpz32:$Rm),
(set NZCV, (A64cmp f32:$Rn, fpz32:$Rm))>;
defm FCMPdi : A64I_fpcmpSignal<0b01, 0b1, (ins FPR64:$Rn, fpz64:$Rm),
(set NZCV, (A64cmp f64:$Rn, fpz64:$Rm))>;
//===----------------------------------------------------------------------===//
// Floating-point conditional compare instructions
//===----------------------------------------------------------------------===//
// Contains: FCCMP, FCCMPE
class A64I_fpccmpImpl<bits<2> type, bit op, RegisterClass FPR, string asmop>
: A64I_fpccmp<0b0, 0b0, type, op,
(outs),
(ins FPR:$Rn, FPR:$Rm, uimm4:$NZCVImm, cond_code_op:$Cond),
!strconcat(asmop, "\t$Rn, $Rm, $NZCVImm, $Cond"),
[], NoItinerary> {
let Defs = [NZCV];
}
def FCCMPss : A64I_fpccmpImpl<0b00, 0b0, FPR32, "fccmp">;
def FCCMPEss : A64I_fpccmpImpl<0b00, 0b1, FPR32, "fccmpe">;
def FCCMPdd : A64I_fpccmpImpl<0b01, 0b0, FPR64, "fccmp">;
def FCCMPEdd : A64I_fpccmpImpl<0b01, 0b1, FPR64, "fccmpe">;
//===----------------------------------------------------------------------===//
// Floating-point conditional select instructions
//===----------------------------------------------------------------------===//
// Contains: FCSEL
let Uses = [NZCV] in {
def FCSELsssc : A64I_fpcondsel<0b0, 0b0, 0b00, (outs FPR32:$Rd),
(ins FPR32:$Rn, FPR32:$Rm, cond_code_op:$Cond),
"fcsel\t$Rd, $Rn, $Rm, $Cond",
[(set f32:$Rd,
(simple_select f32:$Rn, f32:$Rm))],
NoItinerary>;
def FCSELdddc : A64I_fpcondsel<0b0, 0b0, 0b01, (outs FPR64:$Rd),
(ins FPR64:$Rn, FPR64:$Rm, cond_code_op:$Cond),
"fcsel\t$Rd, $Rn, $Rm, $Cond",
[(set f64:$Rd,
(simple_select f64:$Rn, f64:$Rm))],
NoItinerary>;
}
//===----------------------------------------------------------------------===//
// Floating-point data-processing (1 source)
//===----------------------------------------------------------------------===//
// Contains: FMOV, FABS, FNEG, FSQRT, FCVT, FRINT[NPMZAXI].
def FPNoUnop : PatFrag<(ops node:$val), (fneg node:$val),
[{ (void)N; return false; }]>;
// First we do the fairly trivial bunch with uniform "OP s, s" and "OP d, d"
// syntax. Default to no pattern because most are odd enough not to have one.
multiclass A64I_fpdp1sizes<bits<6> opcode, string asmstr,
SDPatternOperator opnode = FPNoUnop> {
def ss : A64I_fpdp1<0b0, 0b0, 0b00, opcode, (outs FPR32:$Rd), (ins FPR32:$Rn),
!strconcat(asmstr, "\t$Rd, $Rn"),
[(set f32:$Rd, (opnode f32:$Rn))],
NoItinerary>;
def dd : A64I_fpdp1<0b0, 0b0, 0b01, opcode, (outs FPR64:$Rd), (ins FPR64:$Rn),
!strconcat(asmstr, "\t$Rd, $Rn"),
[(set f64:$Rd, (opnode f64:$Rn))],
NoItinerary>;
}
defm FMOV : A64I_fpdp1sizes<0b000000, "fmov">;
defm FABS : A64I_fpdp1sizes<0b000001, "fabs", fabs>;
defm FNEG : A64I_fpdp1sizes<0b000010, "fneg", fneg>;
defm FSQRT : A64I_fpdp1sizes<0b000011, "fsqrt", fsqrt>;
defm FRINTN : A64I_fpdp1sizes<0b001000, "frintn">;
defm FRINTP : A64I_fpdp1sizes<0b001001, "frintp", fceil>;
defm FRINTM : A64I_fpdp1sizes<0b001010, "frintm", ffloor>;
defm FRINTZ : A64I_fpdp1sizes<0b001011, "frintz", ftrunc>;
defm FRINTA : A64I_fpdp1sizes<0b001100, "frinta">;
defm FRINTX : A64I_fpdp1sizes<0b001110, "frintx", frint>;
defm FRINTI : A64I_fpdp1sizes<0b001111, "frinti", fnearbyint>;
// The FCVT instrucitons have different source and destination register-types,
// but the fields are uniform everywhere a D-register (say) crops up. Package
// this information in a Record.
class FCVTRegType<RegisterClass rc, bits<2> fld, ValueType vt> {
RegisterClass Class = rc;
ValueType VT = vt;
bit t1 = fld{1};
bit t0 = fld{0};
}
def FCVT16 : FCVTRegType<FPR16, 0b11, f16>;
def FCVT32 : FCVTRegType<FPR32, 0b00, f32>;
def FCVT64 : FCVTRegType<FPR64, 0b01, f64>;
class A64I_fpdp1_fcvt<FCVTRegType DestReg, FCVTRegType SrcReg, SDNode opnode>
: A64I_fpdp1<0b0, 0b0, {SrcReg.t1, SrcReg.t0},
{0,0,0,1, DestReg.t1, DestReg.t0},
(outs DestReg.Class:$Rd), (ins SrcReg.Class:$Rn),
"fcvt\t$Rd, $Rn",
[(set DestReg.VT:$Rd, (opnode SrcReg.VT:$Rn))], NoItinerary>;
def FCVTds : A64I_fpdp1_fcvt<FCVT64, FCVT32, fextend>;
def FCVThs : A64I_fpdp1_fcvt<FCVT16, FCVT32, fround>;
def FCVTsd : A64I_fpdp1_fcvt<FCVT32, FCVT64, fround>;
def FCVThd : A64I_fpdp1_fcvt<FCVT16, FCVT64, fround>;
def FCVTsh : A64I_fpdp1_fcvt<FCVT32, FCVT16, fextend>;
def FCVTdh : A64I_fpdp1_fcvt<FCVT64, FCVT16, fextend>;
//===----------------------------------------------------------------------===//
// Floating-point data-processing (2 sources) instructions
//===----------------------------------------------------------------------===//
// Contains: FMUL, FDIV, FADD, FSUB, FMAX, FMIN, FMAXNM, FMINNM, FNMUL
def FPNoBinop : PatFrag<(ops node:$lhs, node:$rhs), (fadd node:$lhs, node:$rhs),
[{ (void)N; return false; }]>;
multiclass A64I_fpdp2sizes<bits<4> opcode, string asmstr,
SDPatternOperator opnode> {
def sss : A64I_fpdp2<0b0, 0b0, 0b00, opcode,
(outs FPR32:$Rd),
(ins FPR32:$Rn, FPR32:$Rm),
!strconcat(asmstr, "\t$Rd, $Rn, $Rm"),
[(set f32:$Rd, (opnode f32:$Rn, f32:$Rm))],
NoItinerary>;
def ddd : A64I_fpdp2<0b0, 0b0, 0b01, opcode,
(outs FPR64:$Rd),
(ins FPR64:$Rn, FPR64:$Rm),
!strconcat(asmstr, "\t$Rd, $Rn, $Rm"),
[(set f64:$Rd, (opnode f64:$Rn, f64:$Rm))],
NoItinerary>;
}
let isCommutable = 1 in {
defm FMUL : A64I_fpdp2sizes<0b0000, "fmul", fmul>;
defm FADD : A64I_fpdp2sizes<0b0010, "fadd", fadd>;
// No patterns for these.
defm FMAX : A64I_fpdp2sizes<0b0100, "fmax", FPNoBinop>;
defm FMIN : A64I_fpdp2sizes<0b0101, "fmin", FPNoBinop>;
defm FMAXNM : A64I_fpdp2sizes<0b0110, "fmaxnm", FPNoBinop>;
defm FMINNM : A64I_fpdp2sizes<0b0111, "fminnm", FPNoBinop>;
defm FNMUL : A64I_fpdp2sizes<0b1000, "fnmul",
PatFrag<(ops node:$lhs, node:$rhs),
(fneg (fmul node:$lhs, node:$rhs))> >;
}
defm FDIV : A64I_fpdp2sizes<0b0001, "fdiv", fdiv>;
defm FSUB : A64I_fpdp2sizes<0b0011, "fsub", fsub>;
//===----------------------------------------------------------------------===//
// Floating-point data-processing (3 sources) instructions
//===----------------------------------------------------------------------===//
// Contains: FMADD, FMSUB, FNMADD, FNMSUB
def fmsub : PatFrag<(ops node:$Rn, node:$Rm, node:$Ra),
(fma (fneg node:$Rn), node:$Rm, node:$Ra)>;
def fnmadd : PatFrag<(ops node:$Rn, node:$Rm, node:$Ra),
(fma node:$Rn, node:$Rm, (fneg node:$Ra))>;
def fnmsub : PatFrag<(ops node:$Rn, node:$Rm, node:$Ra),
(fma (fneg node:$Rn), node:$Rm, (fneg node:$Ra))>;
class A64I_fpdp3Impl<string asmop, RegisterClass FPR, ValueType VT,
bits<2> type, bit o1, bit o0, SDPatternOperator fmakind>
: A64I_fpdp3<0b0, 0b0, type, o1, o0, (outs FPR:$Rd),
(ins FPR:$Rn, FPR:$Rm, FPR:$Ra),
!strconcat(asmop,"\t$Rd, $Rn, $Rm, $Ra"),
[(set VT:$Rd, (fmakind VT:$Rn, VT:$Rm, VT:$Ra))],
NoItinerary>;
def FMADDssss : A64I_fpdp3Impl<"fmadd", FPR32, f32, 0b00, 0b0, 0b0, fma>;
def FMSUBssss : A64I_fpdp3Impl<"fmsub", FPR32, f32, 0b00, 0b0, 0b1, fmsub>;
def FNMADDssss : A64I_fpdp3Impl<"fnmadd", FPR32, f32, 0b00, 0b1, 0b0, fnmadd>;
def FNMSUBssss : A64I_fpdp3Impl<"fnmsub", FPR32, f32, 0b00, 0b1, 0b1, fnmsub>;
def FMADDdddd : A64I_fpdp3Impl<"fmadd", FPR64, f64, 0b01, 0b0, 0b0, fma>;
def FMSUBdddd : A64I_fpdp3Impl<"fmsub", FPR64, f64, 0b01, 0b0, 0b1, fmsub>;
def FNMADDdddd : A64I_fpdp3Impl<"fnmadd", FPR64, f64, 0b01, 0b1, 0b0, fnmadd>;
def FNMSUBdddd : A64I_fpdp3Impl<"fnmsub", FPR64, f64, 0b01, 0b1, 0b1, fnmsub>;
// Extra patterns for when we're allowed to optimise separate multiplication and
// addition.
let Predicates = [UseFusedMAC] in {
def : Pat<(f32 (fadd FPR32:$Ra, (f32 (fmul FPR32:$Rn, FPR32:$Rm)))),
(FMADDssss FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
def : Pat<(f32 (fsub FPR32:$Ra, (f32 (fmul FPR32:$Rn, FPR32:$Rm)))),
(FMSUBssss FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
def : Pat<(f32 (fsub (f32 (fmul FPR32:$Rn, FPR32:$Rm)), FPR32:$Ra)),
(FNMADDssss FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
def : Pat<(f32 (fsub (f32 (fneg FPR32:$Ra)), (f32 (fmul FPR32:$Rn, FPR32:$Rm)))),
(FNMSUBssss FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
def : Pat<(f64 (fadd FPR64:$Ra, (f64 (fmul FPR64:$Rn, FPR64:$Rm)))),
(FMADDdddd FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
def : Pat<(f64 (fsub FPR64:$Ra, (f64 (fmul FPR64:$Rn, FPR64:$Rm)))),
(FMSUBdddd FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
def : Pat<(f64 (fsub (f64 (fmul FPR64:$Rn, FPR64:$Rm)), FPR64:$Ra)),
(FNMADDdddd FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
def : Pat<(f64 (fsub (f64 (fneg FPR64:$Ra)), (f64 (fmul FPR64:$Rn, FPR64:$Rm)))),
(FNMSUBdddd FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
}
//===----------------------------------------------------------------------===//
// Floating-point <-> fixed-point conversion instructions
//===----------------------------------------------------------------------===//
// Contains: FCVTZS, FCVTZU, SCVTF, UCVTF
// #1-#32 allowed, encoded as "64 - <specified imm>
def fixedpos_asmoperand_i32 : AsmOperandClass {
let Name = "CVTFixedPos32";
let RenderMethod = "addCVTFixedPosOperands";
let PredicateMethod = "isCVTFixedPos<32>";
let DiagnosticType = "CVTFixedPos32";
}
// Also encoded as "64 - <specified imm>" but #1-#64 allowed.
def fixedpos_asmoperand_i64 : AsmOperandClass {
let Name = "CVTFixedPos64";
let RenderMethod = "addCVTFixedPosOperands";
let PredicateMethod = "isCVTFixedPos<64>";
let DiagnosticType = "CVTFixedPos64";
}
// We need the cartesian product of f32/f64 i32/i64 operands for
// conversions:
// + Selection needs to use operands of correct floating type
// + Assembly parsing and decoding depend on integer width
class cvtfix_i32_op<ValueType FloatVT>
: Operand<FloatVT>,
ComplexPattern<FloatVT, 1, "SelectCVTFixedPosOperand<32>", [fpimm]> {
let ParserMatchClass = fixedpos_asmoperand_i32;
let DecoderMethod = "DecodeCVT32FixedPosOperand";
let PrintMethod = "printCVTFixedPosOperand";
}
class cvtfix_i64_op<ValueType FloatVT>
: Operand<FloatVT>,
ComplexPattern<FloatVT, 1, "SelectCVTFixedPosOperand<64>", [fpimm]> {
let ParserMatchClass = fixedpos_asmoperand_i64;
let PrintMethod = "printCVTFixedPosOperand";
}
// Because of the proliferation of weird operands, it's not really
// worth going for a multiclass here. Oh well.
class A64I_fptofix<bit sf, bits<2> type, bits<3> opcode,
RegisterClass GPR, RegisterClass FPR,
ValueType DstTy, ValueType SrcTy,
Operand scale_op, string asmop, SDNode cvtop>
: A64I_fpfixed<sf, 0b0, type, 0b11, opcode,
(outs GPR:$Rd), (ins FPR:$Rn, scale_op:$Scale),
!strconcat(asmop, "\t$Rd, $Rn, $Scale"),
[(set DstTy:$Rd, (cvtop (fmul SrcTy:$Rn, scale_op:$Scale)))],
NoItinerary>;
def FCVTZSwsi : A64I_fptofix<0b0, 0b00, 0b000, GPR32, FPR32, i32, f32,
cvtfix_i32_op<f32>, "fcvtzs", fp_to_sint>;
def FCVTZSxsi : A64I_fptofix<0b1, 0b00, 0b000, GPR64, FPR32, i64, f32,
cvtfix_i64_op<f32>, "fcvtzs", fp_to_sint>;
def FCVTZUwsi : A64I_fptofix<0b0, 0b00, 0b001, GPR32, FPR32, i32, f32,
cvtfix_i32_op<f32>, "fcvtzu", fp_to_uint>;
def FCVTZUxsi : A64I_fptofix<0b1, 0b00, 0b001, GPR64, FPR32, i64, f32,
cvtfix_i64_op<f32>, "fcvtzu", fp_to_uint>;
def FCVTZSwdi : A64I_fptofix<0b0, 0b01, 0b000, GPR32, FPR64, i32, f64,
cvtfix_i32_op<f64>, "fcvtzs", fp_to_sint>;
def FCVTZSxdi : A64I_fptofix<0b1, 0b01, 0b000, GPR64, FPR64, i64, f64,
cvtfix_i64_op<f64>, "fcvtzs", fp_to_sint>;
def FCVTZUwdi : A64I_fptofix<0b0, 0b01, 0b001, GPR32, FPR64, i32, f64,
cvtfix_i32_op<f64>, "fcvtzu", fp_to_uint>;
def FCVTZUxdi : A64I_fptofix<0b1, 0b01, 0b001, GPR64, FPR64, i64, f64,
cvtfix_i64_op<f64>, "fcvtzu", fp_to_uint>;
class A64I_fixtofp<bit sf, bits<2> type, bits<3> opcode,
RegisterClass FPR, RegisterClass GPR,
ValueType DstTy, ValueType SrcTy,
Operand scale_op, string asmop, SDNode cvtop>
: A64I_fpfixed<sf, 0b0, type, 0b00, opcode,
(outs FPR:$Rd), (ins GPR:$Rn, scale_op:$Scale),
!strconcat(asmop, "\t$Rd, $Rn, $Scale"),
[(set DstTy:$Rd, (fdiv (cvtop SrcTy:$Rn), scale_op:$Scale))],
NoItinerary>;
def SCVTFswi : A64I_fixtofp<0b0, 0b00, 0b010, FPR32, GPR32, f32, i32,
cvtfix_i32_op<f32>, "scvtf", sint_to_fp>;
def SCVTFsxi : A64I_fixtofp<0b1, 0b00, 0b010, FPR32, GPR64, f32, i64,
cvtfix_i64_op<f32>, "scvtf", sint_to_fp>;
def UCVTFswi : A64I_fixtofp<0b0, 0b00, 0b011, FPR32, GPR32, f32, i32,
cvtfix_i32_op<f32>, "ucvtf", uint_to_fp>;
def UCVTFsxi : A64I_fixtofp<0b1, 0b00, 0b011, FPR32, GPR64, f32, i64,
cvtfix_i64_op<f32>, "ucvtf", uint_to_fp>;
def SCVTFdwi : A64I_fixtofp<0b0, 0b01, 0b010, FPR64, GPR32, f64, i32,
cvtfix_i32_op<f64>, "scvtf", sint_to_fp>;
def SCVTFdxi : A64I_fixtofp<0b1, 0b01, 0b010, FPR64, GPR64, f64, i64,
cvtfix_i64_op<f64>, "scvtf", sint_to_fp>;
def UCVTFdwi : A64I_fixtofp<0b0, 0b01, 0b011, FPR64, GPR32, f64, i32,
cvtfix_i32_op<f64>, "ucvtf", uint_to_fp>;
def UCVTFdxi : A64I_fixtofp<0b1, 0b01, 0b011, FPR64, GPR64, f64, i64,
cvtfix_i64_op<f64>, "ucvtf", uint_to_fp>;
//===----------------------------------------------------------------------===//
// Floating-point <-> integer conversion instructions
//===----------------------------------------------------------------------===//
// Contains: FCVTZS, FCVTZU, SCVTF, UCVTF
class A64I_fpintI<bit sf, bits<2> type, bits<2> rmode, bits<3> opcode,
RegisterClass DestPR, RegisterClass SrcPR, string asmop>
: A64I_fpint<sf, 0b0, type, rmode, opcode, (outs DestPR:$Rd), (ins SrcPR:$Rn),
!strconcat(asmop, "\t$Rd, $Rn"), [], NoItinerary>;
multiclass A64I_fptointRM<bits<2> rmode, bit o2, string asmop> {
def Sws : A64I_fpintI<0b0, 0b00, rmode, {o2, 0, 0},
GPR32, FPR32, asmop # "s">;
def Sxs : A64I_fpintI<0b1, 0b00, rmode, {o2, 0, 0},
GPR64, FPR32, asmop # "s">;
def Uws : A64I_fpintI<0b0, 0b00, rmode, {o2, 0, 1},
GPR32, FPR32, asmop # "u">;
def Uxs : A64I_fpintI<0b1, 0b00, rmode, {o2, 0, 1},
GPR64, FPR32, asmop # "u">;
def Swd : A64I_fpintI<0b0, 0b01, rmode, {o2, 0, 0},
GPR32, FPR64, asmop # "s">;
def Sxd : A64I_fpintI<0b1, 0b01, rmode, {o2, 0, 0},
GPR64, FPR64, asmop # "s">;
def Uwd : A64I_fpintI<0b0, 0b01, rmode, {o2, 0, 1},
GPR32, FPR64, asmop # "u">;
def Uxd : A64I_fpintI<0b1, 0b01, rmode, {o2, 0, 1},
GPR64, FPR64, asmop # "u">;
}
defm FCVTN : A64I_fptointRM<0b00, 0b0, "fcvtn">;
defm FCVTP : A64I_fptointRM<0b01, 0b0, "fcvtp">;
defm FCVTM : A64I_fptointRM<0b10, 0b0, "fcvtm">;
defm FCVTZ : A64I_fptointRM<0b11, 0b0, "fcvtz">;
defm FCVTA : A64I_fptointRM<0b00, 0b1, "fcvta">;
def : Pat<(i32 (fp_to_sint f32:$Rn)), (FCVTZSws $Rn)>;
def : Pat<(i64 (fp_to_sint f32:$Rn)), (FCVTZSxs $Rn)>;
def : Pat<(i32 (fp_to_uint f32:$Rn)), (FCVTZUws $Rn)>;
def : Pat<(i64 (fp_to_uint f32:$Rn)), (FCVTZUxs $Rn)>;
def : Pat<(i32 (fp_to_sint f64:$Rn)), (FCVTZSwd $Rn)>;
def : Pat<(i64 (fp_to_sint f64:$Rn)), (FCVTZSxd $Rn)>;
def : Pat<(i32 (fp_to_uint f64:$Rn)), (FCVTZUwd $Rn)>;
def : Pat<(i64 (fp_to_uint f64:$Rn)), (FCVTZUxd $Rn)>;
multiclass A64I_inttofp<bit o0, string asmop> {
def CVTFsw : A64I_fpintI<0b0, 0b00, 0b00, {0, 1, o0}, FPR32, GPR32, asmop>;
def CVTFsx : A64I_fpintI<0b1, 0b00, 0b00, {0, 1, o0}, FPR32, GPR64, asmop>;
def CVTFdw : A64I_fpintI<0b0, 0b01, 0b00, {0, 1, o0}, FPR64, GPR32, asmop>;
def CVTFdx : A64I_fpintI<0b1, 0b01, 0b00, {0, 1, o0}, FPR64, GPR64, asmop>;
}
defm S : A64I_inttofp<0b0, "scvtf">;
defm U : A64I_inttofp<0b1, "ucvtf">;
def : Pat<(f32 (sint_to_fp i32:$Rn)), (SCVTFsw $Rn)>;
def : Pat<(f32 (sint_to_fp i64:$Rn)), (SCVTFsx $Rn)>;
def : Pat<(f64 (sint_to_fp i32:$Rn)), (SCVTFdw $Rn)>;
def : Pat<(f64 (sint_to_fp i64:$Rn)), (SCVTFdx $Rn)>;
def : Pat<(f32 (uint_to_fp i32:$Rn)), (UCVTFsw $Rn)>;
def : Pat<(f32 (uint_to_fp i64:$Rn)), (UCVTFsx $Rn)>;
def : Pat<(f64 (uint_to_fp i32:$Rn)), (UCVTFdw $Rn)>;
def : Pat<(f64 (uint_to_fp i64:$Rn)), (UCVTFdx $Rn)>;
def FMOVws : A64I_fpintI<0b0, 0b00, 0b00, 0b110, GPR32, FPR32, "fmov">;
def FMOVsw : A64I_fpintI<0b0, 0b00, 0b00, 0b111, FPR32, GPR32, "fmov">;
def FMOVxd : A64I_fpintI<0b1, 0b01, 0b00, 0b110, GPR64, FPR64, "fmov">;
def FMOVdx : A64I_fpintI<0b1, 0b01, 0b00, 0b111, FPR64, GPR64, "fmov">;
def : Pat<(i32 (bitconvert f32:$Rn)), (FMOVws $Rn)>;
def : Pat<(f32 (bitconvert i32:$Rn)), (FMOVsw $Rn)>;
def : Pat<(i64 (bitconvert f64:$Rn)), (FMOVxd $Rn)>;
def : Pat<(f64 (bitconvert i64:$Rn)), (FMOVdx $Rn)>;
def lane1_asmoperand : AsmOperandClass {
let Name = "Lane1";
let RenderMethod = "addImmOperands";
let DiagnosticType = "Lane1";
}
def lane1 : Operand<i32> {
let ParserMatchClass = lane1_asmoperand;
let PrintMethod = "printBareImmOperand";
}
let DecoderMethod = "DecodeFMOVLaneInstruction" in {
def FMOVxv : A64I_fpint<0b1, 0b0, 0b10, 0b01, 0b110,
(outs GPR64:$Rd), (ins VPR128:$Rn, lane1:$Lane),
"fmov\t$Rd, $Rn.d[$Lane]", [], NoItinerary>;
def FMOVvx : A64I_fpint<0b1, 0b0, 0b10, 0b01, 0b111,
(outs VPR128:$Rd), (ins GPR64:$Rn, lane1:$Lane),
"fmov\t$Rd.d[$Lane], $Rn", [], NoItinerary>;
}
def : InstAlias<"fmov $Rd, $Rn.2d[$Lane]",
(FMOVxv GPR64:$Rd, VPR128:$Rn, lane1:$Lane), 0b0>;
def : InstAlias<"fmov $Rd.2d[$Lane], $Rn",
(FMOVvx VPR128:$Rd, GPR64:$Rn, lane1:$Lane), 0b0>;
//===----------------------------------------------------------------------===//
// Floating-point immediate instructions
//===----------------------------------------------------------------------===//
// Contains: FMOV
def fpimm_asmoperand : AsmOperandClass {
let Name = "FMOVImm";
let ParserMethod = "ParseFPImmOperand";
let DiagnosticType = "FPImm";
}
// The MCOperand for these instructions are the encoded 8-bit values.
def SDXF_fpimm : SDNodeXForm<fpimm, [{
uint32_t Imm8;
A64Imms::isFPImm(N->getValueAPF(), Imm8);
return CurDAG->getTargetConstant(Imm8, MVT::i32);
}]>;
class fmov_operand<ValueType FT>
: Operand<i32>,
PatLeaf<(FT fpimm), [{ return A64Imms::isFPImm(N->getValueAPF()); }],
SDXF_fpimm> {
let PrintMethod = "printFPImmOperand";
let ParserMatchClass = fpimm_asmoperand;
}
def fmov32_operand : fmov_operand<f32>;
def fmov64_operand : fmov_operand<f64>;
class A64I_fpimm_impl<bits<2> type, RegisterClass Reg, ValueType VT,
Operand fmov_operand>
: A64I_fpimm<0b0, 0b0, type, 0b00000,
(outs Reg:$Rd),
(ins fmov_operand:$Imm8),
"fmov\t$Rd, $Imm8",
[(set VT:$Rd, fmov_operand:$Imm8)],
NoItinerary>;
def FMOVsi : A64I_fpimm_impl<0b00, FPR32, f32, fmov32_operand>;
def FMOVdi : A64I_fpimm_impl<0b01, FPR64, f64, fmov64_operand>;
//===----------------------------------------------------------------------===//
// Load-register (literal) instructions
//===----------------------------------------------------------------------===//
// Contains: LDR, LDRSW, PRFM
def ldrlit_label_asmoperand : AsmOperandClass {
let Name = "LoadLitLabel";
let RenderMethod = "addLabelOperands<19, 4>";
let DiagnosticType = "Label";
}
def ldrlit_label : Operand<i64> {
let EncoderMethod = "getLoadLitLabelOpValue";
// This label is a 19-bit offset from PC, scaled by the instruction-width: 4.
let PrintMethod = "printLabelOperand<19, 4>";
let ParserMatchClass = ldrlit_label_asmoperand;
let OperandType = "OPERAND_PCREL";
}
// Various instructions take an immediate value (which can always be used),
// where some numbers have a symbolic name to make things easier. These operands
// and the associated functions abstract away the differences.
multiclass namedimm<string prefix, string mapper> {
def _asmoperand : AsmOperandClass {
let Name = "NamedImm" # prefix;
let PredicateMethod = "isUImm";
let RenderMethod = "addImmOperands";
let ParserMethod = "ParseNamedImmOperand<" # mapper # ">";
let DiagnosticType = "NamedImm_" # prefix;
}
def _op : Operand<i32> {
let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_asmoperand");
let PrintMethod = "printNamedImmOperand<" # mapper # ">";
let DecoderMethod = "DecodeNamedImmOperand<" # mapper # ">";
}
}
defm prefetch : namedimm<"prefetch", "A64PRFM::PRFMMapper">;
class A64I_LDRlitSimple<bits<2> opc, bit v, RegisterClass OutReg,
list<dag> patterns = []>
: A64I_LDRlit<opc, v, (outs OutReg:$Rt), (ins ldrlit_label:$Imm19),
"ldr\t$Rt, $Imm19", patterns, NoItinerary>;
let mayLoad = 1 in {
def LDRw_lit : A64I_LDRlitSimple<0b00, 0b0, GPR32>;
def LDRx_lit : A64I_LDRlitSimple<0b01, 0b0, GPR64>;
}
def LDRs_lit : A64I_LDRlitSimple<0b00, 0b1, FPR32>;
def LDRd_lit : A64I_LDRlitSimple<0b01, 0b1, FPR64>;
let mayLoad = 1 in {
def LDRq_lit : A64I_LDRlitSimple<0b10, 0b1, FPR128>;
def LDRSWx_lit : A64I_LDRlit<0b10, 0b0,
(outs GPR64:$Rt),
(ins ldrlit_label:$Imm19),
"ldrsw\t$Rt, $Imm19",
[], NoItinerary>;
def PRFM_lit : A64I_LDRlit<0b11, 0b0,
(outs), (ins prefetch_op:$Rt, ldrlit_label:$Imm19),
"prfm\t$Rt, $Imm19",
[], NoItinerary>;
}
//===----------------------------------------------------------------------===//
// Load-store exclusive instructions
//===----------------------------------------------------------------------===//
// Contains: STXRB, STXRH, STXR, LDXRB, LDXRH, LDXR. STXP, LDXP, STLXRB,
// STLXRH, STLXR, LDAXRB, LDAXRH, LDAXR, STLXP, LDAXP, STLRB,
// STLRH, STLR, LDARB, LDARH, LDAR
// Since these instructions have the undefined register bits set to 1 in
// their canonical form, we need a post encoder method to set those bits
// to 1 when encoding these instructions. We do this using the
// fixLoadStoreExclusive function. This function has template parameters:
//
// fixLoadStoreExclusive<int hasRs, int hasRt2>
//
// hasRs indicates that the instruction uses the Rs field, so we won't set
// it to 1 (and the same for Rt2). We don't need template parameters for
// the other register fiels since Rt and Rn are always used.
// This operand parses a GPR64xsp register, followed by an optional immediate
// #0.
def GPR64xsp0_asmoperand : AsmOperandClass {
let Name = "GPR64xsp0";
let PredicateMethod = "isWrappedReg";
let RenderMethod = "addRegOperands";
let ParserMethod = "ParseLSXAddressOperand";
// Diagnostics are provided by ParserMethod
}
def GPR64xsp0 : RegisterOperand<GPR64xsp> {
let ParserMatchClass = GPR64xsp0_asmoperand;
}
//===----------------------------------
// Store-exclusive (releasing & normal)
//===----------------------------------
class A64I_SRexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
dag ins, list<dag> pat,
InstrItinClass itin> :
A64I_LDSTex_stn <size,
opcode{2}, 0, opcode{1}, opcode{0},
outs, ins,
!strconcat(asm, "\t$Rs, $Rt, [$Rn]"),
pat, itin> {
let mayStore = 1;
let PostEncoderMethod = "fixLoadStoreExclusive<1,0>";
}
multiclass A64I_SRex<string asmstr, bits<3> opcode, string prefix> {
def _byte: A64I_SRexs_impl<0b00, opcode, !strconcat(asmstr, "b"),
(outs GPR32:$Rs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
[], NoItinerary>;
def _hword: A64I_SRexs_impl<0b01, opcode, !strconcat(asmstr, "h"),
(outs GPR32:$Rs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
[],NoItinerary>;
def _word: A64I_SRexs_impl<0b10, opcode, asmstr,
(outs GPR32:$Rs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
[], NoItinerary>;
def _dword: A64I_SRexs_impl<0b11, opcode, asmstr,
(outs GPR32:$Rs), (ins GPR64:$Rt, GPR64xsp0:$Rn),
[], NoItinerary>;
}
defm STXR : A64I_SRex<"stxr", 0b000, "STXR">;
defm STLXR : A64I_SRex<"stlxr", 0b001, "STLXR">;
//===----------------------------------
// Loads
//===----------------------------------
class A64I_LRexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
dag ins, list<dag> pat,
InstrItinClass itin> :
A64I_LDSTex_tn <size,
opcode{2}, 1, opcode{1}, opcode{0},
outs, ins,
!strconcat(asm, "\t$Rt, [$Rn]"),
pat, itin> {
let mayLoad = 1;
let PostEncoderMethod = "fixLoadStoreExclusive<0,0>";
}
multiclass A64I_LRex<string asmstr, bits<3> opcode> {
def _byte: A64I_LRexs_impl<0b00, opcode, !strconcat(asmstr, "b"),
(outs GPR32:$Rt), (ins GPR64xsp0:$Rn),
[], NoItinerary>;
def _hword: A64I_LRexs_impl<0b01, opcode, !strconcat(asmstr, "h"),
(outs GPR32:$Rt), (ins GPR64xsp0:$Rn),
[], NoItinerary>;
def _word: A64I_LRexs_impl<0b10, opcode, asmstr,
(outs GPR32:$Rt), (ins GPR64xsp0:$Rn),
[], NoItinerary>;
def _dword: A64I_LRexs_impl<0b11, opcode, asmstr,
(outs GPR64:$Rt), (ins GPR64xsp0:$Rn),
[], NoItinerary>;
}
defm LDXR : A64I_LRex<"ldxr", 0b000>;
defm LDAXR : A64I_LRex<"ldaxr", 0b001>;
defm LDAR : A64I_LRex<"ldar", 0b101>;
class acquiring_load<PatFrag base>
: PatFrag<(ops node:$ptr), (base node:$ptr), [{
AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
return Ordering == Acquire || Ordering == SequentiallyConsistent;
}]>;
def atomic_load_acquire_8 : acquiring_load<atomic_load_8>;
def atomic_load_acquire_16 : acquiring_load<atomic_load_16>;
def atomic_load_acquire_32 : acquiring_load<atomic_load_32>;
def atomic_load_acquire_64 : acquiring_load<atomic_load_64>;
def : Pat<(atomic_load_acquire_8 i64:$Rn), (LDAR_byte $Rn)>;
def : Pat<(atomic_load_acquire_16 i64:$Rn), (LDAR_hword $Rn)>;
def : Pat<(atomic_load_acquire_32 i64:$Rn), (LDAR_word $Rn)>;
def : Pat<(atomic_load_acquire_64 i64:$Rn), (LDAR_dword $Rn)>;
//===----------------------------------
// Store-release (no exclusivity)
//===----------------------------------
class A64I_SLexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
dag ins, list<dag> pat,
InstrItinClass itin> :
A64I_LDSTex_tn <size,
opcode{2}, 0, opcode{1}, opcode{0},
outs, ins,
!strconcat(asm, "\t$Rt, [$Rn]"),
pat, itin> {
let mayStore = 1;
let PostEncoderMethod = "fixLoadStoreExclusive<0,0>";
}
class releasing_store<PatFrag base>
: PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
return Ordering == Release || Ordering == SequentiallyConsistent;
}]>;
def atomic_store_release_8 : releasing_store<atomic_store_8>;
def atomic_store_release_16 : releasing_store<atomic_store_16>;
def atomic_store_release_32 : releasing_store<atomic_store_32>;
def atomic_store_release_64 : releasing_store<atomic_store_64>;
multiclass A64I_SLex<string asmstr, bits<3> opcode, string prefix> {
def _byte: A64I_SLexs_impl<0b00, opcode, !strconcat(asmstr, "b"),
(outs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
[(atomic_store_release_8 i64:$Rn, i32:$Rt)],
NoItinerary>;
def _hword: A64I_SLexs_impl<0b01, opcode, !strconcat(asmstr, "h"),
(outs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
[(atomic_store_release_16 i64:$Rn, i32:$Rt)],
NoItinerary>;
def _word: A64I_SLexs_impl<0b10, opcode, asmstr,
(outs), (ins GPR32:$Rt, GPR64xsp0:$Rn),
[(atomic_store_release_32 i64:$Rn, i32:$Rt)],
NoItinerary>;
def _dword: A64I_SLexs_impl<0b11, opcode, asmstr,
(outs), (ins GPR64:$Rt, GPR64xsp0:$Rn),
[(atomic_store_release_64 i64:$Rn, i64:$Rt)],
NoItinerary>;
}
defm STLR : A64I_SLex<"stlr", 0b101, "STLR">;
//===----------------------------------
// Store-exclusive pair (releasing & normal)
//===----------------------------------
class A64I_SPexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
dag ins, list<dag> pat,
InstrItinClass itin> :
A64I_LDSTex_stt2n <size,
opcode{2}, 0, opcode{1}, opcode{0},
outs, ins,
!strconcat(asm, "\t$Rs, $Rt, $Rt2, [$Rn]"),
pat, itin> {
let mayStore = 1;
}
multiclass A64I_SPex<string asmstr, bits<3> opcode> {
def _word: A64I_SPexs_impl<0b10, opcode, asmstr, (outs),
(ins GPR32:$Rs, GPR32:$Rt, GPR32:$Rt2,
GPR64xsp0:$Rn),
[], NoItinerary>;
def _dword: A64I_SPexs_impl<0b11, opcode, asmstr, (outs),
(ins GPR32:$Rs, GPR64:$Rt, GPR64:$Rt2,
GPR64xsp0:$Rn),
[], NoItinerary>;
}
defm STXP : A64I_SPex<"stxp", 0b010>;
defm STLXP : A64I_SPex<"stlxp", 0b011>;
//===----------------------------------
// Load-exclusive pair (acquiring & normal)
//===----------------------------------
class A64I_LPexs_impl<bits<2> size, bits<3> opcode, string asm, dag outs,
dag ins, list<dag> pat,
InstrItinClass itin> :
A64I_LDSTex_tt2n <size,
opcode{2}, 1, opcode{1}, opcode{0},
outs, ins,
!strconcat(asm, "\t$Rt, $Rt2, [$Rn]"),
pat, itin>{
let mayLoad = 1;
let DecoderMethod = "DecodeLoadPairExclusiveInstruction";
let PostEncoderMethod = "fixLoadStoreExclusive<0,1>";
}
multiclass A64I_LPex<string asmstr, bits<3> opcode> {
def _word: A64I_LPexs_impl<0b10, opcode, asmstr,
(outs GPR32:$Rt, GPR32:$Rt2),
(ins GPR64xsp0:$Rn),
[], NoItinerary>;
def _dword: A64I_LPexs_impl<0b11, opcode, asmstr,
(outs GPR64:$Rt, GPR64:$Rt2),
(ins GPR64xsp0:$Rn),
[], NoItinerary>;
}
defm LDXP : A64I_LPex<"ldxp", 0b010>;
defm LDAXP : A64I_LPex<"ldaxp", 0b011>;
//===----------------------------------------------------------------------===//
// Load-store register (unscaled immediate) instructions
//===----------------------------------------------------------------------===//
// Contains: LDURB, LDURH, LDRUSB, LDRUSH, LDRUSW, STUR, STURB, STURH and PRFUM
//
// and
//
//===----------------------------------------------------------------------===//
// Load-store register (register offset) instructions
//===----------------------------------------------------------------------===//
// Contains: LDRB, LDRH, LDRSB, LDRSH, LDRSW, STR, STRB, STRH and PRFM
//
// and
//
//===----------------------------------------------------------------------===//
// Load-store register (unsigned immediate) instructions
//===----------------------------------------------------------------------===//
// Contains: LDRB, LDRH, LDRSB, LDRSH, LDRSW, STR, STRB, STRH and PRFM
//
// and
//
//===----------------------------------------------------------------------===//
// Load-store register (immediate post-indexed) instructions
//===----------------------------------------------------------------------===//
// Contains: STRB, STRH, STR, LDRB, LDRH, LDR, LDRSB, LDRSH, LDRSW
//
// and
//
//===----------------------------------------------------------------------===//
// Load-store register (immediate pre-indexed) instructions
//===----------------------------------------------------------------------===//
// Contains: STRB, STRH, STR, LDRB, LDRH, LDR, LDRSB, LDRSH, LDRSW
// Note that patterns are much later on in a completely separate section (they
// need ADRPxi to be defined).
//===-------------------------------
// 1. Various operands needed
//===-------------------------------
//===-------------------------------
// 1.1 Unsigned 12-bit immediate operands
//===-------------------------------
// The addressing mode for these instructions consists of an unsigned 12-bit
// immediate which is scaled by the size of the memory access.
//
// We represent this in the MC layer by two operands:
// 1. A base register.
// 2. A 12-bit immediate: not multiplied by access size, so "LDR x0,[x0,#8]"
// would have '1' in this field.
// This means that separate functions are needed for converting representations
// which *are* aware of the intended access size.
// Anything that creates an MCInst (Decoding, selection and AsmParsing) has to
// know the access size via some means. An isolated operand does not have this
// information unless told from here, which means we need separate tablegen
// Operands for each access size. This multiclass takes care of instantiating
// the correct template functions in the rest of the backend.
//===-------------------------------
// 1.1 Unsigned 12-bit immediate operands
//===-------------------------------
multiclass offsets_uimm12<int MemSize, string prefix> {
def uimm12_asmoperand : AsmOperandClass {
let Name = "OffsetUImm12_" # MemSize;
let PredicateMethod = "isOffsetUImm12<" # MemSize # ">";
let RenderMethod = "addOffsetUImm12Operands<" # MemSize # ">";
let DiagnosticType = "LoadStoreUImm12_" # MemSize;
}
// Pattern is really no more than an ImmLeaf, but predicated on MemSize which
// complicates things beyond TableGen's ken.
def uimm12 : Operand<i64>,
ComplexPattern<i64, 1, "SelectOffsetUImm12<" # MemSize # ">"> {
let ParserMatchClass
= !cast<AsmOperandClass>(prefix # uimm12_asmoperand);
let PrintMethod = "printOffsetUImm12Operand<" # MemSize # ">";
let EncoderMethod = "getOffsetUImm12OpValue<" # MemSize # ">";
}
}
defm byte_ : offsets_uimm12<1, "byte_">;
defm hword_ : offsets_uimm12<2, "hword_">;
defm word_ : offsets_uimm12<4, "word_">;
defm dword_ : offsets_uimm12<8, "dword_">;
defm qword_ : offsets_uimm12<16, "qword_">;
//===-------------------------------
// 1.1 Signed 9-bit immediate operands
//===-------------------------------
// The MCInst is expected to store the bit-wise encoding of the value,
// which amounts to lopping off the extended sign bits.
def SDXF_simm9 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue() & 0x1ff, MVT::i32);
}]>;
def simm9_asmoperand : AsmOperandClass {
let Name = "SImm9";
let PredicateMethod = "isSImm<9>";
let RenderMethod = "addSImmOperands<9>";
let DiagnosticType = "LoadStoreSImm9";
}
def simm9 : Operand<i64>,
ImmLeaf<i64, [{ return Imm >= -0x100 && Imm <= 0xff; }],
SDXF_simm9> {
let PrintMethod = "printOffsetSImm9Operand";
let ParserMatchClass = simm9_asmoperand;
}
//===-------------------------------
// 1.3 Register offset extensions
//===-------------------------------
// The assembly-syntax for these addressing-modes is:
// [<Xn|SP>, <R><m> {, <extend> {<amount>}}]
//
// The essential semantics are:
// + <amount> is a shift: #<log(transfer size)> or #0
// + <R> can be W or X.
// + If <R> is W, <extend> can be UXTW or SXTW
// + If <R> is X, <extend> can be LSL or SXTX
//
// The trickiest of those constraints is that Rm can be either GPR32 or GPR64,
// which will need separate instructions for LLVM type-consistency. We'll also
// need separate operands, of course.
multiclass regexts<int MemSize, int RmSize, RegisterClass GPR,
string Rm, string prefix> {
def regext_asmoperand : AsmOperandClass {
let Name = "AddrRegExtend_" # MemSize # "_" # Rm;
let PredicateMethod = "isAddrRegExtend<" # MemSize # "," # RmSize # ">";
let RenderMethod = "addAddrRegExtendOperands<" # MemSize # ">";
let DiagnosticType = "LoadStoreExtend" # RmSize # "_" # MemSize;
}
def regext : Operand<i64> {
let PrintMethod
= "printAddrRegExtendOperand<" # MemSize # ", " # RmSize # ">";
let DecoderMethod = "DecodeAddrRegExtendOperand";
let ParserMatchClass
= !cast<AsmOperandClass>(prefix # regext_asmoperand);
}
}
multiclass regexts_wx<int MemSize, string prefix> {
// Rm is an X-register if LSL or SXTX are specified as the shift.
defm Xm_ : regexts<MemSize, 64, GPR64, "Xm", prefix # "Xm_">;
// Rm is a W-register if UXTW or SXTW are specified as the shift.
defm Wm_ : regexts<MemSize, 32, GPR32, "Wm", prefix # "Wm_">;
}
defm byte_ : regexts_wx<1, "byte_">;
defm hword_ : regexts_wx<2, "hword_">;
defm word_ : regexts_wx<4, "word_">;
defm dword_ : regexts_wx<8, "dword_">;
defm qword_ : regexts_wx<16, "qword_">;
//===------------------------------
// 2. The instructions themselves.
//===------------------------------
// We have the following instructions to implement:
// | | B | H | W | X |
// |-----------------+-------+-------+-------+--------|
// | unsigned str | STRB | STRH | STR | STR |
// | unsigned ldr | LDRB | LDRH | LDR | LDR |
// | signed ldr to W | LDRSB | LDRSH | - | - |
// | signed ldr to X | LDRSB | LDRSH | LDRSW | (PRFM) |
// This will instantiate the LDR/STR instructions you'd expect to use for an
// unsigned datatype (first two rows above) or floating-point register, which is
// reasonably uniform across all access sizes.
//===------------------------------
// 2.1 Regular instructions
//===------------------------------
// This class covers the basic unsigned or irrelevantly-signed loads and stores,
// to general-purpose and floating-point registers.
class AddrParams<string prefix> {
Operand uimm12 = !cast<Operand>(prefix # "_uimm12");
Operand regextWm = !cast<Operand>(prefix # "_Wm_regext");
Operand regextXm = !cast<Operand>(prefix # "_Xm_regext");
}
def byte_addrparams : AddrParams<"byte">;
def hword_addrparams : AddrParams<"hword">;
def word_addrparams : AddrParams<"word">;
def dword_addrparams : AddrParams<"dword">;
def qword_addrparams : AddrParams<"qword">;
multiclass A64I_LDRSTR_unsigned<string prefix, bits<2> size, bit v,
bit high_opc, string asmsuffix,
RegisterClass GPR, AddrParams params> {
// Unsigned immediate
def _STR : A64I_LSunsigimm<size, v, {high_opc, 0b0},
(outs), (ins GPR:$Rt, GPR64xsp:$Rn, params.uimm12:$UImm12),
"str" # asmsuffix # "\t$Rt, [$Rn, $UImm12]",
[], NoItinerary> {
let mayStore = 1;
}
def : InstAlias<"str" # asmsuffix # " $Rt, [$Rn]",
(!cast<Instruction>(prefix # "_STR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
def _LDR : A64I_LSunsigimm<size, v, {high_opc, 0b1},
(outs GPR:$Rt), (ins GPR64xsp:$Rn, params.uimm12:$UImm12),
"ldr" # asmsuffix # "\t$Rt, [$Rn, $UImm12]",
[], NoItinerary> {
let mayLoad = 1;
}
def : InstAlias<"ldr" # asmsuffix # " $Rt, [$Rn]",
(!cast<Instruction>(prefix # "_LDR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
// Register offset (four of these: load/store and Wm/Xm).
let mayLoad = 1 in {
def _Wm_RegOffset_LDR : A64I_LSregoff<size, v, {high_opc, 0b1}, 0b0,
(outs GPR:$Rt),
(ins GPR64xsp:$Rn, GPR32:$Rm, params.regextWm:$Ext),
"ldr" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
def _Xm_RegOffset_LDR : A64I_LSregoff<size, v, {high_opc, 0b1}, 0b1,
(outs GPR:$Rt),
(ins GPR64xsp:$Rn, GPR64:$Rm, params.regextXm:$Ext),
"ldr" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
}
def : InstAlias<"ldr" # asmsuffix # " $Rt, [$Rn, $Rm]",
(!cast<Instruction>(prefix # "_Xm_RegOffset_LDR") GPR:$Rt, GPR64xsp:$Rn,
GPR64:$Rm, 2)>;
let mayStore = 1 in {
def _Wm_RegOffset_STR : A64I_LSregoff<size, v, {high_opc, 0b0}, 0b0,
(outs), (ins GPR:$Rt, GPR64xsp:$Rn, GPR32:$Rm,
params.regextWm:$Ext),
"str" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
def _Xm_RegOffset_STR : A64I_LSregoff<size, v, {high_opc, 0b0}, 0b1,
(outs), (ins GPR:$Rt, GPR64xsp:$Rn, GPR64:$Rm,
params.regextXm:$Ext),
"str" # asmsuffix # "\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
}
def : InstAlias<"str" # asmsuffix # " $Rt, [$Rn, $Rm]",
(!cast<Instruction>(prefix # "_Xm_RegOffset_STR") GPR:$Rt, GPR64xsp:$Rn,
GPR64:$Rm, 2)>;
// Unaligned immediate
def _STUR : A64I_LSunalimm<size, v, {high_opc, 0b0},
(outs), (ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
"stur" # asmsuffix # "\t$Rt, [$Rn, $SImm9]",
[], NoItinerary> {
let mayStore = 1;
}
def : InstAlias<"stur" # asmsuffix # " $Rt, [$Rn]",
(!cast<Instruction>(prefix # "_STUR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
def _LDUR : A64I_LSunalimm<size, v, {high_opc, 0b1},
(outs GPR:$Rt), (ins GPR64xsp:$Rn, simm9:$SImm9),
"ldur" # asmsuffix # "\t$Rt, [$Rn, $SImm9]",
[], NoItinerary> {
let mayLoad = 1;
}
def : InstAlias<"ldur" # asmsuffix # " $Rt, [$Rn]",
(!cast<Instruction>(prefix # "_LDUR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
// Post-indexed
def _PostInd_STR : A64I_LSpostind<size, v, {high_opc, 0b0},
(outs GPR64xsp:$Rn_wb),
(ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
"str" # asmsuffix # "\t$Rt, [$Rn], $SImm9",
[], NoItinerary> {
let Constraints = "$Rn = $Rn_wb";
let mayStore = 1;
// Decoder only needed for unpredictability checking (FIXME).
let DecoderMethod = "DecodeSingleIndexedInstruction";
}
def _PostInd_LDR : A64I_LSpostind<size, v, {high_opc, 0b1},
(outs GPR:$Rt, GPR64xsp:$Rn_wb),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldr" # asmsuffix # "\t$Rt, [$Rn], $SImm9",
[], NoItinerary> {
let mayLoad = 1;
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeSingleIndexedInstruction";
}
// Pre-indexed
def _PreInd_STR : A64I_LSpreind<size, v, {high_opc, 0b0},
(outs GPR64xsp:$Rn_wb),
(ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
"str" # asmsuffix # "\t$Rt, [$Rn, $SImm9]!",
[], NoItinerary> {
let Constraints = "$Rn = $Rn_wb";
let mayStore = 1;
// Decoder only needed for unpredictability checking (FIXME).
let DecoderMethod = "DecodeSingleIndexedInstruction";
}
def _PreInd_LDR : A64I_LSpreind<size, v, {high_opc, 0b1},
(outs GPR:$Rt, GPR64xsp:$Rn_wb),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldr" # asmsuffix # "\t$Rt, [$Rn, $SImm9]!",
[], NoItinerary> {
let mayLoad = 1;
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeSingleIndexedInstruction";
}
}
// STRB/LDRB: First define the instructions
defm LS8
: A64I_LDRSTR_unsigned<"LS8", 0b00, 0b0, 0b0, "b", GPR32, byte_addrparams>;
// STRH/LDRH
defm LS16
: A64I_LDRSTR_unsigned<"LS16", 0b01, 0b0, 0b0, "h", GPR32, hword_addrparams>;
// STR/LDR to/from a W register
defm LS32
: A64I_LDRSTR_unsigned<"LS32", 0b10, 0b0, 0b0, "", GPR32, word_addrparams>;
// STR/LDR to/from an X register
defm LS64
: A64I_LDRSTR_unsigned<"LS64", 0b11, 0b0, 0b0, "", GPR64, dword_addrparams>;
// STR/LDR to/from a B register
defm LSFP8
: A64I_LDRSTR_unsigned<"LSFP8", 0b00, 0b1, 0b0, "", FPR8, byte_addrparams>;
// STR/LDR to/from an H register
defm LSFP16
: A64I_LDRSTR_unsigned<"LSFP16", 0b01, 0b1, 0b0, "", FPR16, hword_addrparams>;
// STR/LDR to/from an S register
defm LSFP32
: A64I_LDRSTR_unsigned<"LSFP32", 0b10, 0b1, 0b0, "", FPR32, word_addrparams>;
// STR/LDR to/from a D register
defm LSFP64
: A64I_LDRSTR_unsigned<"LSFP64", 0b11, 0b1, 0b0, "", FPR64, dword_addrparams>;
// STR/LDR to/from a Q register
defm LSFP128
: A64I_LDRSTR_unsigned<"LSFP128", 0b00, 0b1, 0b1, "", FPR128,
qword_addrparams>;
//===------------------------------
// 2.3 Signed loads
//===------------------------------
// Byte and half-word signed loads can both go into either an X or a W register,
// so it's worth factoring out. Signed word loads don't fit because there is no
// W version.
multiclass A64I_LDR_signed<bits<2> size, string asmopcode, AddrParams params,
string prefix> {
// Unsigned offset
def w : A64I_LSunsigimm<size, 0b0, 0b11,
(outs GPR32:$Rt),
(ins GPR64xsp:$Rn, params.uimm12:$UImm12),
"ldrs" # asmopcode # "\t$Rt, [$Rn, $UImm12]",
[], NoItinerary> {
let mayLoad = 1;
}
def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn]",
(!cast<Instruction>(prefix # w) GPR32:$Rt, GPR64xsp:$Rn, 0)>;
def x : A64I_LSunsigimm<size, 0b0, 0b10,
(outs GPR64:$Rt),
(ins GPR64xsp:$Rn, params.uimm12:$UImm12),
"ldrs" # asmopcode # "\t$Rt, [$Rn, $UImm12]",
[], NoItinerary> {
let mayLoad = 1;
}
def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn]",
(!cast<Instruction>(prefix # x) GPR64:$Rt, GPR64xsp:$Rn, 0)>;
// Register offset
let mayLoad = 1 in {
def w_Wm_RegOffset : A64I_LSregoff<size, 0b0, 0b11, 0b0,
(outs GPR32:$Rt),
(ins GPR64xsp:$Rn, GPR32:$Rm, params.regextWm:$Ext),
"ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
def w_Xm_RegOffset : A64I_LSregoff<size, 0b0, 0b11, 0b1,
(outs GPR32:$Rt),
(ins GPR64xsp:$Rn, GPR64:$Rm, params.regextXm:$Ext),
"ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
def x_Wm_RegOffset : A64I_LSregoff<size, 0b0, 0b10, 0b0,
(outs GPR64:$Rt),
(ins GPR64xsp:$Rn, GPR32:$Rm, params.regextWm:$Ext),
"ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
def x_Xm_RegOffset : A64I_LSregoff<size, 0b0, 0b10, 0b1,
(outs GPR64:$Rt),
(ins GPR64xsp:$Rn, GPR64:$Rm, params.regextXm:$Ext),
"ldrs" # asmopcode # "\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
}
def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn, $Rm]",
(!cast<Instruction>(prefix # "w_Xm_RegOffset") GPR32:$Rt, GPR64xsp:$Rn,
GPR64:$Rm, 2)>;
def : InstAlias<"ldrs" # asmopcode # " $Rt, [$Rn, $Rm]",
(!cast<Instruction>(prefix # "x_Xm_RegOffset") GPR64:$Rt, GPR64xsp:$Rn,
GPR64:$Rm, 2)>;
let mayLoad = 1 in {
// Unaligned offset
def w_U : A64I_LSunalimm<size, 0b0, 0b11,
(outs GPR32:$Rt),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldurs" # asmopcode # "\t$Rt, [$Rn, $SImm9]",
[], NoItinerary>;
def x_U : A64I_LSunalimm<size, 0b0, 0b10,
(outs GPR64:$Rt),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldurs" # asmopcode # "\t$Rt, [$Rn, $SImm9]",
[], NoItinerary>;
// Post-indexed
def w_PostInd : A64I_LSpostind<size, 0b0, 0b11,
(outs GPR32:$Rt, GPR64xsp:$Rn_wb),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldrs" # asmopcode # "\t$Rt, [$Rn], $SImm9",
[], NoItinerary> {
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeSingleIndexedInstruction";
}
def x_PostInd : A64I_LSpostind<size, 0b0, 0b10,
(outs GPR64:$Rt, GPR64xsp:$Rn_wb),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldrs" # asmopcode # "\t$Rt, [$Rn], $SImm9",
[], NoItinerary> {
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeSingleIndexedInstruction";
}
// Pre-indexed
def w_PreInd : A64I_LSpreind<size, 0b0, 0b11,
(outs GPR32:$Rt, GPR64xsp:$Rn_wb),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]!",
[], NoItinerary> {
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeSingleIndexedInstruction";
}
def x_PreInd : A64I_LSpreind<size, 0b0, 0b10,
(outs GPR64:$Rt, GPR64xsp:$Rn_wb),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]!",
[], NoItinerary> {
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeSingleIndexedInstruction";
}
} // let mayLoad = 1
}
// LDRSB
defm LDRSB : A64I_LDR_signed<0b00, "b", byte_addrparams, "LDRSB">;
// LDRSH
defm LDRSH : A64I_LDR_signed<0b01, "h", hword_addrparams, "LDRSH">;
// LDRSW: load a 32-bit register, sign-extending to 64-bits.
def LDRSWx
: A64I_LSunsigimm<0b10, 0b0, 0b10,
(outs GPR64:$Rt),
(ins GPR64xsp:$Rn, word_uimm12:$UImm12),
"ldrsw\t$Rt, [$Rn, $UImm12]",
[], NoItinerary> {
let mayLoad = 1;
}
def : InstAlias<"ldrsw $Rt, [$Rn]", (LDRSWx GPR64:$Rt, GPR64xsp:$Rn, 0)>;
let mayLoad = 1 in {
def LDRSWx_Wm_RegOffset : A64I_LSregoff<0b10, 0b0, 0b10, 0b0,
(outs GPR64:$Rt),
(ins GPR64xsp:$Rn, GPR32:$Rm, word_Wm_regext:$Ext),
"ldrsw\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
def LDRSWx_Xm_RegOffset : A64I_LSregoff<0b10, 0b0, 0b10, 0b1,
(outs GPR64:$Rt),
(ins GPR64xsp:$Rn, GPR64:$Rm, word_Xm_regext:$Ext),
"ldrsw\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
}
def : InstAlias<"ldrsw $Rt, [$Rn, $Rm]",
(LDRSWx_Xm_RegOffset GPR64:$Rt, GPR64xsp:$Rn, GPR64:$Rm, 2)>;
def LDURSWx
: A64I_LSunalimm<0b10, 0b0, 0b10,
(outs GPR64:$Rt),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldursw\t$Rt, [$Rn, $SImm9]",
[], NoItinerary> {
let mayLoad = 1;
}
def : InstAlias<"ldursw $Rt, [$Rn]", (LDURSWx GPR64:$Rt, GPR64xsp:$Rn, 0)>;
def LDRSWx_PostInd
: A64I_LSpostind<0b10, 0b0, 0b10,
(outs GPR64:$Rt, GPR64xsp:$Rn_wb),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldrsw\t$Rt, [$Rn], $SImm9",
[], NoItinerary> {
let mayLoad = 1;
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeSingleIndexedInstruction";
}
def LDRSWx_PreInd : A64I_LSpreind<0b10, 0b0, 0b10,
(outs GPR64:$Rt, GPR64xsp:$Rn_wb),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldrsw\t$Rt, [$Rn, $SImm9]!",
[], NoItinerary> {
let mayLoad = 1;
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeSingleIndexedInstruction";
}
//===------------------------------
// 2.4 Prefetch operations
//===------------------------------
def PRFM : A64I_LSunsigimm<0b11, 0b0, 0b10, (outs),
(ins prefetch_op:$Rt, GPR64xsp:$Rn, dword_uimm12:$UImm12),
"prfm\t$Rt, [$Rn, $UImm12]",
[], NoItinerary> {
let mayLoad = 1;
}
def : InstAlias<"prfm $Rt, [$Rn]",
(PRFM prefetch_op:$Rt, GPR64xsp:$Rn, 0)>;
let mayLoad = 1 in {
def PRFM_Wm_RegOffset : A64I_LSregoff<0b11, 0b0, 0b10, 0b0, (outs),
(ins prefetch_op:$Rt, GPR64xsp:$Rn,
GPR32:$Rm, dword_Wm_regext:$Ext),
"prfm\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
def PRFM_Xm_RegOffset : A64I_LSregoff<0b11, 0b0, 0b10, 0b1, (outs),
(ins prefetch_op:$Rt, GPR64xsp:$Rn,
GPR64:$Rm, dword_Xm_regext:$Ext),
"prfm\t$Rt, [$Rn, $Rm, $Ext]",
[], NoItinerary>;
}
def : InstAlias<"prfm $Rt, [$Rn, $Rm]",
(PRFM_Xm_RegOffset prefetch_op:$Rt, GPR64xsp:$Rn,
GPR64:$Rm, 2)>;
def PRFUM : A64I_LSunalimm<0b11, 0b0, 0b10, (outs),
(ins prefetch_op:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
"prfum\t$Rt, [$Rn, $SImm9]",
[], NoItinerary> {
let mayLoad = 1;
}
def : InstAlias<"prfum $Rt, [$Rn]",
(PRFUM prefetch_op:$Rt, GPR64xsp:$Rn, 0)>;
//===----------------------------------------------------------------------===//
// Load-store register (unprivileged) instructions
//===----------------------------------------------------------------------===//
// Contains: LDTRB, LDTRH, LDTRSB, LDTRSH, LDTRSW, STTR, STTRB and STTRH
// These instructions very much mirror the "unscaled immediate" loads, but since
// there are no floating-point variants we need to split them out into their own
// section to avoid instantiation of "ldtr d0, [sp]" etc.
multiclass A64I_LDTRSTTR<bits<2> size, string asmsuffix, RegisterClass GPR,
string prefix> {
def _UnPriv_STR : A64I_LSunpriv<size, 0b0, 0b00,
(outs), (ins GPR:$Rt, GPR64xsp:$Rn, simm9:$SImm9),
"sttr" # asmsuffix # "\t$Rt, [$Rn, $SImm9]",
[], NoItinerary> {
let mayStore = 1;
}
def : InstAlias<"sttr" # asmsuffix # " $Rt, [$Rn]",
(!cast<Instruction>(prefix # "_UnPriv_STR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
def _UnPriv_LDR : A64I_LSunpriv<size, 0b0, 0b01,
(outs GPR:$Rt), (ins GPR64xsp:$Rn, simm9:$SImm9),
"ldtr" # asmsuffix # "\t$Rt, [$Rn, $SImm9]",
[], NoItinerary> {
let mayLoad = 1;
}
def : InstAlias<"ldtr" # asmsuffix # " $Rt, [$Rn]",
(!cast<Instruction>(prefix # "_UnPriv_LDR") GPR:$Rt, GPR64xsp:$Rn, 0)>;
}
// STTRB/LDTRB: First define the instructions
defm LS8 : A64I_LDTRSTTR<0b00, "b", GPR32, "LS8">;
// STTRH/LDTRH
defm LS16 : A64I_LDTRSTTR<0b01, "h", GPR32, "LS16">;
// STTR/LDTR to/from a W register
defm LS32 : A64I_LDTRSTTR<0b10, "", GPR32, "LS32">;
// STTR/LDTR to/from an X register
defm LS64 : A64I_LDTRSTTR<0b11, "", GPR64, "LS64">;
// Now a class for the signed instructions that can go to either 32 or 64
// bits...
multiclass A64I_LDTR_signed<bits<2> size, string asmopcode, string prefix> {
let mayLoad = 1 in {
def w : A64I_LSunpriv<size, 0b0, 0b11,
(outs GPR32:$Rt),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldtrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]",
[], NoItinerary>;
def x : A64I_LSunpriv<size, 0b0, 0b10,
(outs GPR64:$Rt),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldtrs" # asmopcode # "\t$Rt, [$Rn, $SImm9]",
[], NoItinerary>;
}
def : InstAlias<"ldtrs" # asmopcode # " $Rt, [$Rn]",
(!cast<Instruction>(prefix # "w") GPR32:$Rt, GPR64xsp:$Rn, 0)>;
def : InstAlias<"ldtrs" # asmopcode # " $Rt, [$Rn]",
(!cast<Instruction>(prefix # "x") GPR64:$Rt, GPR64xsp:$Rn, 0)>;
}
// LDTRSB
defm LDTRSB : A64I_LDTR_signed<0b00, "b", "LDTRSB">;
// LDTRSH
defm LDTRSH : A64I_LDTR_signed<0b01, "h", "LDTRSH">;
// And finally LDTRSW which only goes to 64 bits.
def LDTRSWx : A64I_LSunpriv<0b10, 0b0, 0b10,
(outs GPR64:$Rt),
(ins GPR64xsp:$Rn, simm9:$SImm9),
"ldtrsw\t$Rt, [$Rn, $SImm9]",
[], NoItinerary> {
let mayLoad = 1;
}
def : InstAlias<"ldtrsw $Rt, [$Rn]", (LDTRSWx GPR64:$Rt, GPR64xsp:$Rn, 0)>;
//===----------------------------------------------------------------------===//
// Load-store register pair (offset) instructions
//===----------------------------------------------------------------------===//
//
// and
//
//===----------------------------------------------------------------------===//
// Load-store register pair (post-indexed) instructions
//===----------------------------------------------------------------------===//
// Contains: STP, LDP, LDPSW
//
// and
//
//===----------------------------------------------------------------------===//
// Load-store register pair (pre-indexed) instructions
//===----------------------------------------------------------------------===//
// Contains: STP, LDP, LDPSW
//
// and
//
//===----------------------------------------------------------------------===//
// Load-store non-temporal register pair (offset) instructions
//===----------------------------------------------------------------------===//
// Contains: STNP, LDNP
// Anything that creates an MCInst (Decoding, selection and AsmParsing) has to
// know the access size via some means. An isolated operand does not have this
// information unless told from here, which means we need separate tablegen
// Operands for each access size. This multiclass takes care of instantiating
// the correct template functions in the rest of the backend.
multiclass offsets_simm7<string MemSize, string prefix> {
// The bare signed 7-bit immediate is used in post-indexed instructions, but
// because of the scaling performed a generic "simm7" operand isn't
// appropriate here either.
def simm7_asmoperand : AsmOperandClass {
let Name = "SImm7_Scaled" # MemSize;
let PredicateMethod = "isSImm7Scaled<" # MemSize # ">";
let RenderMethod = "addSImm7ScaledOperands<" # MemSize # ">";
let DiagnosticType = "LoadStoreSImm7_" # MemSize;
}
def simm7 : Operand<i64> {
let PrintMethod = "printSImm7ScaledOperand<" # MemSize # ">";
let ParserMatchClass = !cast<AsmOperandClass>(prefix # "simm7_asmoperand");
}
}
defm word_ : offsets_simm7<"4", "word_">;
defm dword_ : offsets_simm7<"8", "dword_">;
defm qword_ : offsets_simm7<"16", "qword_">;
multiclass A64I_LSPsimple<bits<2> opc, bit v, RegisterClass SomeReg,
Operand simm7, string prefix> {
def _STR : A64I_LSPoffset<opc, v, 0b0, (outs),
(ins SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, simm7:$SImm7),
"stp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> {
let mayStore = 1;
let DecoderMethod = "DecodeLDSTPairInstruction";
}
def : InstAlias<"stp $Rt, $Rt2, [$Rn]",
(!cast<Instruction>(prefix # "_STR") SomeReg:$Rt,
SomeReg:$Rt2, GPR64xsp:$Rn, 0)>;
def _LDR : A64I_LSPoffset<opc, v, 0b1,
(outs SomeReg:$Rt, SomeReg:$Rt2),
(ins GPR64xsp:$Rn, simm7:$SImm7),
"ldp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> {
let mayLoad = 1;
let DecoderMethod = "DecodeLDSTPairInstruction";
}
def : InstAlias<"ldp $Rt, $Rt2, [$Rn]",
(!cast<Instruction>(prefix # "_LDR") SomeReg:$Rt,
SomeReg:$Rt2, GPR64xsp:$Rn, 0)>;
def _PostInd_STR : A64I_LSPpostind<opc, v, 0b0,
(outs GPR64xsp:$Rn_wb),
(ins SomeReg:$Rt, SomeReg:$Rt2,
GPR64xsp:$Rn,
simm7:$SImm7),
"stp\t$Rt, $Rt2, [$Rn], $SImm7",
[], NoItinerary> {
let mayStore = 1;
let Constraints = "$Rn = $Rn_wb";
// Decoder only needed for unpredictability checking (FIXME).
let DecoderMethod = "DecodeLDSTPairInstruction";
}
def _PostInd_LDR : A64I_LSPpostind<opc, v, 0b1,
(outs SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn_wb),
(ins GPR64xsp:$Rn, simm7:$SImm7),
"ldp\t$Rt, $Rt2, [$Rn], $SImm7",
[], NoItinerary> {
let mayLoad = 1;
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeLDSTPairInstruction";
}
def _PreInd_STR : A64I_LSPpreind<opc, v, 0b0, (outs GPR64xsp:$Rn_wb),
(ins SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, simm7:$SImm7),
"stp\t$Rt, $Rt2, [$Rn, $SImm7]!",
[], NoItinerary> {
let mayStore = 1;
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeLDSTPairInstruction";
}
def _PreInd_LDR : A64I_LSPpreind<opc, v, 0b1,
(outs SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn_wb),
(ins GPR64xsp:$Rn, simm7:$SImm7),
"ldp\t$Rt, $Rt2, [$Rn, $SImm7]!",
[], NoItinerary> {
let mayLoad = 1;
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeLDSTPairInstruction";
}
def _NonTemp_STR : A64I_LSPnontemp<opc, v, 0b0, (outs),
(ins SomeReg:$Rt, SomeReg:$Rt2, GPR64xsp:$Rn, simm7:$SImm7),
"stnp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> {
let mayStore = 1;
let DecoderMethod = "DecodeLDSTPairInstruction";
}
def : InstAlias<"stnp $Rt, $Rt2, [$Rn]",
(!cast<Instruction>(prefix # "_NonTemp_STR") SomeReg:$Rt,
SomeReg:$Rt2, GPR64xsp:$Rn, 0)>;
def _NonTemp_LDR : A64I_LSPnontemp<opc, v, 0b1,
(outs SomeReg:$Rt, SomeReg:$Rt2),
(ins GPR64xsp:$Rn, simm7:$SImm7),
"ldnp\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> {
let mayLoad = 1;
let DecoderMethod = "DecodeLDSTPairInstruction";
}
def : InstAlias<"ldnp $Rt, $Rt2, [$Rn]",
(!cast<Instruction>(prefix # "_NonTemp_LDR") SomeReg:$Rt,
SomeReg:$Rt2, GPR64xsp:$Rn, 0)>;
}
defm LSPair32 : A64I_LSPsimple<0b00, 0b0, GPR32, word_simm7, "LSPair32">;
defm LSPair64 : A64I_LSPsimple<0b10, 0b0, GPR64, dword_simm7, "LSPair64">;
defm LSFPPair32 : A64I_LSPsimple<0b00, 0b1, FPR32, word_simm7, "LSFPPair32">;
defm LSFPPair64 : A64I_LSPsimple<0b01, 0b1, FPR64, dword_simm7, "LSFPPair64">;
defm LSFPPair128 : A64I_LSPsimple<0b10, 0b1, FPR128, qword_simm7,
"LSFPPair128">;
def LDPSWx : A64I_LSPoffset<0b01, 0b0, 0b1,
(outs GPR64:$Rt, GPR64:$Rt2),
(ins GPR64xsp:$Rn, word_simm7:$SImm7),
"ldpsw\t$Rt, $Rt2, [$Rn, $SImm7]", [], NoItinerary> {
let mayLoad = 1;
let DecoderMethod = "DecodeLDSTPairInstruction";
}
def : InstAlias<"ldpsw $Rt, $Rt2, [$Rn]",
(LDPSWx GPR64:$Rt, GPR64:$Rt2, GPR64xsp:$Rn, 0)>;
def LDPSWx_PostInd : A64I_LSPpostind<0b01, 0b0, 0b1,
(outs GPR64:$Rt, GPR64:$Rt2, GPR64:$Rn_wb),
(ins GPR64xsp:$Rn, word_simm7:$SImm7),
"ldpsw\t$Rt, $Rt2, [$Rn], $SImm7",
[], NoItinerary> {
let mayLoad = 1;
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeLDSTPairInstruction";
}
def LDPSWx_PreInd : A64I_LSPpreind<0b01, 0b0, 0b1,
(outs GPR64:$Rt, GPR64:$Rt2, GPR64:$Rn_wb),
(ins GPR64xsp:$Rn, word_simm7:$SImm7),
"ldpsw\t$Rt, $Rt2, [$Rn, $SImm7]!",
[], NoItinerary> {
let mayLoad = 1;
let Constraints = "$Rn = $Rn_wb";
let DecoderMethod = "DecodeLDSTPairInstruction";
}
//===----------------------------------------------------------------------===//
// Logical (immediate) instructions
//===----------------------------------------------------------------------===//
// Contains: AND, ORR, EOR, ANDS, + aliases TST, MOV
multiclass logical_imm_operands<string prefix, string note,
int size, ValueType VT> {
def _asmoperand : AsmOperandClass {
let Name = "LogicalImm" # note # size;
let PredicateMethod = "isLogicalImm" # note # "<" # size # ">";
let RenderMethod = "addLogicalImmOperands<" # size # ">";
let DiagnosticType = "LogicalSecondSource";
}
def _operand
: Operand<VT>, ComplexPattern<VT, 1, "SelectLogicalImm", [imm]> {
let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_asmoperand");
let PrintMethod = "printLogicalImmOperand<" # size # ">";
let DecoderMethod = "DecodeLogicalImmOperand<" # size # ">";
}
}
defm logical_imm32 : logical_imm_operands<"logical_imm32", "", 32, i32>;
defm logical_imm64 : logical_imm_operands<"logical_imm64", "", 64, i64>;
// The mov versions only differ in assembly parsing, where they
// exclude values representable with either MOVZ or MOVN.
defm logical_imm32_mov
: logical_imm_operands<"logical_imm32_mov", "MOV", 32, i32>;
defm logical_imm64_mov
: logical_imm_operands<"logical_imm64_mov", "MOV", 64, i64>;
multiclass A64I_logimmSizes<bits<2> opc, string asmop, SDNode opnode> {
def wwi : A64I_logicalimm<0b0, opc, (outs GPR32wsp:$Rd),
(ins GPR32:$Rn, logical_imm32_operand:$Imm),
!strconcat(asmop, "\t$Rd, $Rn, $Imm"),
[(set i32:$Rd,
(opnode i32:$Rn, logical_imm32_operand:$Imm))],
NoItinerary>;
def xxi : A64I_logicalimm<0b1, opc, (outs GPR64xsp:$Rd),
(ins GPR64:$Rn, logical_imm64_operand:$Imm),
!strconcat(asmop, "\t$Rd, $Rn, $Imm"),
[(set i64:$Rd,
(opnode i64:$Rn, logical_imm64_operand:$Imm))],
NoItinerary>;
}
defm AND : A64I_logimmSizes<0b00, "and", and>;
defm ORR : A64I_logimmSizes<0b01, "orr", or>;
defm EOR : A64I_logimmSizes<0b10, "eor", xor>;
let Defs = [NZCV] in {
def ANDSwwi : A64I_logicalimm<0b0, 0b11, (outs GPR32:$Rd),
(ins GPR32:$Rn, logical_imm32_operand:$Imm),
"ands\t$Rd, $Rn, $Imm",
[], NoItinerary>;
def ANDSxxi : A64I_logicalimm<0b1, 0b11, (outs GPR64:$Rd),
(ins GPR64:$Rn, logical_imm64_operand:$Imm),
"ands\t$Rd, $Rn, $Imm",
[], NoItinerary>;
}
def : InstAlias<"tst $Rn, $Imm",
(ANDSwwi WZR, GPR32:$Rn, logical_imm32_operand:$Imm)>;
def : InstAlias<"tst $Rn, $Imm",
(ANDSxxi XZR, GPR64:$Rn, logical_imm64_operand:$Imm)>;
def : InstAlias<"mov $Rd, $Imm",
(ORRwwi GPR32wsp:$Rd, WZR, logical_imm32_mov_operand:$Imm)>;
def : InstAlias<"mov $Rd, $Imm",
(ORRxxi GPR64xsp:$Rd, XZR, logical_imm64_mov_operand:$Imm)>;
//===----------------------------------------------------------------------===//
// Logical (shifted register) instructions
//===----------------------------------------------------------------------===//
// Contains: AND, BIC, ORR, ORN, EOR, EON, ANDS, BICS + aliases TST, MVN, MOV
// Operand for optimizing (icmp (and LHS, RHS), 0, SomeCode). In theory "ANDS"
// behaves differently for unsigned comparisons, so we defensively only allow
// signed or n/a as the operand. In practice "unsigned greater than 0" is "not
// equal to 0" and LLVM gives us this.
def signed_cond : PatLeaf<(cond), [{
return !isUnsignedIntSetCC(N->get());
}]>;
// These instructions share their "shift" operands with add/sub (shifted
// register instructions). They are defined there.
// N.b. the commutable parameter is just !N. It will be first against the wall
// when the revolution comes.
multiclass logical_shifts<string prefix, bit sf, bits<2> opc,
bit N, bit commutable,
string asmop, SDPatternOperator opfrag, ValueType ty,
RegisterClass GPR, list<Register> defs> {
let isCommutable = commutable, Defs = defs in {
def _lsl : A64I_logicalshift<sf, opc, 0b00, N,
(outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6),
!strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
[(set ty:$Rd, (opfrag ty:$Rn, (shl ty:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6))
)],
NoItinerary>;
def _lsr : A64I_logicalshift<sf, opc, 0b01, N,
(outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("lsr_operand_" # ty):$Imm6),
!strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
[(set ty:$Rd, (opfrag ty:$Rn, (srl ty:$Rm,
!cast<Operand>("lsr_operand_" # ty):$Imm6))
)],
NoItinerary>;
def _asr : A64I_logicalshift<sf, opc, 0b10, N,
(outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("asr_operand_" # ty):$Imm6),
!strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
[(set ty:$Rd, (opfrag ty:$Rn, (sra ty:$Rm,
!cast<Operand>("asr_operand_" # ty):$Imm6))
)],
NoItinerary>;
def _ror : A64I_logicalshift<sf, opc, 0b11, N,
(outs GPR:$Rd),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("ror_operand_" # ty):$Imm6),
!strconcat(asmop, "\t$Rd, $Rn, $Rm, $Imm6"),
[(set ty:$Rd, (opfrag ty:$Rn, (rotr ty:$Rm,
!cast<Operand>("ror_operand_" # ty):$Imm6))
)],
NoItinerary>;
}
def _noshift
: InstAlias<!strconcat(asmop, " $Rd, $Rn, $Rm"),
(!cast<Instruction>(prefix # "_lsl") GPR:$Rd, GPR:$Rn,
GPR:$Rm, 0)>;
def : Pat<(opfrag ty:$Rn, ty:$Rm),
(!cast<Instruction>(prefix # "_lsl") $Rn, $Rm, 0)>;
}
multiclass logical_sizes<string prefix, bits<2> opc, bit N, bit commutable,
string asmop, SDPatternOperator opfrag,
list<Register> defs> {
defm xxx : logical_shifts<prefix # "xxx", 0b1, opc, N,
commutable, asmop, opfrag, i64, GPR64, defs>;
defm www : logical_shifts<prefix # "www", 0b0, opc, N,
commutable, asmop, opfrag, i32, GPR32, defs>;
}
defm AND : logical_sizes<"AND", 0b00, 0b0, 0b1, "and", and, []>;
defm ORR : logical_sizes<"ORR", 0b01, 0b0, 0b1, "orr", or, []>;
defm EOR : logical_sizes<"EOR", 0b10, 0b0, 0b1, "eor", xor, []>;
defm ANDS : logical_sizes<"ANDS", 0b11, 0b0, 0b1, "ands",
PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs),
[{ (void)N; return false; }]>,
[NZCV]>;
defm BIC : logical_sizes<"BIC", 0b00, 0b1, 0b0, "bic",
PatFrag<(ops node:$lhs, node:$rhs),
(and node:$lhs, (not node:$rhs))>, []>;
defm ORN : logical_sizes<"ORN", 0b01, 0b1, 0b0, "orn",
PatFrag<(ops node:$lhs, node:$rhs),
(or node:$lhs, (not node:$rhs))>, []>;
defm EON : logical_sizes<"EON", 0b10, 0b1, 0b0, "eon",
PatFrag<(ops node:$lhs, node:$rhs),
(xor node:$lhs, (not node:$rhs))>, []>;
defm BICS : logical_sizes<"BICS", 0b11, 0b1, 0b0, "bics",
PatFrag<(ops node:$lhs, node:$rhs),
(and node:$lhs, (not node:$rhs)),
[{ (void)N; return false; }]>,
[NZCV]>;
multiclass tst_shifts<string prefix, bit sf, ValueType ty, RegisterClass GPR> {
let isCommutable = 1, Rd = 0b11111, Defs = [NZCV] in {
def _lsl : A64I_logicalshift<sf, 0b11, 0b00, 0b0,
(outs),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6),
"tst\t$Rn, $Rm, $Imm6",
[(set NZCV, (A64setcc (and ty:$Rn, (shl ty:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6)),
0, signed_cond))],
NoItinerary>;
def _lsr : A64I_logicalshift<sf, 0b11, 0b01, 0b0,
(outs),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("lsr_operand_" # ty):$Imm6),
"tst\t$Rn, $Rm, $Imm6",
[(set NZCV, (A64setcc (and ty:$Rn, (srl ty:$Rm,
!cast<Operand>("lsr_operand_" # ty):$Imm6)),
0, signed_cond))],
NoItinerary>;
def _asr : A64I_logicalshift<sf, 0b11, 0b10, 0b0,
(outs),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("asr_operand_" # ty):$Imm6),
"tst\t$Rn, $Rm, $Imm6",
[(set NZCV, (A64setcc (and ty:$Rn, (sra ty:$Rm,
!cast<Operand>("asr_operand_" # ty):$Imm6)),
0, signed_cond))],
NoItinerary>;
def _ror : A64I_logicalshift<sf, 0b11, 0b11, 0b0,
(outs),
(ins GPR:$Rn, GPR:$Rm,
!cast<Operand>("ror_operand_" # ty):$Imm6),
"tst\t$Rn, $Rm, $Imm6",
[(set NZCV, (A64setcc (and ty:$Rn, (rotr ty:$Rm,
!cast<Operand>("ror_operand_" # ty):$Imm6)),
0, signed_cond))],
NoItinerary>;
}
def _noshift : InstAlias<"tst $Rn, $Rm",
(!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>;
def : Pat<(A64setcc (and ty:$Rn, ty:$Rm), 0, signed_cond),
(!cast<Instruction>(prefix # "_lsl") $Rn, $Rm, 0)>;
}
defm TSTxx : tst_shifts<"TSTxx", 0b1, i64, GPR64>;
defm TSTww : tst_shifts<"TSTww", 0b0, i32, GPR32>;
multiclass mvn_shifts<string prefix, bit sf, ValueType ty, RegisterClass GPR> {
let isCommutable = 0, Rn = 0b11111 in {
def _lsl : A64I_logicalshift<sf, 0b01, 0b00, 0b1,
(outs GPR:$Rd),
(ins GPR:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6),
"mvn\t$Rd, $Rm, $Imm6",
[(set ty:$Rd, (not (shl ty:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6)))],
NoItinerary>;
def _lsr : A64I_logicalshift<sf, 0b01, 0b01, 0b1,
(outs GPR:$Rd),
(ins GPR:$Rm,
!cast<Operand>("lsr_operand_" # ty):$Imm6),
"mvn\t$Rd, $Rm, $Imm6",
[(set ty:$Rd, (not (srl ty:$Rm,
!cast<Operand>("lsr_operand_" # ty):$Imm6)))],
NoItinerary>;
def _asr : A64I_logicalshift<sf, 0b01, 0b10, 0b1,
(outs GPR:$Rd),
(ins GPR:$Rm,
!cast<Operand>("asr_operand_" # ty):$Imm6),
"mvn\t$Rd, $Rm, $Imm6",
[(set ty:$Rd, (not (sra ty:$Rm,
!cast<Operand>("asr_operand_" # ty):$Imm6)))],
NoItinerary>;
def _ror : A64I_logicalshift<sf, 0b01, 0b11, 0b1,
(outs GPR:$Rd),
(ins GPR:$Rm,
!cast<Operand>("ror_operand_" # ty):$Imm6),
"mvn\t$Rd, $Rm, $Imm6",
[(set ty:$Rd, (not (rotr ty:$Rm,
!cast<Operand>("lsl_operand_" # ty):$Imm6)))],
NoItinerary>;
}
def _noshift : InstAlias<"mvn $Rn, $Rm",
(!cast<Instruction>(prefix # "_lsl") GPR:$Rn, GPR:$Rm, 0)>;
def : Pat<(not ty:$Rm),
(!cast<Instruction>(prefix # "_lsl") $Rm, 0)>;
}
defm MVNxx : mvn_shifts<"MVNxx", 0b1, i64, GPR64>;
defm MVNww : mvn_shifts<"MVNww", 0b0, i32, GPR32>;
def MOVxx :InstAlias<"mov $Rd, $Rm", (ORRxxx_lsl GPR64:$Rd, XZR, GPR64:$Rm, 0)>;
def MOVww :InstAlias<"mov $Rd, $Rm", (ORRwww_lsl GPR32:$Rd, WZR, GPR32:$Rm, 0)>;
//===----------------------------------------------------------------------===//
// Move wide (immediate) instructions
//===----------------------------------------------------------------------===//
// Contains: MOVN, MOVZ, MOVK + MOV aliases
// A wide variety of different relocations are needed for variants of these
// instructions, so it turns out that we need a different operand for all of
// them.
multiclass movw_operands<string prefix, string instname, int width> {
def _imm_asmoperand : AsmOperandClass {
let Name = instname # width # "Shifted" # shift;
let PredicateMethod = "is" # instname # width # "Imm";
let RenderMethod = "addMoveWideImmOperands";
let ParserMethod = "ParseImmWithLSLOperand";
let DiagnosticType = "MOVWUImm16";
}
def _imm : Operand<i64> {
let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_imm_asmoperand");
let PrintMethod = "printMoveWideImmOperand";
let EncoderMethod = "getMoveWideImmOpValue";
let DecoderMethod = "DecodeMoveWideImmOperand<" # width # ">";
let MIOperandInfo = (ops uimm16:$UImm16, imm:$Shift);
}
}
defm movn32 : movw_operands<"movn32", "MOVN", 32>;
defm movn64 : movw_operands<"movn64", "MOVN", 64>;
defm movz32 : movw_operands<"movz32", "MOVZ", 32>;
defm movz64 : movw_operands<"movz64", "MOVZ", 64>;
defm movk32 : movw_operands<"movk32", "MOVK", 32>;
defm movk64 : movw_operands<"movk64", "MOVK", 64>;
multiclass A64I_movwSizes<bits<2> opc, string asmop, dag ins32bit,
dag ins64bit> {
def wii : A64I_movw<0b0, opc, (outs GPR32:$Rd), ins32bit,
!strconcat(asmop, "\t$Rd, $FullImm"),
[], NoItinerary> {
bits<18> FullImm;
let UImm16 = FullImm{15-0};
let Shift = FullImm{17-16};
}
def xii : A64I_movw<0b1, opc, (outs GPR64:$Rd), ins64bit,
!strconcat(asmop, "\t$Rd, $FullImm"),
[], NoItinerary> {
bits<18> FullImm;
let UImm16 = FullImm{15-0};
let Shift = FullImm{17-16};
}
}
let isMoveImm = 1, isReMaterializable = 1,
isAsCheapAsAMove = 1, hasSideEffects = 0 in {
defm MOVN : A64I_movwSizes<0b00, "movn",
(ins movn32_imm:$FullImm),
(ins movn64_imm:$FullImm)>;
// Some relocations are able to convert between a MOVZ and a MOVN. If these
// are applied the instruction must be emitted with the corresponding bits as
// 0, which means a MOVZ needs to override that bit from the default.
let PostEncoderMethod = "fixMOVZ" in
defm MOVZ : A64I_movwSizes<0b10, "movz",
(ins movz32_imm:$FullImm),
(ins movz64_imm:$FullImm)>;
}
let Constraints = "$src = $Rd" in
defm MOVK : A64I_movwSizes<0b11, "movk",
(ins GPR32:$src, movk32_imm:$FullImm),
(ins GPR64:$src, movk64_imm:$FullImm)>;
// And now the "MOV" aliases. These also need their own operands because what
// they accept is completely different to what the base instructions accept.
multiclass movalias_operand<string prefix, string basename,
string immpredicate, int width> {
def _asmoperand : AsmOperandClass {
let Name = basename # width # "MovAlias";
let PredicateMethod
= "isMoveWideMovAlias<" # width # ", A64Imms::" # immpredicate # ">";
let RenderMethod
= "addMoveWideMovAliasOperands<" # width # ", "
# "A64Imms::" # immpredicate # ">";
}
def _movimm : Operand<i64> {
let ParserMatchClass = !cast<AsmOperandClass>(prefix # "_asmoperand");
let MIOperandInfo = (ops uimm16:$UImm16, imm:$Shift);
}
}
defm movz32 : movalias_operand<"movz32", "MOVZ", "isMOVZImm", 32>;
defm movz64 : movalias_operand<"movz64", "MOVZ", "isMOVZImm", 64>;
defm movn32 : movalias_operand<"movn32", "MOVN", "isOnlyMOVNImm", 32>;
defm movn64 : movalias_operand<"movn64", "MOVN", "isOnlyMOVNImm", 64>;
// FIXME: these are officially canonical aliases, but TableGen is too limited to
// print them at the moment. I believe in this case an "AliasPredicate" method
// will need to be implemented. to allow it, as well as the more generally
// useful handling of non-register, non-constant operands.
class movalias<Instruction INST, RegisterClass GPR, Operand operand>
: InstAlias<"mov $Rd, $FullImm", (INST GPR:$Rd, operand:$FullImm)>;
def : movalias<MOVZwii, GPR32, movz32_movimm>;
def : movalias<MOVZxii, GPR64, movz64_movimm>;
def : movalias<MOVNwii, GPR32, movn32_movimm>;
def : movalias<MOVNxii, GPR64, movn64_movimm>;
def movw_addressref_g0 : ComplexPattern<i64, 2, "SelectMOVWAddressRef<0>">;
def movw_addressref_g1 : ComplexPattern<i64, 2, "SelectMOVWAddressRef<1>">;
def movw_addressref_g2 : ComplexPattern<i64, 2, "SelectMOVWAddressRef<2>">;
def movw_addressref_g3 : ComplexPattern<i64, 2, "SelectMOVWAddressRef<3>">;
def : Pat<(A64WrapperLarge movw_addressref_g3:$G3, movw_addressref_g2:$G2,
movw_addressref_g1:$G1, movw_addressref_g0:$G0),
(MOVKxii (MOVKxii (MOVKxii (MOVZxii movw_addressref_g3:$G3),
movw_addressref_g2:$G2),
movw_addressref_g1:$G1),
movw_addressref_g0:$G0)>;
//===----------------------------------------------------------------------===//
// PC-relative addressing instructions
//===----------------------------------------------------------------------===//
// Contains: ADR, ADRP
def adr_label : Operand<i64> {
let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_adr_prel>";
// This label is a 21-bit offset from PC, unscaled
let PrintMethod = "printLabelOperand<21, 1>";
let ParserMatchClass = label_asmoperand<21, 1>;
let OperandType = "OPERAND_PCREL";
}
def adrp_label_asmoperand : AsmOperandClass {
let Name = "AdrpLabel";
let RenderMethod = "addLabelOperands<21, 4096>";
let DiagnosticType = "Label";
}
def adrp_label : Operand<i64> {
let EncoderMethod = "getAdrpLabelOpValue";
// This label is a 21-bit offset from PC, scaled by the page-size: 4096.
let PrintMethod = "printLabelOperand<21, 4096>";
let ParserMatchClass = adrp_label_asmoperand;
let OperandType = "OPERAND_PCREL";
}
let hasSideEffects = 0 in {
def ADRxi : A64I_PCADR<0b0, (outs GPR64:$Rd), (ins adr_label:$Label),
"adr\t$Rd, $Label", [], NoItinerary>;
def ADRPxi : A64I_PCADR<0b1, (outs GPR64:$Rd), (ins adrp_label:$Label),
"adrp\t$Rd, $Label", [], NoItinerary>;
}
//===----------------------------------------------------------------------===//
// System instructions
//===----------------------------------------------------------------------===//
// Contains: HINT, CLREX, DSB, DMB, ISB, MSR, SYS, SYSL, MRS
// + aliases IC, DC, AT, TLBI, NOP, YIELD, WFE, WFI, SEV, SEVL
// Op1 and Op2 fields are sometimes simple 3-bit unsigned immediate values.
def uimm3_asmoperand : AsmOperandClass {
let Name = "UImm3";
let PredicateMethod = "isUImm<3>";
let RenderMethod = "addImmOperands";
let DiagnosticType = "UImm3";
}
def uimm3 : Operand<i32> {
let ParserMatchClass = uimm3_asmoperand;
}
// The HINT alias can accept a simple unsigned 7-bit immediate.
def uimm7_asmoperand : AsmOperandClass {
let Name = "UImm7";
let PredicateMethod = "isUImm<7>";
let RenderMethod = "addImmOperands";
let DiagnosticType = "UImm7";
}
def uimm7 : Operand<i32> {
let ParserMatchClass = uimm7_asmoperand;
}
// Multiclass namedimm is defined with the prefetch operands. Most of these fit
// into the NamedImmMapper scheme well: they either accept a named operand or
// any immediate under a particular value (which may be 0, implying no immediate
// is allowed).
defm dbarrier : namedimm<"dbarrier", "A64DB::DBarrierMapper">;
defm isb : namedimm<"isb", "A64ISB::ISBMapper">;
defm ic : namedimm<"ic", "A64IC::ICMapper">;
defm dc : namedimm<"dc", "A64DC::DCMapper">;
defm at : namedimm<"at", "A64AT::ATMapper">;
defm tlbi : namedimm<"tlbi", "A64TLBI::TLBIMapper">;
// However, MRS and MSR are more complicated for a few reasons:
// * There are ~1000 generic names S3_<op1>_<CRn>_<CRm>_<Op2> which have an
// implementation-defined effect
// * Most registers are shared, but some are read-only or write-only.
// * There is a variant of MSR which accepts the same register name (SPSel),
// but which would have a different encoding.
// In principle these could be resolved in with more complicated subclasses of
// NamedImmMapper, however that imposes an overhead on other "named
// immediates". Both in concrete terms with virtual tables and in unnecessary
// abstraction.
// The solution adopted here is to take the MRS/MSR Mappers out of the usual
// hierarchy (they're not derived from NamedImmMapper) and to add logic for
// their special situation.
def mrs_asmoperand : AsmOperandClass {
let Name = "MRS";
let ParserMethod = "ParseSysRegOperand";
let DiagnosticType = "MRS";
}
def mrs_op : Operand<i32> {
let ParserMatchClass = mrs_asmoperand;
let PrintMethod = "printMRSOperand";
let DecoderMethod = "DecodeMRSOperand";
}
def msr_asmoperand : AsmOperandClass {
let Name = "MSRWithReg";
// Note that SPSel is valid for both this and the pstate operands, but with
// different immediate encodings. This is why these operands provide a string
// AArch64Operand rather than an immediate. The overlap is small enough that
// it could be resolved with hackery now, but who can say in future?
let ParserMethod = "ParseSysRegOperand";
let DiagnosticType = "MSR";
}
def msr_op : Operand<i32> {
let ParserMatchClass = msr_asmoperand;
let PrintMethod = "printMSROperand";
let DecoderMethod = "DecodeMSROperand";
}
def pstate_asmoperand : AsmOperandClass {
let Name = "MSRPState";
// See comment above about parser.
let ParserMethod = "ParseSysRegOperand";
let DiagnosticType = "MSR";
}
def pstate_op : Operand<i32> {
let ParserMatchClass = pstate_asmoperand;
let PrintMethod = "printNamedImmOperand<A64PState::PStateMapper>";
let DecoderMethod = "DecodeNamedImmOperand<A64PState::PStateMapper>";
}
// When <CRn> is specified, an assembler should accept something like "C4", not
// the usual "#4" immediate.
def CRx_asmoperand : AsmOperandClass {
let Name = "CRx";
let PredicateMethod = "isUImm<4>";
let RenderMethod = "addImmOperands";
let ParserMethod = "ParseCRxOperand";
// Diagnostics are handled in all cases by ParseCRxOperand.
}
def CRx : Operand<i32> {
let ParserMatchClass = CRx_asmoperand;
let PrintMethod = "printCRxOperand";
}
// Finally, we can start defining the instructions.
// HINT is straightforward, with a few aliases.
def HINTi : A64I_system<0b0, (outs), (ins uimm7:$UImm7), "hint\t$UImm7",
[], NoItinerary> {
bits<7> UImm7;
let CRm = UImm7{6-3};
let Op2 = UImm7{2-0};
let Op0 = 0b00;
let Op1 = 0b011;
let CRn = 0b0010;
let Rt = 0b11111;
}
def : InstAlias<"nop", (HINTi 0)>;
def : InstAlias<"yield", (HINTi 1)>;
def : InstAlias<"wfe", (HINTi 2)>;
def : InstAlias<"wfi", (HINTi 3)>;
def : InstAlias<"sev", (HINTi 4)>;
def : InstAlias<"sevl", (HINTi 5)>;
// Quite a few instructions then follow a similar pattern of fixing common
// fields in the bitpattern, we'll define a helper-class for them.
class simple_sys<bits<2> op0, bits<3> op1, bits<4> crn, bits<3> op2,
Operand operand, string asmop>
: A64I_system<0b0, (outs), (ins operand:$CRm), !strconcat(asmop, "\t$CRm"),
[], NoItinerary> {
let Op0 = op0;
let Op1 = op1;
let CRn = crn;
let Op2 = op2;
let Rt = 0b11111;
}
def CLREXi : simple_sys<0b00, 0b011, 0b0011, 0b010, uimm4, "clrex">;
def DSBi : simple_sys<0b00, 0b011, 0b0011, 0b100, dbarrier_op, "dsb">;
def DMBi : simple_sys<0b00, 0b011, 0b0011, 0b101, dbarrier_op, "dmb">;
def ISBi : simple_sys<0b00, 0b011, 0b0011, 0b110, isb_op, "isb">;
def : InstAlias<"clrex", (CLREXi 0b1111)>;
def : InstAlias<"isb", (ISBi 0b1111)>;
// (DMBi 0xb) is a "DMB ISH" instruciton, appropriate for Linux SMP
// configurations at least.
def : Pat<(atomic_fence imm, imm), (DMBi 0xb)>;
// Any SYS bitpattern can be represented with a complex and opaque "SYS"
// instruction.
def SYSiccix : A64I_system<0b0, (outs),
(ins uimm3:$Op1, CRx:$CRn, CRx:$CRm,
uimm3:$Op2, GPR64:$Rt),
"sys\t$Op1, $CRn, $CRm, $Op2, $Rt",
[], NoItinerary> {
let Op0 = 0b01;
}
// You can skip the Xt argument whether it makes sense or not for the generic
// SYS instruction.
def : InstAlias<"sys $Op1, $CRn, $CRm, $Op2",
(SYSiccix uimm3:$Op1, CRx:$CRn, CRx:$CRm, uimm3:$Op2, XZR)>;
// But many have aliases, which obviously don't fit into
class SYSalias<dag ins, string asmstring>
: A64I_system<0b0, (outs), ins, asmstring, [], NoItinerary> {
let isAsmParserOnly = 1;
bits<14> SysOp;
let Op0 = 0b01;
let Op1 = SysOp{13-11};
let CRn = SysOp{10-7};
let CRm = SysOp{6-3};
let Op2 = SysOp{2-0};
}
def ICix : SYSalias<(ins ic_op:$SysOp, GPR64:$Rt), "ic\t$SysOp, $Rt">;
def ICi : SYSalias<(ins ic_op:$SysOp), "ic\t$SysOp"> {
let Rt = 0b11111;
}
def DCix : SYSalias<(ins dc_op:$SysOp, GPR64:$Rt), "dc\t$SysOp, $Rt">;
def ATix : SYSalias<(ins at_op:$SysOp, GPR64:$Rt), "at\t$SysOp, $Rt">;
def TLBIix : SYSalias<(ins tlbi_op:$SysOp, GPR64:$Rt), "tlbi\t$SysOp, $Rt">;
def TLBIi : SYSalias<(ins tlbi_op:$SysOp), "tlbi\t$SysOp"> {
let Rt = 0b11111;
}
def SYSLxicci : A64I_system<0b1, (outs GPR64:$Rt),
(ins uimm3:$Op1, CRx:$CRn, CRx:$CRm, uimm3:$Op2),
"sysl\t$Rt, $Op1, $CRn, $CRm, $Op2",
[], NoItinerary> {
let Op0 = 0b01;
}
// The instructions themselves are rather simple for MSR and MRS.
def MSRix : A64I_system<0b0, (outs), (ins msr_op:$SysReg, GPR64:$Rt),
"msr\t$SysReg, $Rt", [], NoItinerary> {
bits<16> SysReg;
let Op0 = SysReg{15-14};
let Op1 = SysReg{13-11};
let CRn = SysReg{10-7};
let CRm = SysReg{6-3};
let Op2 = SysReg{2-0};
}
def MRSxi : A64I_system<0b1, (outs GPR64:$Rt), (ins mrs_op:$SysReg),
"mrs\t$Rt, $SysReg", [], NoItinerary> {
bits<16> SysReg;
let Op0 = SysReg{15-14};
let Op1 = SysReg{13-11};
let CRn = SysReg{10-7};
let CRm = SysReg{6-3};
let Op2 = SysReg{2-0};
}
def MSRii : A64I_system<0b0, (outs), (ins pstate_op:$PState, uimm4:$CRm),
"msr\t$PState, $CRm", [], NoItinerary> {
bits<6> PState;
let Op0 = 0b00;
let Op1 = PState{5-3};
let CRn = 0b0100;
let Op2 = PState{2-0};
let Rt = 0b11111;
}
//===----------------------------------------------------------------------===//
// Test & branch (immediate) instructions
//===----------------------------------------------------------------------===//
// Contains: TBZ, TBNZ
// The bit to test is a simple unsigned 6-bit immediate in the X-register
// versions.
def uimm6 : Operand<i64> {
let ParserMatchClass = uimm6_asmoperand;
}
def label_wid14_scal4_asmoperand : label_asmoperand<14, 4>;
def tbimm_target : Operand<OtherVT> {
let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_tstbr>";
// This label is a 14-bit offset from PC, scaled by the instruction-width: 4.
let PrintMethod = "printLabelOperand<14, 4>";
let ParserMatchClass = label_wid14_scal4_asmoperand;
let OperandType = "OPERAND_PCREL";
}
def A64eq : ImmLeaf<i32, [{ return Imm == A64CC::EQ; }]>;
def A64ne : ImmLeaf<i32, [{ return Imm == A64CC::NE; }]>;
// These instructions correspond to patterns involving "and" with a power of
// two, which we need to be able to select.
def tstb64_pat : ComplexPattern<i64, 1, "SelectTSTBOperand<64>">;
def tstb32_pat : ComplexPattern<i32, 1, "SelectTSTBOperand<32>">;
let isBranch = 1, isTerminator = 1 in {
def TBZxii : A64I_TBimm<0b0, (outs),
(ins GPR64:$Rt, uimm6:$Imm, tbimm_target:$Label),
"tbz\t$Rt, $Imm, $Label",
[(A64br_cc (A64cmp (and i64:$Rt, tstb64_pat:$Imm), 0),
A64eq, bb:$Label)],
NoItinerary>;
def TBNZxii : A64I_TBimm<0b1, (outs),
(ins GPR64:$Rt, uimm6:$Imm, tbimm_target:$Label),
"tbnz\t$Rt, $Imm, $Label",
[(A64br_cc (A64cmp (and i64:$Rt, tstb64_pat:$Imm), 0),
A64ne, bb:$Label)],
NoItinerary>;
// Note, these instructions overlap with the above 64-bit patterns. This is
// intentional, "tbz x3, #1, somewhere" and "tbz w3, #1, somewhere" would both
// do the same thing and are both permitted assembly. They also both have
// sensible DAG patterns.
def TBZwii : A64I_TBimm<0b0, (outs),
(ins GPR32:$Rt, uimm5:$Imm, tbimm_target:$Label),
"tbz\t$Rt, $Imm, $Label",
[(A64br_cc (A64cmp (and i32:$Rt, tstb32_pat:$Imm), 0),
A64eq, bb:$Label)],
NoItinerary> {
let Imm{5} = 0b0;
}
def TBNZwii : A64I_TBimm<0b1, (outs),
(ins GPR32:$Rt, uimm5:$Imm, tbimm_target:$Label),
"tbnz\t$Rt, $Imm, $Label",
[(A64br_cc (A64cmp (and i32:$Rt, tstb32_pat:$Imm), 0),
A64ne, bb:$Label)],
NoItinerary> {
let Imm{5} = 0b0;
}
}
//===----------------------------------------------------------------------===//
// Unconditional branch (immediate) instructions
//===----------------------------------------------------------------------===//
// Contains: B, BL
def label_wid26_scal4_asmoperand : label_asmoperand<26, 4>;
def bimm_target : Operand<OtherVT> {
let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_uncondbr>";
// This label is a 26-bit offset from PC, scaled by the instruction-width: 4.
let PrintMethod = "printLabelOperand<26, 4>";
let ParserMatchClass = label_wid26_scal4_asmoperand;
let OperandType = "OPERAND_PCREL";
}
def blimm_target : Operand<i64> {
let EncoderMethod = "getLabelOpValue<AArch64::fixup_a64_call>";
// This label is a 26-bit offset from PC, scaled by the instruction-width: 4.
let PrintMethod = "printLabelOperand<26, 4>";
let ParserMatchClass = label_wid26_scal4_asmoperand;
let OperandType = "OPERAND_PCREL";
}
class A64I_BimmImpl<bit op, string asmop, list<dag> patterns, Operand lbl_type>
: A64I_Bimm<op, (outs), (ins lbl_type:$Label),
!strconcat(asmop, "\t$Label"), patterns,
NoItinerary>;
let isBranch = 1 in {
def Bimm : A64I_BimmImpl<0b0, "b", [(br bb:$Label)], bimm_target> {
let isTerminator = 1;
let isBarrier = 1;
}
def BLimm : A64I_BimmImpl<0b1, "bl",
[(AArch64Call tglobaladdr:$Label)], blimm_target> {
let isCall = 1;
let Defs = [X30];
}
}
def : Pat<(AArch64Call texternalsym:$Label), (BLimm texternalsym:$Label)>;
//===----------------------------------------------------------------------===//
// Unconditional branch (register) instructions
//===----------------------------------------------------------------------===//
// Contains: BR, BLR, RET, ERET, DRP.
// Most of the notional opcode fields in the A64I_Breg format are fixed in A64
// at the moment.
class A64I_BregImpl<bits<4> opc,
dag outs, dag ins, string asmstr, list<dag> patterns,
InstrItinClass itin = NoItinerary>
: A64I_Breg<opc, 0b11111, 0b000000, 0b00000,
outs, ins, asmstr, patterns, itin> {
let isBranch = 1;
let isIndirectBranch = 1;
}
// Note that these are not marked isCall or isReturn because as far as LLVM is
// concerned they're not. "ret" is just another jump unless it has been selected
// by LLVM as the function's return.
let isBranch = 1 in {
def BRx : A64I_BregImpl<0b0000,(outs), (ins GPR64:$Rn),
"br\t$Rn", [(brind i64:$Rn)]> {
let isBarrier = 1;
let isTerminator = 1;
}
def BLRx : A64I_BregImpl<0b0001, (outs), (ins GPR64:$Rn),
"blr\t$Rn", [(AArch64Call i64:$Rn)]> {
let isBarrier = 0;
let isCall = 1;
let Defs = [X30];
}
def RETx : A64I_BregImpl<0b0010, (outs), (ins GPR64:$Rn),
"ret\t$Rn", []> {
let isBarrier = 1;
let isTerminator = 1;
let isReturn = 1;
}
// Create a separate pseudo-instruction for codegen to use so that we don't
// flag x30 as used in every function. It'll be restored before the RET by the
// epilogue if it's legitimately used.
def RET : A64PseudoExpand<(outs), (ins), [(A64ret)], (RETx (ops X30))> {
let isTerminator = 1;
let isBarrier = 1;
let isReturn = 1;
}
def ERET : A64I_BregImpl<0b0100, (outs), (ins), "eret", []> {
let Rn = 0b11111;
let isBarrier = 1;
let isTerminator = 1;
let isReturn = 1;
}
def DRPS : A64I_BregImpl<0b0101, (outs), (ins), "drps", []> {
let Rn = 0b11111;
let isBarrier = 1;
}
}
def RETAlias : InstAlias<"ret", (RETx X30)>;
//===----------------------------------------------------------------------===//
// Address generation patterns
//===----------------------------------------------------------------------===//
// Primary method of address generation for the small/absolute memory model is
// an ADRP/ADR pair:
// ADRP x0, some_variable
// ADD x0, x0, #:lo12:some_variable
//
// The load/store elision of the ADD is accomplished when selecting
// addressing-modes. This just mops up the cases where that doesn't work and we
// really need an address in some register.
// This wrapper applies a LO12 modifier to the address. Otherwise we could just
// use the same address.
class ADRP_ADD<SDNode Wrapper, SDNode addrop>
: Pat<(Wrapper addrop:$Hi, addrop:$Lo12, (i32 imm)),
(ADDxxi_lsl0_s (ADRPxi addrop:$Hi), addrop:$Lo12)>;
def : ADRP_ADD<A64WrapperSmall, tblockaddress>;
def : ADRP_ADD<A64WrapperSmall, texternalsym>;
def : ADRP_ADD<A64WrapperSmall, tglobaladdr>;
def : ADRP_ADD<A64WrapperSmall, tglobaltlsaddr>;
def : ADRP_ADD<A64WrapperSmall, tjumptable>;
//===----------------------------------------------------------------------===//
// GOT access patterns
//===----------------------------------------------------------------------===//
class GOTLoadSmall<SDNode addrfrag>
: Pat<(A64GOTLoad (A64WrapperSmall addrfrag:$Hi, addrfrag:$Lo12, 8)),
(LS64_LDR (ADRPxi addrfrag:$Hi), addrfrag:$Lo12)>;
def : GOTLoadSmall<texternalsym>;
def : GOTLoadSmall<tglobaladdr>;
def : GOTLoadSmall<tglobaltlsaddr>;
//===----------------------------------------------------------------------===//
// Tail call handling
//===----------------------------------------------------------------------===//
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [XSP] in {
def TC_RETURNdi
: PseudoInst<(outs), (ins i64imm:$dst, i32imm:$FPDiff),
[(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff))]>;
def TC_RETURNxi
: PseudoInst<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff),
[(AArch64tcret i64:$dst, (i32 timm:$FPDiff))]>;
}
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
Uses = [XSP] in {
def TAIL_Bimm : A64PseudoExpand<(outs), (ins bimm_target:$Label), [],
(Bimm bimm_target:$Label)>;
def TAIL_BRx : A64PseudoExpand<(outs), (ins tcGPR64:$Rd), [],
(BRx GPR64:$Rd)>;
}
def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)),
(TC_RETURNdi texternalsym:$dst, imm:$FPDiff)>;
//===----------------------------------------------------------------------===//
// Thread local storage
//===----------------------------------------------------------------------===//
// This is a pseudo-instruction representing the ".tlsdesccall" directive in
// assembly. Its effect is to insert an R_AARCH64_TLSDESC_CALL relocation at the
// current location. It should always be immediately followed by a BLR
// instruction, and is intended solely for relaxation by the linker.
def : Pat<(A64threadpointer), (MRSxi 0xde82)>;
def TLSDESCCALL : PseudoInst<(outs), (ins i64imm:$Lbl), []> {
let hasSideEffects = 1;
}
def TLSDESC_BLRx : PseudoInst<(outs), (ins GPR64:$Rn, i64imm:$Var),
[(A64tlsdesc_blr i64:$Rn, tglobaltlsaddr:$Var)]> {
let isCall = 1;
let Defs = [X30];
}
def : Pat<(A64tlsdesc_blr i64:$Rn, texternalsym:$Var),
(TLSDESC_BLRx $Rn, texternalsym:$Var)>;
//===----------------------------------------------------------------------===//
// Bitfield patterns
//===----------------------------------------------------------------------===//
def bfi32_lsb_to_immr : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((32 - N->getZExtValue()) % 32, MVT::i64);
}]>;
def bfi64_lsb_to_immr : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((64 - N->getZExtValue()) % 64, MVT::i64);
}]>;
def bfi_width_to_imms : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(N->getZExtValue() - 1, MVT::i64);
}]>;
// The simpler patterns deal with cases where no AND mask is actually needed
// (either all bits are used or the low 32 bits are used).
let AddedComplexity = 10 in {
def : Pat<(A64Bfi i64:$src, i64:$Rn, imm:$ImmR, imm:$ImmS),
(BFIxxii $src, $Rn,
(bfi64_lsb_to_immr (i64 imm:$ImmR)),
(bfi_width_to_imms (i64 imm:$ImmS)))>;
def : Pat<(A64Bfi i32:$src, i32:$Rn, imm:$ImmR, imm:$ImmS),
(BFIwwii $src, $Rn,
(bfi32_lsb_to_immr (i64 imm:$ImmR)),
(bfi_width_to_imms (i64 imm:$ImmS)))>;
def : Pat<(and (A64Bfi i64:$src, i64:$Rn, imm:$ImmR, imm:$ImmS),
(i64 4294967295)),
(SUBREG_TO_REG (i64 0),
(BFIwwii (EXTRACT_SUBREG $src, sub_32),
(EXTRACT_SUBREG $Rn, sub_32),
(bfi32_lsb_to_immr (i64 imm:$ImmR)),
(bfi_width_to_imms (i64 imm:$ImmS))),
sub_32)>;
}
//===----------------------------------------------------------------------===//
// Miscellaneous patterns
//===----------------------------------------------------------------------===//
// Truncation from 64 to 32-bits just involves renaming your register.
def : Pat<(i32 (trunc i64:$val)), (EXTRACT_SUBREG $val, sub_32)>;
// Similarly, extension where we don't care about the high bits is
// just a rename.
def : Pat<(i64 (anyext i32:$val)),
(INSERT_SUBREG (IMPLICIT_DEF), $val, sub_32)>;
// SELECT instructions providing f128 types need to be handled by a
// pseudo-instruction since the eventual code will need to introduce basic
// blocks and control flow.
def F128CSEL : PseudoInst<(outs FPR128:$Rd),
(ins FPR128:$Rn, FPR128:$Rm, cond_code_op:$Cond),
[(set f128:$Rd, (simple_select f128:$Rn, f128:$Rm))]> {
let Uses = [NZCV];
let usesCustomInserter = 1;
}
//===----------------------------------------------------------------------===//
// Load/store patterns
//===----------------------------------------------------------------------===//
// There are lots of patterns here, because we need to allow at least three
// parameters to vary independently.
// 1. Instruction: "ldrb w9, [sp]", "ldrh w9, [sp]", ...
// 2. LLVM source: zextloadi8, anyextloadi8, ...
// 3. Address-generation: A64Wrapper, (add BASE, OFFSET), ...
//
// The biggest problem turns out to be the address-generation variable. At the
// point of instantiation we need to produce two DAGs, one for the pattern and
// one for the instruction. Doing this at the lowest level of classes doesn't
// work.
//
// Consider the simple uimm12 addressing mode, and the desire to match both (add
// GPR64xsp:$Rn, uimm12:$Offset) and GPR64xsp:$Rn, particularly on the
// instruction side. We'd need to insert either "GPR64xsp" and "uimm12" or
// "GPR64xsp" and "0" into an unknown dag. !subst is not capable of this
// operation, and PatFrags are for selection not output.
//
// As a result, the address-generation patterns are the final
// instantiations. However, we do still need to vary the operand for the address
// further down (At the point we're deciding A64WrapperSmall, we don't know
// the memory width of the operation).
//===------------------------------
// 1. Basic infrastructural defs
//===------------------------------
// First, some simple classes for !foreach and !subst to use:
class Decls {
dag pattern;
}
def decls : Decls;
def ALIGN;
def INST;
def OFFSET;
def SHIFT;
// You can't use !subst on an actual immediate, but you *can* use it on an
// operand record that happens to match a single immediate. So we do.
def imm_eq0 : ImmLeaf<i64, [{ return Imm == 0; }]>;
def imm_eq1 : ImmLeaf<i64, [{ return Imm == 1; }]>;
def imm_eq2 : ImmLeaf<i64, [{ return Imm == 2; }]>;
def imm_eq3 : ImmLeaf<i64, [{ return Imm == 3; }]>;
def imm_eq4 : ImmLeaf<i64, [{ return Imm == 4; }]>;
// If the low bits of a pointer are known to be 0 then an "or" is just as good
// as addition for computing an offset. This fragment forwards that check for
// TableGen's use.
def add_like_or : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),
[{
return CurDAG->isBaseWithConstantOffset(SDValue(N, 0));
}]>;
// Load/store (unsigned immediate) operations with relocations against global
// symbols (for lo12) are only valid if those symbols have correct alignment
// (since the immediate offset is divided by the access scale, it can't have a
// remainder).
//
// The guaranteed alignment is provided as part of the WrapperSmall
// operation, and checked against one of these.
def any_align : ImmLeaf<i32, [{ (void)Imm; return true; }]>;
def min_align2 : ImmLeaf<i32, [{ return Imm >= 2; }]>;
def min_align4 : ImmLeaf<i32, [{ return Imm >= 4; }]>;
def min_align8 : ImmLeaf<i32, [{ return Imm >= 8; }]>;
def min_align16 : ImmLeaf<i32, [{ return Imm >= 16; }]>;
// "Normal" load/store instructions can be used on atomic operations, provided
// the ordering parameter is at most "monotonic". Anything above that needs
// special handling with acquire/release instructions.
class simple_load<PatFrag base>
: PatFrag<(ops node:$ptr), (base node:$ptr), [{
return cast<AtomicSDNode>(N)->getOrdering() <= Monotonic;
}]>;
def atomic_load_simple_i8 : simple_load<atomic_load_8>;
def atomic_load_simple_i16 : simple_load<atomic_load_16>;
def atomic_load_simple_i32 : simple_load<atomic_load_32>;
def atomic_load_simple_i64 : simple_load<atomic_load_64>;
class simple_store<PatFrag base>
: PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
return cast<AtomicSDNode>(N)->getOrdering() <= Monotonic;
}]>;
def atomic_store_simple_i8 : simple_store<atomic_store_8>;
def atomic_store_simple_i16 : simple_store<atomic_store_16>;
def atomic_store_simple_i32 : simple_store<atomic_store_32>;
def atomic_store_simple_i64 : simple_store<atomic_store_64>;
//===------------------------------
// 2. UImm12 and SImm9
//===------------------------------
// These instructions have two operands providing the address so they can be
// treated similarly for most purposes.
//===------------------------------
// 2.1 Base patterns covering extend/truncate semantics
//===------------------------------
// Atomic patterns can be shared between integer operations of all sizes, a
// quick multiclass here allows reuse.
multiclass ls_atomic_pats<Instruction LOAD, Instruction STORE, dag Base,
dag Offset, dag address, ValueType transty,
ValueType sty> {
def : Pat<(!cast<PatFrag>("atomic_load_simple_" # sty) address),
(LOAD Base, Offset)>;
def : Pat<(!cast<PatFrag>("atomic_store_simple_" # sty) address, transty:$Rt),
(STORE $Rt, Base, Offset)>;
}
// Instructions accessing a memory chunk smaller than a register (or, in a
// pinch, the same size) have a characteristic set of patterns they want to
// match: extending loads and truncating stores. This class deals with the
// sign-neutral version of those patterns.
//
// It will be instantiated across multiple addressing-modes.
multiclass ls_small_pats<Instruction LOAD, Instruction STORE,
dag Base, dag Offset,
dag address, ValueType sty>
: ls_atomic_pats<LOAD, STORE, Base, Offset, address, i32, sty> {
def : Pat<(!cast<SDNode>(zextload # sty) address), (LOAD Base, Offset)>;
def : Pat<(!cast<SDNode>(extload # sty) address), (LOAD Base, Offset)>;
// For zero-extension to 64-bits we have to tell LLVM that the whole 64-bit
// register was actually set.
def : Pat<(i64 (!cast<SDNode>(zextload # sty) address)),
(SUBREG_TO_REG (i64 0), (LOAD Base, Offset), sub_32)>;
def : Pat<(i64 (!cast<SDNode>(extload # sty) address)),
(SUBREG_TO_REG (i64 0), (LOAD Base, Offset), sub_32)>;
def : Pat<(!cast<SDNode>(truncstore # sty) i32:$Rt, address),
(STORE $Rt, Base, Offset)>;
// For truncating store from 64-bits, we have to manually tell LLVM to
// ignore the high bits of the x register.
def : Pat<(!cast<SDNode>(truncstore # sty) i64:$Rt, address),
(STORE (EXTRACT_SUBREG $Rt, sub_32), Base, Offset)>;
}
// Next come patterns for sign-extending loads.
multiclass load_signed_pats<string T, string U, dag Base, dag Offset,
dag address, ValueType sty> {
def : Pat<(i32 (!cast<SDNode>("sextload" # sty) address)),
(!cast<Instruction>("LDRS" # T # "w" # U) Base, Offset)>;
def : Pat<(i64 (!cast<SDNode>("sextload" # sty) address)),
(!cast<Instruction>("LDRS" # T # "x" # U) Base, Offset)>;
}
// and finally "natural-width" loads and stores come next.
multiclass ls_neutral_pats<Instruction LOAD, Instruction STORE, dag Base,
dag Offset, dag address, ValueType sty> {
def : Pat<(sty (load address)), (LOAD Base, Offset)>;
def : Pat<(store sty:$Rt, address), (STORE $Rt, Base, Offset)>;
}
// Integer operations also get atomic instructions to select for.
multiclass ls_int_neutral_pats<Instruction LOAD, Instruction STORE, dag Base,
dag Offset, dag address, ValueType sty>
: ls_neutral_pats<LOAD, STORE, Base, Offset, address, sty>,
ls_atomic_pats<LOAD, STORE, Base, Offset, address, sty, sty>;
//===------------------------------
// 2.2. Addressing-mode instantiations
//===------------------------------
multiclass uimm12_pats<dag address, dag Base, dag Offset> {
defm : ls_small_pats<LS8_LDR, LS8_STR, Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, byte_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, byte_uimm12,
!subst(ALIGN, any_align, decls.pattern))),
i8>;
defm : ls_small_pats<LS16_LDR, LS16_STR, Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, hword_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, hword_uimm12,
!subst(ALIGN, min_align2, decls.pattern))),
i16>;
defm : ls_small_pats<LS32_LDR, LS32_STR, Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, word_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, word_uimm12,
!subst(ALIGN, min_align4, decls.pattern))),
i32>;
defm : ls_int_neutral_pats<LS32_LDR, LS32_STR, Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, word_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, word_uimm12,
!subst(ALIGN, min_align4, decls.pattern))),
i32>;
defm : ls_int_neutral_pats<LS64_LDR, LS64_STR, Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, dword_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, dword_uimm12,
!subst(ALIGN, min_align8, decls.pattern))),
i64>;
defm : ls_neutral_pats<LSFP16_LDR, LSFP16_STR, Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, hword_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, hword_uimm12,
!subst(ALIGN, min_align2, decls.pattern))),
f16>;
defm : ls_neutral_pats<LSFP32_LDR, LSFP32_STR, Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, word_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, word_uimm12,
!subst(ALIGN, min_align4, decls.pattern))),
f32>;
defm : ls_neutral_pats<LSFP64_LDR, LSFP64_STR, Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, dword_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, dword_uimm12,
!subst(ALIGN, min_align8, decls.pattern))),
f64>;
defm : ls_neutral_pats<LSFP128_LDR, LSFP128_STR, Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, qword_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, qword_uimm12,
!subst(ALIGN, min_align16, decls.pattern))),
f128>;
defm : load_signed_pats<"B", "", Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, byte_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, byte_uimm12,
!subst(ALIGN, any_align, decls.pattern))),
i8>;
defm : load_signed_pats<"H", "", Base,
!foreach(decls.pattern, Offset,
!subst(OFFSET, hword_uimm12, decls.pattern)),
!foreach(decls.pattern, address,
!subst(OFFSET, hword_uimm12,
!subst(ALIGN, min_align2, decls.pattern))),
i16>;
def : Pat<(sextloadi32 !foreach(decls.pattern, address,
!subst(OFFSET, word_uimm12,
!subst(ALIGN, min_align4, decls.pattern)))),
(LDRSWx Base, !foreach(decls.pattern, Offset,
!subst(OFFSET, word_uimm12, decls.pattern)))>;
}
// Straightforward patterns of last resort: a pointer with or without an
// appropriate offset.
defm : uimm12_pats<(i64 i64:$Rn), (i64 i64:$Rn), (i64 0)>;
defm : uimm12_pats<(add i64:$Rn, OFFSET:$UImm12),
(i64 i64:$Rn), (i64 OFFSET:$UImm12)>;
// The offset could be hidden behind an "or", of course:
defm : uimm12_pats<(add_like_or i64:$Rn, OFFSET:$UImm12),
(i64 i64:$Rn), (i64 OFFSET:$UImm12)>;
// Global addresses under the small-absolute model should use these
// instructions. There are ELF relocations specifically for it.
defm : uimm12_pats<(A64WrapperSmall tglobaladdr:$Hi, tglobaladdr:$Lo12, ALIGN),
(ADRPxi tglobaladdr:$Hi), (i64 tglobaladdr:$Lo12)>;
defm : uimm12_pats<(A64WrapperSmall tglobaltlsaddr:$Hi, tglobaltlsaddr:$Lo12,
ALIGN),
(ADRPxi tglobaltlsaddr:$Hi), (i64 tglobaltlsaddr:$Lo12)>;
// External symbols that make it this far should also get standard relocations.
defm : uimm12_pats<(A64WrapperSmall texternalsym:$Hi, texternalsym:$Lo12,
ALIGN),
(ADRPxi texternalsym:$Hi), (i64 texternalsym:$Lo12)>;
defm : uimm12_pats<(A64WrapperSmall tconstpool:$Hi, tconstpool:$Lo12, ALIGN),
(ADRPxi tconstpool:$Hi), (i64 tconstpool:$Lo12)>;
// We also want to use uimm12 instructions for local variables at the moment.
def tframeindex_XFORM : SDNodeXForm<frameindex, [{
int FI = cast<FrameIndexSDNode>(N)->getIndex();
return CurDAG->getTargetFrameIndex(FI, MVT::i64);
}]>;
defm : uimm12_pats<(i64 frameindex:$Rn),
(tframeindex_XFORM tframeindex:$Rn), (i64 0)>;
// These can be much simpler than uimm12 because we don't to change the operand
// type (e.g. LDURB and LDURH take the same operands).
multiclass simm9_pats<dag address, dag Base, dag Offset> {
defm : ls_small_pats<LS8_LDUR, LS8_STUR, Base, Offset, address, i8>;
defm : ls_small_pats<LS16_LDUR, LS16_STUR, Base, Offset, address, i16>;
defm : ls_int_neutral_pats<LS32_LDUR, LS32_STUR, Base, Offset, address, i32>;
defm : ls_int_neutral_pats<LS64_LDUR, LS64_STUR, Base, Offset, address, i64>;
defm : ls_neutral_pats<LSFP16_LDUR, LSFP16_STUR, Base, Offset, address, f16>;
defm : ls_neutral_pats<LSFP32_LDUR, LSFP32_STUR, Base, Offset, address, f32>;
defm : ls_neutral_pats<LSFP64_LDUR, LSFP64_STUR, Base, Offset, address, f64>;
defm : ls_neutral_pats<LSFP128_LDUR, LSFP128_STUR, Base, Offset, address,
f128>;
def : Pat<(i64 (zextloadi32 address)),
(SUBREG_TO_REG (i64 0), (LS32_LDUR Base, Offset), sub_32)>;
def : Pat<(truncstorei32 i64:$Rt, address),
(LS32_STUR (EXTRACT_SUBREG $Rt, sub_32), Base, Offset)>;
defm : load_signed_pats<"B", "_U", Base, Offset, address, i8>;
defm : load_signed_pats<"H", "_U", Base, Offset, address, i16>;
def : Pat<(sextloadi32 address), (LDURSWx Base, Offset)>;
}
defm : simm9_pats<(add i64:$Rn, simm9:$SImm9),
(i64 $Rn), (SDXF_simm9 simm9:$SImm9)>;
defm : simm9_pats<(add_like_or i64:$Rn, simm9:$SImm9),
(i64 $Rn), (SDXF_simm9 simm9:$SImm9)>;
//===------------------------------
// 3. Register offset patterns
//===------------------------------
// Atomic patterns can be shared between integer operations of all sizes, a
// quick multiclass here allows reuse.
multiclass ro_atomic_pats<Instruction LOAD, Instruction STORE, dag Base,
dag Offset, dag Extend, dag address,
ValueType transty, ValueType sty> {
def : Pat<(!cast<PatFrag>("atomic_load_simple_" # sty) address),
(LOAD Base, Offset, Extend)>;
def : Pat<(!cast<PatFrag>("atomic_store_simple_" # sty) address, transty:$Rt),
(STORE $Rt, Base, Offset, Extend)>;
}
// The register offset instructions take three operands giving the instruction,
// and have an annoying split between instructions where Rm is 32-bit and
// 64-bit. So we need a special hierarchy to describe them. Other than that the
// same operations should be supported as for simm9 and uimm12 addressing.
multiclass ro_small_pats<Instruction LOAD, Instruction STORE,
dag Base, dag Offset, dag Extend,
dag address, ValueType sty>
: ro_atomic_pats<LOAD, STORE, Base, Offset, Extend, address, i32, sty> {
def : Pat<(!cast<SDNode>(zextload # sty) address),
(LOAD Base, Offset, Extend)>;
def : Pat<(!cast<SDNode>(extload # sty) address),
(LOAD Base, Offset, Extend)>;
// For zero-extension to 64-bits we have to tell LLVM that the whole 64-bit
// register was actually set.
def : Pat<(i64 (!cast<SDNode>(zextload # sty) address)),
(SUBREG_TO_REG (i64 0), (LOAD Base, Offset, Extend), sub_32)>;
def : Pat<(i64 (!cast<SDNode>(extload # sty) address)),
(SUBREG_TO_REG (i64 0), (LOAD Base, Offset, Extend), sub_32)>;
def : Pat<(!cast<SDNode>(truncstore # sty) i32:$Rt, address),
(STORE $Rt, Base, Offset, Extend)>;
// For truncating store from 64-bits, we have to manually tell LLVM to
// ignore the high bits of the x register.
def : Pat<(!cast<SDNode>(truncstore # sty) i64:$Rt, address),
(STORE (EXTRACT_SUBREG $Rt, sub_32), Base, Offset, Extend)>;
}
// Next come patterns for sign-extending loads.
multiclass ro_signed_pats<string T, string Rm, dag Base, dag Offset, dag Extend,
dag address, ValueType sty> {
def : Pat<(i32 (!cast<SDNode>("sextload" # sty) address)),
(!cast<Instruction>("LDRS" # T # "w_" # Rm # "_RegOffset")
Base, Offset, Extend)>;
def : Pat<(i64 (!cast<SDNode>("sextload" # sty) address)),
(!cast<Instruction>("LDRS" # T # "x_" # Rm # "_RegOffset")
Base, Offset, Extend)>;
}
// and finally "natural-width" loads and stores come next.
multiclass ro_neutral_pats<Instruction LOAD, Instruction STORE,
dag Base, dag Offset, dag Extend, dag address,
ValueType sty> {
def : Pat<(sty (load address)), (LOAD Base, Offset, Extend)>;
def : Pat<(store sty:$Rt, address),
(STORE $Rt, Base, Offset, Extend)>;
}
multiclass ro_int_neutral_pats<Instruction LOAD, Instruction STORE,
dag Base, dag Offset, dag Extend, dag address,
ValueType sty>
: ro_neutral_pats<LOAD, STORE, Base, Offset, Extend, address, sty>,
ro_atomic_pats<LOAD, STORE, Base, Offset, Extend, address, sty, sty>;
multiclass regoff_pats<string Rm, dag address, dag Base, dag Offset,
dag Extend> {
defm : ro_small_pats<!cast<Instruction>("LS8_" # Rm # "_RegOffset_LDR"),
!cast<Instruction>("LS8_" # Rm # "_RegOffset_STR"),
Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq0, decls.pattern)),
i8>;
defm : ro_small_pats<!cast<Instruction>("LS16_" # Rm # "_RegOffset_LDR"),
!cast<Instruction>("LS16_" # Rm # "_RegOffset_STR"),
Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq1, decls.pattern)),
i16>;
defm : ro_small_pats<!cast<Instruction>("LS32_" # Rm # "_RegOffset_LDR"),
!cast<Instruction>("LS32_" # Rm # "_RegOffset_STR"),
Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq2, decls.pattern)),
i32>;
defm : ro_int_neutral_pats<
!cast<Instruction>("LS32_" # Rm # "_RegOffset_LDR"),
!cast<Instruction>("LS32_" # Rm # "_RegOffset_STR"),
Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq2, decls.pattern)),
i32>;
defm : ro_int_neutral_pats<
!cast<Instruction>("LS64_" # Rm # "_RegOffset_LDR"),
!cast<Instruction>("LS64_" # Rm # "_RegOffset_STR"),
Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq3, decls.pattern)),
i64>;
defm : ro_neutral_pats<!cast<Instruction>("LSFP16_" # Rm # "_RegOffset_LDR"),
!cast<Instruction>("LSFP16_" # Rm # "_RegOffset_STR"),
Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq1, decls.pattern)),
f16>;
defm : ro_neutral_pats<!cast<Instruction>("LSFP32_" # Rm # "_RegOffset_LDR"),
!cast<Instruction>("LSFP32_" # Rm # "_RegOffset_STR"),
Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq2, decls.pattern)),
f32>;
defm : ro_neutral_pats<!cast<Instruction>("LSFP64_" # Rm # "_RegOffset_LDR"),
!cast<Instruction>("LSFP64_" # Rm # "_RegOffset_STR"),
Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq3, decls.pattern)),
f64>;
defm : ro_neutral_pats<!cast<Instruction>("LSFP128_" # Rm # "_RegOffset_LDR"),
!cast<Instruction>("LSFP128_" # Rm # "_RegOffset_STR"),
Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq4, decls.pattern)),
f128>;
defm : ro_signed_pats<"B", Rm, Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq0, decls.pattern)),
i8>;
defm : ro_signed_pats<"H", Rm, Base, Offset, Extend,
!foreach(decls.pattern, address,
!subst(SHIFT, imm_eq1, decls.pattern)),
i16>;
def : Pat<(sextloadi32 !foreach(decls.pattern, address,
!subst(SHIFT, imm_eq2, decls.pattern))),
(!cast<Instruction>("LDRSWx_" # Rm # "_RegOffset")
Base, Offset, Extend)>;
}
// Finally we're in a position to tell LLVM exactly what addresses are reachable
// using register-offset instructions. Essentially a base plus a possibly
// extended, possibly shifted (by access size) offset.
defm : regoff_pats<"Wm", (add i64:$Rn, (sext i32:$Rm)),
(i64 i64:$Rn), (i32 i32:$Rm), (i64 6)>;
defm : regoff_pats<"Wm", (add i64:$Rn, (shl (sext i32:$Rm), SHIFT)),
(i64 i64:$Rn), (i32 i32:$Rm), (i64 7)>;
defm : regoff_pats<"Wm", (add i64:$Rn, (zext i32:$Rm)),
(i64 i64:$Rn), (i32 i32:$Rm), (i64 2)>;
defm : regoff_pats<"Wm", (add i64:$Rn, (shl (zext i32:$Rm), SHIFT)),
(i64 i64:$Rn), (i32 i32:$Rm), (i64 3)>;
defm : regoff_pats<"Xm", (add i64:$Rn, i64:$Rm),
(i64 i64:$Rn), (i64 i64:$Rm), (i64 2)>;
defm : regoff_pats<"Xm", (add i64:$Rn, (shl i64:$Rm, SHIFT)),
(i64 i64:$Rn), (i64 i64:$Rm), (i64 3)>;
//===----------------------------------------------------------------------===//
// Advanced SIMD (NEON) Support
//
include "AArch64InstrNEON.td"