mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-09 13:41:47 +00:00
cdbaeb52ae
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28409 91177308-0d34-0410-b5e6-96231b3b80d8 |
||
---|---|---|
.. | ||
.cvsignore | ||
Makefile | ||
README-FPStack.txt | ||
README-SSE.txt | ||
README.txt | ||
X86.h | ||
X86.td | ||
X86AsmPrinter.cpp | ||
X86AsmPrinter.h | ||
X86ATTAsmPrinter.cpp | ||
X86ATTAsmPrinter.h | ||
X86CodeEmitter.cpp | ||
X86ELFWriter.cpp | ||
X86FloatingPoint.cpp | ||
X86InstrBuilder.h | ||
X86InstrFPStack.td | ||
X86InstrInfo.cpp | ||
X86InstrInfo.h | ||
X86InstrInfo.td | ||
X86InstrMMX.td | ||
X86InstrSSE.td | ||
X86IntelAsmPrinter.cpp | ||
X86IntelAsmPrinter.h | ||
X86ISelDAGToDAG.cpp | ||
X86ISelLowering.cpp | ||
X86ISelLowering.h | ||
X86JITInfo.cpp | ||
X86JITInfo.h | ||
X86RegisterInfo.cpp | ||
X86RegisterInfo.h | ||
X86RegisterInfo.td | ||
X86Relocations.h | ||
X86Subtarget.cpp | ||
X86Subtarget.h | ||
X86TargetMachine.cpp | ||
X86TargetMachine.h |
//===---------------------------------------------------------------------===// // Random ideas for the X86 backend. //===---------------------------------------------------------------------===// Add a MUL2U and MUL2S nodes to represent a multiply that returns both the Hi and Lo parts (combination of MUL and MULH[SU] into one node). Add this to X86, & make the dag combiner produce it when needed. This will eliminate one imul from the code generated for: long long test(long long X, long long Y) { return X*Y; } by using the EAX result from the mul. We should add a similar node for DIVREM. another case is: long long test(int X, int Y) { return (long long)X*Y; } ... which should only be one imul instruction. //===---------------------------------------------------------------------===// This should be one DIV/IDIV instruction, not a libcall: unsigned test(unsigned long long X, unsigned Y) { return X/Y; } This can be done trivially with a custom legalizer. What about overflow though? http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224 //===---------------------------------------------------------------------===// Improvements to the multiply -> shift/add algorithm: http://gcc.gnu.org/ml/gcc-patches/2004-08/msg01590.html //===---------------------------------------------------------------------===// Improve code like this (occurs fairly frequently, e.g. in LLVM): long long foo(int x) { return 1LL << x; } http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01109.html http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01128.html http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01136.html Another useful one would be ~0ULL >> X and ~0ULL << X. //===---------------------------------------------------------------------===// Compile this: _Bool f(_Bool a) { return a!=1; } into: movzbl %dil, %eax xorl $1, %eax ret //===---------------------------------------------------------------------===// Some isel ideas: 1. Dynamic programming based approach when compile time if not an issue. 2. Code duplication (addressing mode) during isel. 3. Other ideas from "Register-Sensitive Selection, Duplication, and Sequencing of Instructions". 4. Scheduling for reduced register pressure. E.g. "Minimum Register Instruction Sequence Problem: Revisiting Optimal Code Generation for DAGs" and other related papers. http://citeseer.ist.psu.edu/govindarajan01minimum.html //===---------------------------------------------------------------------===// Should we promote i16 to i32 to avoid partial register update stalls? //===---------------------------------------------------------------------===// Leave any_extend as pseudo instruction and hint to register allocator. Delay codegen until post register allocation. //===---------------------------------------------------------------------===// Model X86 EFLAGS as a real register to avoid redudant cmp / test. e.g. cmpl $1, %eax setg %al testb %al, %al # unnecessary jne .BB7 //===---------------------------------------------------------------------===// Count leading zeros and count trailing zeros: int clz(int X) { return __builtin_clz(X); } int ctz(int X) { return __builtin_ctz(X); } $ gcc t.c -S -o - -O3 -fomit-frame-pointer -masm=intel clz: bsr %eax, DWORD PTR [%esp+4] xor %eax, 31 ret ctz: bsf %eax, DWORD PTR [%esp+4] ret however, check that these are defined for 0 and 32. Our intrinsics are, GCC's aren't. //===---------------------------------------------------------------------===// Use push/pop instructions in prolog/epilog sequences instead of stores off ESP (certain code size win, perf win on some [which?] processors). Also, it appears icc use push for parameter passing. Need to investigate. //===---------------------------------------------------------------------===// Only use inc/neg/not instructions on processors where they are faster than add/sub/xor. They are slower on the P4 due to only updating some processor flags. //===---------------------------------------------------------------------===// The instruction selector sometimes misses folding a load into a compare. The pattern is written as (cmp reg, (load p)). Because the compare isn't commutative, it is not matched with the load on both sides. The dag combiner should be made smart enough to cannonicalize the load into the RHS of a compare when it can invert the result of the compare for free. How about intrinsics? An example is: *res = _mm_mulhi_epu16(*A, _mm_mul_epu32(*B, *C)); compiles to pmuludq (%eax), %xmm0 movl 8(%esp), %eax movdqa (%eax), %xmm1 pmulhuw %xmm0, %xmm1 The transformation probably requires a X86 specific pass or a DAG combiner target specific hook. //===---------------------------------------------------------------------===// The DAG Isel doesn't fold the loads into the adds in this testcase. The pattern selector does. This is because the chain value of the load gets selected first, and the loads aren't checking to see if they are only used by and add. .ll: int %test(int* %x, int* %y, int* %z) { %X = load int* %x %Y = load int* %y %Z = load int* %z %a = add int %X, %Y %b = add int %a, %Z ret int %b } dag isel: _test: movl 4(%esp), %eax movl (%eax), %eax movl 8(%esp), %ecx movl (%ecx), %ecx addl %ecx, %eax movl 12(%esp), %ecx movl (%ecx), %ecx addl %ecx, %eax ret pattern isel: _test: movl 12(%esp), %ecx movl 4(%esp), %edx movl 8(%esp), %eax movl (%eax), %eax addl (%edx), %eax addl (%ecx), %eax ret This is bad for register pressure, though the dag isel is producing a better schedule. :) //===---------------------------------------------------------------------===// In many cases, LLVM generates code like this: _test: movl 8(%esp), %eax cmpl %eax, 4(%esp) setl %al movzbl %al, %eax ret on some processors (which ones?), it is more efficient to do this: _test: movl 8(%esp), %ebx xor %eax, %eax cmpl %ebx, 4(%esp) setl %al ret Doing this correctly is tricky though, as the xor clobbers the flags. //===---------------------------------------------------------------------===// We should generate 'test' instead of 'cmp' in various cases, e.g.: bool %test(int %X) { %Y = shl int %X, ubyte 1 %C = seteq int %Y, 0 ret bool %C } bool %test(int %X) { %Y = and int %X, 8 %C = seteq int %Y, 0 ret bool %C } This may just be a matter of using 'test' to write bigger patterns for X86cmp. An important case is comparison against zero: if (X == 0) ... instead of: cmpl $0, %eax je LBB4_2 #cond_next use: test %eax, %eax jz LBB4_2 which is smaller. //===---------------------------------------------------------------------===// We should generate bts/btr/etc instructions on targets where they are cheap or when codesize is important. e.g., for: void setbit(int *target, int bit) { *target |= (1 << bit); } void clearbit(int *target, int bit) { *target &= ~(1 << bit); } //===---------------------------------------------------------------------===// Instead of the following for memset char*, 1, 10: movl $16843009, 4(%edx) movl $16843009, (%edx) movw $257, 8(%edx) It might be better to generate movl $16843009, %eax movl %eax, 4(%edx) movl %eax, (%edx) movw al, 8(%edx) when we can spare a register. It reduces code size. //===---------------------------------------------------------------------===// Evaluate what the best way to codegen sdiv X, (2^C) is. For X/8, we currently get this: int %test1(int %X) { %Y = div int %X, 8 ret int %Y } _test1: movl 4(%esp), %eax movl %eax, %ecx sarl $31, %ecx shrl $29, %ecx addl %ecx, %eax sarl $3, %eax ret GCC knows several different ways to codegen it, one of which is this: _test1: movl 4(%esp), %eax cmpl $-1, %eax leal 7(%eax), %ecx cmovle %ecx, %eax sarl $3, %eax ret which is probably slower, but it's interesting at least :) //===---------------------------------------------------------------------===// Should generate min/max for stuff like: void minf(float a, float b, float *X) { *X = a <= b ? a : b; } Make use of floating point min / max instructions. Perhaps introduce ISD::FMIN and ISD::FMAX node types? //===---------------------------------------------------------------------===// The first BB of this code: declare bool %foo() int %bar() { %V = call bool %foo() br bool %V, label %T, label %F T: ret int 1 F: call bool %foo() ret int 12 } compiles to: _bar: subl $12, %esp call L_foo$stub xorb $1, %al testb %al, %al jne LBB_bar_2 # F It would be better to emit "cmp %al, 1" than a xor and test. //===---------------------------------------------------------------------===// Enable X86InstrInfo::convertToThreeAddress(). //===---------------------------------------------------------------------===// Investigate whether it is better to codegen the following %tmp.1 = mul int %x, 9 to movl 4(%esp), %eax leal (%eax,%eax,8), %eax as opposed to what llc is currently generating: imull $9, 4(%esp), %eax Currently the load folding imull has a higher complexity than the LEA32 pattern. //===---------------------------------------------------------------------===// We are currently lowering large (1MB+) memmove/memcpy to rep/stosl and rep/movsl We should leave these as libcalls for everything over a much lower threshold, since libc is hand tuned for medium and large mem ops (avoiding RFO for large stores, TLB preheating, etc) //===---------------------------------------------------------------------===// Optimize this into something reasonable: x * copysign(1.0, y) * copysign(1.0, z) //===---------------------------------------------------------------------===// Optimize copysign(x, *y) to use an integer load from y. //===---------------------------------------------------------------------===// %X = weak global int 0 void %foo(int %N) { %N = cast int %N to uint %tmp.24 = setgt int %N, 0 br bool %tmp.24, label %no_exit, label %return no_exit: %indvar = phi uint [ 0, %entry ], [ %indvar.next, %no_exit ] %i.0.0 = cast uint %indvar to int volatile store int %i.0.0, int* %X %indvar.next = add uint %indvar, 1 %exitcond = seteq uint %indvar.next, %N br bool %exitcond, label %return, label %no_exit return: ret void } compiles into: .text .align 4 .globl _foo _foo: movl 4(%esp), %eax cmpl $1, %eax jl LBB_foo_4 # return LBB_foo_1: # no_exit.preheader xorl %ecx, %ecx LBB_foo_2: # no_exit movl L_X$non_lazy_ptr, %edx movl %ecx, (%edx) incl %ecx cmpl %eax, %ecx jne LBB_foo_2 # no_exit LBB_foo_3: # return.loopexit LBB_foo_4: # return ret We should hoist "movl L_X$non_lazy_ptr, %edx" out of the loop after remateralization is implemented. This can be accomplished with 1) a target dependent LICM pass or 2) makeing SelectDAG represent the whole function. //===---------------------------------------------------------------------===// The following tests perform worse with LSR: lambda, siod, optimizer-eval, ackermann, hash2, nestedloop, strcat, and Treesor. //===---------------------------------------------------------------------===// Teach the coalescer to coalesce vregs of different register classes. e.g. FR32 / FR64 to VR128. //===---------------------------------------------------------------------===// mov $reg, 48(%esp) ... leal 48(%esp), %eax mov %eax, (%esp) call _foo Obviously it would have been better for the first mov (or any op) to store directly %esp[0] if there are no other uses. //===---------------------------------------------------------------------===// Adding to the list of cmp / test poor codegen issues: int test(__m128 *A, __m128 *B) { if (_mm_comige_ss(*A, *B)) return 3; else return 4; } _test: movl 8(%esp), %eax movaps (%eax), %xmm0 movl 4(%esp), %eax movaps (%eax), %xmm1 comiss %xmm0, %xmm1 setae %al movzbl %al, %ecx movl $3, %eax movl $4, %edx cmpl $0, %ecx cmove %edx, %eax ret Note the setae, movzbl, cmpl, cmove can be replaced with a single cmovae. There are a number of issues. 1) We are introducing a setcc between the result of the intrisic call and select. 2) The intrinsic is expected to produce a i32 value so a any extend (which becomes a zero extend) is added. We probably need some kind of target DAG combine hook to fix this. //===---------------------------------------------------------------------===// We generate significantly worse code for this than GCC: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=21150 http://gcc.gnu.org/bugzilla/attachment.cgi?id=8701 There is also one case we do worse on PPC. //===---------------------------------------------------------------------===// If shorter, we should use things like: movzwl %ax, %eax instead of: andl $65535, %EAX The former can also be used when the two-addressy nature of the 'and' would require a copy to be inserted (in X86InstrInfo::convertToThreeAddress). //===---------------------------------------------------------------------===// This code generates ugly code, probably due to costs being off or something: void %test(float* %P, <4 x float>* %P2 ) { %xFloat0.688 = load float* %P %loadVector37.712 = load <4 x float>* %P2 %inFloat3.713 = insertelement <4 x float> %loadVector37.712, float 0.000000e+00, uint 3 store <4 x float> %inFloat3.713, <4 x float>* %P2 ret void } Generates: _test: pxor %xmm0, %xmm0 movd %xmm0, %eax ;; EAX = 0! movl 8(%esp), %ecx movaps (%ecx), %xmm0 pinsrw $6, %eax, %xmm0 shrl $16, %eax ;; EAX = 0 again! pinsrw $7, %eax, %xmm0 movaps %xmm0, (%ecx) ret It would be better to generate: _test: movl 8(%esp), %ecx movaps (%ecx), %xmm0 xor %eax, %eax pinsrw $6, %eax, %xmm0 pinsrw $7, %eax, %xmm0 movaps %xmm0, (%ecx) ret or use pxor (to make a zero vector) and shuffle (to insert it). //===---------------------------------------------------------------------===// Bad codegen: char foo(int x) { return x; } _foo: movl 4(%esp), %eax shll $24, %eax sarl $24, %eax ret //===---------------------------------------------------------------------===// Consider this: typedef struct pair { float A, B; } pair; void pairtest(pair P, float *FP) { *FP = P.A+P.B; } We currently generate this code with llvmgcc4: _pairtest: subl $12, %esp movl 20(%esp), %eax movl %eax, 4(%esp) movl 16(%esp), %eax movl %eax, (%esp) movss (%esp), %xmm0 addss 4(%esp), %xmm0 movl 24(%esp), %eax movss %xmm0, (%eax) addl $12, %esp ret we should be able to generate: _pairtest: movss 4(%esp), %xmm0 movl 12(%esp), %eax addss 8(%esp), %xmm0 movss %xmm0, (%eax) ret The issue is that llvmgcc4 is forcing the struct to memory, then passing it as integer chunks. It does this so that structs like {short,short} are passed in a single 32-bit integer stack slot. We should handle the safe cases above much nicer, while still handling the hard cases. //===---------------------------------------------------------------------===//