llvm/lib/Target/SparcV9/SparcV9PreSelection.cpp
Vikram S. Adve cf819454e4 Minor tuning -- avoid a non-inlinable function call on every operand.
Also, reorder a couple of functions for inlining.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@6635 91177308-0d34-0410-b5e6-96231b3b80d8
2003-06-05 21:12:56 +00:00

413 lines
15 KiB
C++

//===- PreSelection.cpp - Specialize LLVM code for target machine ---------===//
//
// This file defines the PreSelection pass which specializes LLVM code for a
// target machine, while remaining in legal portable LLVM form and
// preserving type information and type safety. This is meant to enable
// dataflow optimizations on target-specific operations such as accesses to
// constants, globals, and array indexing.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/PreSelection.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Module.h"
#include "llvm/Constants.h"
#include "llvm/iMemory.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Pass.h"
#include "Support/CommandLine.h"
#include <algorithm>
namespace {
//===--------------------------------------------------------------------===//
// SelectDebugLevel - Allow command line control over debugging.
//
enum PreSelectDebugLevel_t {
PreSelect_NoDebugInfo,
PreSelect_PrintOutput,
};
// Enable Debug Options to be specified on the command line
cl::opt<PreSelectDebugLevel_t>
PreSelectDebugLevel("dpreselect", cl::Hidden,
cl::desc("debug information for target-dependent pre-selection"),
cl::values(
clEnumValN(PreSelect_NoDebugInfo, "n", "disable debug output (default)"),
clEnumValN(PreSelect_PrintOutput, "y", "print generated machine code"),
/* default level = */ PreSelect_NoDebugInfo));
//===--------------------------------------------------------------------===//
// class ConstantPoolForModule:
//
// The pool of constants that must be emitted for a module.
// This is a single pool for the entire module and is shared by
// all invocations of the PreSelection pass for this module by putting
// this as an annotation on the Module object.
// A single GlobalVariable is created for each constant in the pool
// representing the memory for that constant.
//
AnnotationID CPFM_AID(
AnnotationManager::getID("CodeGen::ConstantPoolForModule"));
class ConstantPoolForModule : private Annotation {
Module* myModule;
std::map<const Constant*, GlobalVariable*> gvars;
std::map<const Constant*, GlobalVariable*> origGVars;
ConstantPoolForModule(Module* M); // called only by annotation builder
ConstantPoolForModule(); // DO NOT IMPLEMENT
void operator=(const ConstantPoolForModule&); // DO NOT IMPLEMENT
public:
static ConstantPoolForModule& get(Module* M) {
ConstantPoolForModule* cpool =
(ConstantPoolForModule*) M->getAnnotation(CPFM_AID);
if (cpool == NULL) // create a new annotation and add it to the Module
M->addAnnotation(cpool = new ConstantPoolForModule(M));
return *cpool;
}
GlobalVariable* getGlobalForConstant(Constant* CV) {
std::map<const Constant*, GlobalVariable*>::iterator I = gvars.find(CV);
if (I != gvars.end())
return I->second; // global exists so return it
return addToConstantPool(CV); // create a new global and return it
}
GlobalVariable* addToConstantPool(Constant* CV) {
GlobalVariable*& GV = gvars[CV]; // handle to global var entry in map
if (GV == NULL)
{ // check if a global constant already existed; otherwise create one
std::map<const Constant*, GlobalVariable*>::iterator PI =
origGVars.find(CV);
if (PI != origGVars.end())
GV = PI->second; // put in map
else
{
GV = new GlobalVariable(CV->getType(), true, //put in map
GlobalValue::InternalLinkage, CV);
myModule->getGlobalList().push_back(GV); // GV owned by module now
}
}
return GV;
}
};
/* ctor */
ConstantPoolForModule::ConstantPoolForModule(Module* M)
: Annotation(CPFM_AID), myModule(M)
{
// Build reverse map for pre-existing global constants so we can find them
for (Module::giterator GI = M->gbegin(), GE = M->gend(); GI != GE; ++GI)
if (GI->hasInitializer() && GI->isConstant())
origGVars[GI->getInitializer()] = GI;
}
//===--------------------------------------------------------------------===//
// PreSelection Pass - Specialize LLVM code for the current target machine.
// This was and will be a basicblock pass, but make it a FunctionPass until
// BasicBlockPass ::doFinalization(Function&) is available.
//
class PreSelection : public BasicBlockPass, public InstVisitor<PreSelection>
{
const TargetMachine &target;
const TargetInstrInfo &instrInfo;
Function* function;
GlobalVariable* getGlobalForConstant(Constant* CV) {
Module* M = function->getParent();
return ConstantPoolForModule::get(M).getGlobalForConstant(CV);
}
public:
PreSelection (const TargetMachine &T):
target(T), instrInfo(T.getInstrInfo()), function(NULL) {}
// runOnBasicBlock - apply this pass to each BB
bool runOnBasicBlock(BasicBlock &BB) {
function = BB.getParent();
this->visit(BB);
return true;
}
bool doFinalization(Function &F) {
if (PreSelectDebugLevel >= PreSelect_PrintOutput)
std::cerr << "\n\n*** LLVM code after pre-selection for function "
<< F.getName() << ":\n\n" << F;
return false;
}
// These methods do the actual work of specializing code
void visitInstruction(Instruction &I); // common work for every instr.
void visitGetElementPtrInst(GetElementPtrInst &I);
void visitLoadInst(LoadInst &I);
void visitCastInst(CastInst &I);
void visitCallInst(CallInst &I);
void visitStoreInst(StoreInst &I);
// Helper functions for visiting operands of every instruction
//
// visitOperands() works on every operand in [firstOp, lastOp-1].
// If lastOp==0, lastOp defaults to #operands or #incoming Phi values.
//
// visitOneOperand() does all the work for one operand.
//
void visitOperands(Instruction &I, int firstOp=0, int lastOp=0);
void visitOneOperand(Instruction &I, Value* Op, unsigned opNum,
Instruction& insertBefore);
};
// Register the pass...
RegisterOpt<PreSelection> X("preselect",
"Specialize LLVM code for a target machine",
createPreSelectionPass);
} // end anonymous namespace
//------------------------------------------------------------------------------
// Helper functions used by methods of class PreSelection
//------------------------------------------------------------------------------
// getGlobalAddr(): Put address of a global into a v. register.
static GetElementPtrInst* getGlobalAddr(Value* ptr, Instruction& insertBefore)
{
if (isa<ConstantPointerRef>(ptr))
ptr = cast<ConstantPointerRef>(ptr)->getValue();
return (isa<GlobalVariable>(ptr))
? new GetElementPtrInst(ptr,
std::vector<Value*>(1, ConstantSInt::get(Type::LongTy, 0U)),
"addrOfGlobal", &insertBefore)
: NULL;
}
// Wrapper on Constant::classof to use in find_if :-(
inline static bool nonConstant(const Use& U)
{
return ! isa<Constant>(U);
}
static Instruction* DecomposeConstantExpr(ConstantExpr* CE,
Instruction& insertBefore)
{
Value *getArg1, *getArg2;
switch(CE->getOpcode())
{
case Instruction::Cast:
getArg1 = CE->getOperand(0);
if (ConstantExpr* CEarg = dyn_cast<ConstantExpr>(getArg1))
getArg1 = DecomposeConstantExpr(CEarg, insertBefore);
return new CastInst(getArg1, CE->getType(), "constantCast",&insertBefore);
case Instruction::GetElementPtr:
assert(find_if(CE->op_begin()+1, CE->op_end(),nonConstant) == CE->op_end()
&& "All indices in ConstantExpr getelementptr must be constant!");
getArg1 = CE->getOperand(0);
if (ConstantExpr* CEarg = dyn_cast<ConstantExpr>(getArg1))
getArg1 = DecomposeConstantExpr(CEarg, insertBefore);
else if (GetElementPtrInst* gep = getGlobalAddr(getArg1, insertBefore))
getArg1 = gep;
return new GetElementPtrInst(getArg1,
std::vector<Value*>(CE->op_begin()+1, CE->op_end()),
"constantGEP", &insertBefore);
default: // must be a binary operator
assert(CE->getOpcode() >= Instruction::BinaryOpsBegin &&
CE->getOpcode() < Instruction::BinaryOpsEnd &&
"Unrecognized opcode in ConstantExpr");
getArg1 = CE->getOperand(0);
if (ConstantExpr* CEarg = dyn_cast<ConstantExpr>(getArg1))
getArg1 = DecomposeConstantExpr(CEarg, insertBefore);
getArg2 = CE->getOperand(1);
if (ConstantExpr* CEarg = dyn_cast<ConstantExpr>(getArg2))
getArg2 = DecomposeConstantExpr(CEarg, insertBefore);
return BinaryOperator::create((Instruction::BinaryOps) CE->getOpcode(),
getArg1, getArg2,
"constantBinaryOp", &insertBefore);
}
}
//------------------------------------------------------------------------------
// Instruction visitor methods to perform instruction-specific operations
//------------------------------------------------------------------------------
inline void
PreSelection::visitOneOperand(Instruction &I, Value* Op, unsigned opNum,
Instruction& insertBefore)
{
if (GetElementPtrInst* gep = getGlobalAddr(Op, insertBefore)) {
I.setOperand(opNum, gep); // replace global operand
return;
}
Constant* CV = dyn_cast<Constant>(Op);
if (CV == NULL)
return;
if (ConstantExpr* CE = dyn_cast<ConstantExpr>(CV))
{ // load-time constant: factor it out so we optimize as best we can
Instruction* computeConst = DecomposeConstantExpr(CE, insertBefore);
I.setOperand(opNum, computeConst); // replace expr operand with result
}
else if (instrInfo.ConstantTypeMustBeLoaded(CV))
{ // load address of constant into a register, then load the constant
GetElementPtrInst* gep = getGlobalAddr(getGlobalForConstant(CV),
insertBefore);
LoadInst* ldI = new LoadInst(gep, "loadConst", &insertBefore);
I.setOperand(opNum, ldI); // replace operand with copy in v.reg.
}
else if (instrInfo.ConstantMayNotFitInImmedField(CV, &I))
{ // put the constant into a virtual register using a cast
CastInst* castI = new CastInst(CV, CV->getType(), "copyConst",
&insertBefore);
I.setOperand(opNum, castI); // replace operand with copy in v.reg.
}
}
// visitOperands() transforms individual operands of all instructions:
// -- Load "large" int constants into a virtual register. What is large
// depends on the type of instruction and on the target architecture.
// -- For any constants that cannot be put in an immediate field,
// load address into virtual register first, and then load the constant.
//
// firstOp and lastOp can be used to skip leading and trailing operands.
// If lastOp is 0, it defaults to #operands or #incoming Phi values.
//
inline void
PreSelection::visitOperands(Instruction &I, int firstOp, int lastOp)
{
// For any instruction other than PHI, copies go just before the instr.
// For a PHI, operand copies must be before the terminator of the
// appropriate predecessor basic block. Remaining logic is simple
// so just handle PHIs and other instructions separately.
//
if (PHINode* phi = dyn_cast<PHINode>(&I))
{
if (lastOp == 0)
lastOp = phi->getNumIncomingValues();
for (unsigned i=firstOp, N=lastOp; i < N; ++i)
this->visitOneOperand(I, phi->getIncomingValue(i),
phi->getOperandNumForIncomingValue(i),
* phi->getIncomingBlock(i)->getTerminator());
}
else
{
if (lastOp == 0)
lastOp = I.getNumOperands();
for (unsigned i=firstOp, N=lastOp; i < N; ++i)
this->visitOneOperand(I, I.getOperand(i), i, I);
}
}
// Common work for *all* instructions. This needs to be called explicitly
// by other visit<InstructionType> functions.
inline void
PreSelection::visitInstruction(Instruction &I)
{
visitOperands(I); // Perform operand transformations
}
// GetElementPtr instructions: check if pointer is a global
void
PreSelection::visitGetElementPtrInst(GetElementPtrInst &I)
{
// Check for a global and put its address into a register before this instr
if (GetElementPtrInst* gep = getGlobalAddr(I.getPointerOperand(), I))
I.setOperand(I.getPointerOperandIndex(), gep); // replace pointer operand
// Decompose multidimensional array references
DecomposeArrayRef(&I);
// Perform other transformations common to all instructions
visitInstruction(I);
}
// Load instructions: check if pointer is a global
void
PreSelection::visitLoadInst(LoadInst &I)
{
// Check for a global and put its address into a register before this instr
if (GetElementPtrInst* gep = getGlobalAddr(I.getPointerOperand(), I))
I.setOperand(I.getPointerOperandIndex(), gep); // replace pointer operand
// Perform other transformations common to all instructions
visitInstruction(I);
}
// Store instructions: check if pointer is a global
void
PreSelection::visitStoreInst(StoreInst &I)
{
// Check for a global and put its address into a register before this instr
if (GetElementPtrInst* gep = getGlobalAddr(I.getPointerOperand(), I))
I.setOperand(I.getPointerOperandIndex(), gep); // replace pointer operand
// Perform other transformations common to all instructions
visitInstruction(I);
}
// Cast instructions:
// -- check if argument is a global
// -- make multi-step casts explicit:
// -- float/double to uint32_t:
// If target does not have a float-to-unsigned instruction, we
// need to convert to uint64_t and then to uint32_t, or we may
// overflow the signed int representation for legal uint32_t
// values. Expand this without checking target.
//
void
PreSelection::visitCastInst(CastInst &I)
{
CastInst* castI = NULL;
// Check for a global and put its address into a register before this instr
if (GetElementPtrInst* gep = getGlobalAddr(I.getOperand(0), I))
{
I.setOperand(0, gep); // replace pointer operand
}
else if (I.getType() == Type::UIntTy &&
I.getOperand(0)->getType()->isFloatingPoint())
{ // insert a cast-fp-to-long before I, and then replace the operand of I
castI = new CastInst(I.getOperand(0), Type::LongTy, "fp2Long2Uint", &I);
I.setOperand(0, castI); // replace fp operand with long
}
// Perform other transformations common to all instructions
visitInstruction(I);
if (castI)
visitInstruction(*castI);
}
void
PreSelection::visitCallInst(CallInst &I)
{
// Tell visitOperands to ignore the function name if this is a direct call.
visitOperands(I, (/*firstOp=*/ I.getCalledFunction()? 1 : 0));
}
//===----------------------------------------------------------------------===//
// createPreSelectionPass - Public entrypoint for pre-selection pass
// and this file as a whole...
//
Pass*
createPreSelectionPass(TargetMachine &T)
{
return new PreSelection(T);
}