llvm/lib/Analysis/AliasAnalysis.cpp
Chandler Carruth cf88e9244e [AA] Hoist the logic to reformulate various AA queries in terms of other
parts of the AA interface out of the base class of every single AA
result object.

Because this logic reformulates the query in terms of some other aspect
of the API, it would easily cause O(n^2) query patterns in alias
analysis. These could in turn be magnified further based on the number
of call arguments, and then further based on the number of AA queries
made for a particular call. This ended up causing problems for Rust that
were actually noticable enough to get a bug (PR26564) and probably other
places as well.

When originally re-working the AA infrastructure, the desire was to
regularize the pattern of refinement without losing any generality.
While I think it was successful, that is clearly proving to be too
costly. And the cost is needless: we gain no actual improvement for this
generality of making a direct query to tbaa actually be able to
re-use some other alias analysis's refinement logic for one of the other
APIs, or some such. In short, this is entirely wasted work.

To the extent possible, delegation to other API surfaces should be done
at the aggregation layer so that we can avoid re-walking the
aggregation. In fact, this significantly simplifies the logic as we no
longer need to smuggle the aggregation layer into each alias analysis
(or the TargetLibraryInfo into each alias analysis just so we can form
argument memory locations!).

However, we also have some delegation logic inside of BasicAA and some
of it even makes sense. When the delegation logic is baking in specific
knowledge of aliasing properties of the LLVM IR, as opposed to simply
reformulating the query to utilize a different alias analysis interface
entry point, it makes a lot of sense to restrict that logic to
a different layer such as BasicAA. So one aspect of the delegation that
was in every AA base class is that when we don't have operand bundles,
we re-use function AA results as a fallback for callsite alias results.
This relies on the IR properties of calls and functions w.r.t. aliasing,
and so seems a better fit to BasicAA. I've lifted the logic up to that
point where it seems to be a natural fit. This still does a bit of
redundant work (we query function attributes twice, once via the
callsite and once via the function AA query) but it is *exactly* twice
here, no more.

The end result is that all of the delegation logic is hoisted out of the
base class and into either the aggregation layer when it is a pure
retargeting to a different API surface, or into BasicAA when it relies
on the IR's aliasing properties. This should fix the quadratic query
pattern reported in PR26564, although I don't have a stand-alone test
case to reproduce it.

It also seems general goodness. Now the numerous AAs that don't need
target library info don't carry it around and depend on it. I think
I can even rip out the general access to the aggregation layer and only
expose that in BasicAA as it is the only place where we re-query in that
manner.

However, this is a non-trivial change to the AA infrastructure so I want
to get some additional eyes on this before it lands. Sadly, it can't
wait long because we should really cherry pick this into 3.8 if we're
going to go this route.

Differential Revision: http://reviews.llvm.org/D17329

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262490 91177308-0d34-0410-b5e6-96231b3b80d8
2016-03-02 15:56:53 +00:00

696 lines
25 KiB
C++

//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the generic AliasAnalysis interface which is used as the
// common interface used by all clients and implementations of alias analysis.
//
// This file also implements the default version of the AliasAnalysis interface
// that is to be used when no other implementation is specified. This does some
// simple tests that detect obvious cases: two different global pointers cannot
// alias, a global cannot alias a malloc, two different mallocs cannot alias,
// etc.
//
// This alias analysis implementation really isn't very good for anything, but
// it is very fast, and makes a nice clean default implementation. Because it
// handles lots of little corner cases, other, more complex, alias analysis
// implementations may choose to rely on this pass to resolve these simple and
// easy cases.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CFLAliasAnalysis.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/ObjCARCAliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/ScopedNoAliasAA.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
using namespace llvm;
/// Allow disabling BasicAA from the AA results. This is particularly useful
/// when testing to isolate a single AA implementation.
static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
cl::init(false));
AAResults::AAResults(AAResults &&Arg) : TLI(Arg.TLI), AAs(std::move(Arg.AAs)) {
for (auto &AA : AAs)
AA->setAAResults(this);
}
AAResults::~AAResults() {
// FIXME; It would be nice to at least clear out the pointers back to this
// aggregation here, but we end up with non-nesting lifetimes in the legacy
// pass manager that prevent this from working. In the legacy pass manager
// we'll end up with dangling references here in some cases.
#if 0
for (auto &AA : AAs)
AA->setAAResults(nullptr);
#endif
}
//===----------------------------------------------------------------------===//
// Default chaining methods
//===----------------------------------------------------------------------===//
AliasResult AAResults::alias(const MemoryLocation &LocA,
const MemoryLocation &LocB) {
for (const auto &AA : AAs) {
auto Result = AA->alias(LocA, LocB);
if (Result != MayAlias)
return Result;
}
return MayAlias;
}
bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
bool OrLocal) {
for (const auto &AA : AAs)
if (AA->pointsToConstantMemory(Loc, OrLocal))
return true;
return false;
}
ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
ModRefInfo Result = MRI_ModRef;
for (const auto &AA : AAs) {
Result = ModRefInfo(Result & AA->getArgModRefInfo(CS, ArgIdx));
// Early-exit the moment we reach the bottom of the lattice.
if (Result == MRI_NoModRef)
return Result;
}
return Result;
}
ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
// We may have two calls
if (auto CS = ImmutableCallSite(I)) {
// Check if the two calls modify the same memory
return getModRefInfo(Call, CS);
} else {
// Otherwise, check if the call modifies or references the
// location this memory access defines. The best we can say
// is that if the call references what this instruction
// defines, it must be clobbered by this location.
const MemoryLocation DefLoc = MemoryLocation::get(I);
if (getModRefInfo(Call, DefLoc) != MRI_NoModRef)
return MRI_ModRef;
}
return MRI_NoModRef;
}
ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) {
ModRefInfo Result = MRI_ModRef;
for (const auto &AA : AAs) {
Result = ModRefInfo(Result & AA->getModRefInfo(CS, Loc));
// Early-exit the moment we reach the bottom of the lattice.
if (Result == MRI_NoModRef)
return Result;
}
// Try to refine the mod-ref info further using other API entry points to the
// aggregate set of AA results.
auto MRB = getModRefBehavior(CS);
if (MRB == FMRB_DoesNotAccessMemory)
return MRI_NoModRef;
if (onlyReadsMemory(MRB))
Result = ModRefInfo(Result & MRI_Ref);
if (onlyAccessesArgPointees(MRB)) {
bool DoesAlias = false;
ModRefInfo AllArgsMask = MRI_NoModRef;
if (doesAccessArgPointees(MRB)) {
for (auto AI = CS.arg_begin(), AE = CS.arg_end(); AI != AE; ++AI) {
const Value *Arg = *AI;
if (!Arg->getType()->isPointerTy())
continue;
unsigned ArgIdx = std::distance(CS.arg_begin(), AI);
MemoryLocation ArgLoc = MemoryLocation::getForArgument(CS, ArgIdx, TLI);
AliasResult ArgAlias = alias(ArgLoc, Loc);
if (ArgAlias != NoAlias) {
ModRefInfo ArgMask = getArgModRefInfo(CS, ArgIdx);
DoesAlias = true;
AllArgsMask = ModRefInfo(AllArgsMask | ArgMask);
}
}
}
if (!DoesAlias)
return MRI_NoModRef;
Result = ModRefInfo(Result & AllArgsMask);
}
// If Loc is a constant memory location, the call definitely could not
// modify the memory location.
if ((Result & MRI_Mod) &&
pointsToConstantMemory(Loc, /*OrLocal*/ false))
Result = ModRefInfo(Result & ~MRI_Mod);
return Result;
}
ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) {
ModRefInfo Result = MRI_ModRef;
for (const auto &AA : AAs) {
Result = ModRefInfo(Result & AA->getModRefInfo(CS1, CS2));
// Early-exit the moment we reach the bottom of the lattice.
if (Result == MRI_NoModRef)
return Result;
}
// Try to refine the mod-ref info further using other API entry points to the
// aggregate set of AA results.
// If CS1 or CS2 are readnone, they don't interact.
auto CS1B = getModRefBehavior(CS1);
if (CS1B == FMRB_DoesNotAccessMemory)
return MRI_NoModRef;
auto CS2B = getModRefBehavior(CS2);
if (CS2B == FMRB_DoesNotAccessMemory)
return MRI_NoModRef;
// If they both only read from memory, there is no dependence.
if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
return MRI_NoModRef;
// If CS1 only reads memory, the only dependence on CS2 can be
// from CS1 reading memory written by CS2.
if (onlyReadsMemory(CS1B))
Result = ModRefInfo(Result & MRI_Ref);
// If CS2 only access memory through arguments, accumulate the mod/ref
// information from CS1's references to the memory referenced by
// CS2's arguments.
if (onlyAccessesArgPointees(CS2B)) {
ModRefInfo R = MRI_NoModRef;
if (doesAccessArgPointees(CS2B)) {
for (auto I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
const Value *Arg = *I;
if (!Arg->getType()->isPointerTy())
continue;
unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I);
auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, TLI);
// ArgMask indicates what CS2 might do to CS2ArgLoc, and the dependence
// of CS1 on that location is the inverse.
ModRefInfo ArgMask = getArgModRefInfo(CS2, CS2ArgIdx);
if (ArgMask == MRI_Mod)
ArgMask = MRI_ModRef;
else if (ArgMask == MRI_Ref)
ArgMask = MRI_Mod;
ArgMask = ModRefInfo(ArgMask & getModRefInfo(CS1, CS2ArgLoc));
R = ModRefInfo((R | ArgMask) & Result);
if (R == Result)
break;
}
}
return R;
}
// If CS1 only accesses memory through arguments, check if CS2 references
// any of the memory referenced by CS1's arguments. If not, return NoModRef.
if (onlyAccessesArgPointees(CS1B)) {
ModRefInfo R = MRI_NoModRef;
if (doesAccessArgPointees(CS1B)) {
for (auto I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
const Value *Arg = *I;
if (!Arg->getType()->isPointerTy())
continue;
unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I);
auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, TLI);
// ArgMask indicates what CS1 might do to CS1ArgLoc; if CS1 might Mod
// CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If CS1
// might Ref, then we care only about a Mod by CS2.
ModRefInfo ArgMask = getArgModRefInfo(CS1, CS1ArgIdx);
ModRefInfo ArgR = getModRefInfo(CS2, CS1ArgLoc);
if (((ArgMask & MRI_Mod) != MRI_NoModRef &&
(ArgR & MRI_ModRef) != MRI_NoModRef) ||
((ArgMask & MRI_Ref) != MRI_NoModRef &&
(ArgR & MRI_Mod) != MRI_NoModRef))
R = ModRefInfo((R | ArgMask) & Result);
if (R == Result)
break;
}
}
return R;
}
return Result;
}
FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) {
FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
for (const auto &AA : AAs) {
Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS));
// Early-exit the moment we reach the bottom of the lattice.
if (Result == FMRB_DoesNotAccessMemory)
return Result;
}
return Result;
}
FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
for (const auto &AA : AAs) {
Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
// Early-exit the moment we reach the bottom of the lattice.
if (Result == FMRB_DoesNotAccessMemory)
return Result;
}
return Result;
}
//===----------------------------------------------------------------------===//
// Helper method implementation
//===----------------------------------------------------------------------===//
ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
const MemoryLocation &Loc) {
// Be conservative in the face of volatile/atomic.
if (!L->isUnordered())
return MRI_ModRef;
// If the load address doesn't alias the given address, it doesn't read
// or write the specified memory.
if (Loc.Ptr && !alias(MemoryLocation::get(L), Loc))
return MRI_NoModRef;
// Otherwise, a load just reads.
return MRI_Ref;
}
ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
const MemoryLocation &Loc) {
// Be conservative in the face of volatile/atomic.
if (!S->isUnordered())
return MRI_ModRef;
if (Loc.Ptr) {
// If the store address cannot alias the pointer in question, then the
// specified memory cannot be modified by the store.
if (!alias(MemoryLocation::get(S), Loc))
return MRI_NoModRef;
// If the pointer is a pointer to constant memory, then it could not have
// been modified by this store.
if (pointsToConstantMemory(Loc))
return MRI_NoModRef;
}
// Otherwise, a store just writes.
return MRI_Mod;
}
ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
const MemoryLocation &Loc) {
if (Loc.Ptr) {
// If the va_arg address cannot alias the pointer in question, then the
// specified memory cannot be accessed by the va_arg.
if (!alias(MemoryLocation::get(V), Loc))
return MRI_NoModRef;
// If the pointer is a pointer to constant memory, then it could not have
// been modified by this va_arg.
if (pointsToConstantMemory(Loc))
return MRI_NoModRef;
}
// Otherwise, a va_arg reads and writes.
return MRI_ModRef;
}
ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
const MemoryLocation &Loc) {
if (Loc.Ptr) {
// If the pointer is a pointer to constant memory,
// then it could not have been modified by this catchpad.
if (pointsToConstantMemory(Loc))
return MRI_NoModRef;
}
// Otherwise, a catchpad reads and writes.
return MRI_ModRef;
}
ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
const MemoryLocation &Loc) {
if (Loc.Ptr) {
// If the pointer is a pointer to constant memory,
// then it could not have been modified by this catchpad.
if (pointsToConstantMemory(Loc))
return MRI_NoModRef;
}
// Otherwise, a catchret reads and writes.
return MRI_ModRef;
}
ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
const MemoryLocation &Loc) {
// Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
if (CX->getSuccessOrdering() > Monotonic)
return MRI_ModRef;
// If the cmpxchg address does not alias the location, it does not access it.
if (Loc.Ptr && !alias(MemoryLocation::get(CX), Loc))
return MRI_NoModRef;
return MRI_ModRef;
}
ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
const MemoryLocation &Loc) {
// Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
if (RMW->getOrdering() > Monotonic)
return MRI_ModRef;
// If the atomicrmw address does not alias the location, it does not access it.
if (Loc.Ptr && !alias(MemoryLocation::get(RMW), Loc))
return MRI_NoModRef;
return MRI_ModRef;
}
/// \brief Return information about whether a particular call site modifies
/// or reads the specified memory location \p MemLoc before instruction \p I
/// in a BasicBlock. A ordered basic block \p OBB can be used to speed up
/// instruction-ordering queries inside the BasicBlock containing \p I.
/// FIXME: this is really just shoring-up a deficiency in alias analysis.
/// BasicAA isn't willing to spend linear time determining whether an alloca
/// was captured before or after this particular call, while we are. However,
/// with a smarter AA in place, this test is just wasting compile time.
ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
const MemoryLocation &MemLoc,
DominatorTree *DT,
OrderedBasicBlock *OBB) {
if (!DT)
return MRI_ModRef;
const Value *Object =
GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
isa<Constant>(Object))
return MRI_ModRef;
ImmutableCallSite CS(I);
if (!CS.getInstruction() || CS.getInstruction() == Object)
return MRI_ModRef;
if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
/* StoreCaptures */ true, I, DT,
/* include Object */ true,
/* OrderedBasicBlock */ OBB))
return MRI_ModRef;
unsigned ArgNo = 0;
ModRefInfo R = MRI_NoModRef;
for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
CI != CE; ++CI, ++ArgNo) {
// Only look at the no-capture or byval pointer arguments. If this
// pointer were passed to arguments that were neither of these, then it
// couldn't be no-capture.
if (!(*CI)->getType()->isPointerTy() ||
(!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
continue;
// If this is a no-capture pointer argument, see if we can tell that it
// is impossible to alias the pointer we're checking. If not, we have to
// assume that the call could touch the pointer, even though it doesn't
// escape.
if (isNoAlias(MemoryLocation(*CI), MemoryLocation(Object)))
continue;
if (CS.doesNotAccessMemory(ArgNo))
continue;
if (CS.onlyReadsMemory(ArgNo)) {
R = MRI_Ref;
continue;
}
return MRI_ModRef;
}
return R;
}
/// canBasicBlockModify - Return true if it is possible for execution of the
/// specified basic block to modify the location Loc.
///
bool AAResults::canBasicBlockModify(const BasicBlock &BB,
const MemoryLocation &Loc) {
return canInstructionRangeModRef(BB.front(), BB.back(), Loc, MRI_Mod);
}
/// canInstructionRangeModRef - Return true if it is possible for the
/// execution of the specified instructions to mod\ref (according to the
/// mode) the location Loc. The instructions to consider are all
/// of the instructions in the range of [I1,I2] INCLUSIVE.
/// I1 and I2 must be in the same basic block.
bool AAResults::canInstructionRangeModRef(const Instruction &I1,
const Instruction &I2,
const MemoryLocation &Loc,
const ModRefInfo Mode) {
assert(I1.getParent() == I2.getParent() &&
"Instructions not in same basic block!");
BasicBlock::const_iterator I = I1.getIterator();
BasicBlock::const_iterator E = I2.getIterator();
++E; // Convert from inclusive to exclusive range.
for (; I != E; ++I) // Check every instruction in range
if (getModRefInfo(&*I, Loc) & Mode)
return true;
return false;
}
// Provide a definition for the root virtual destructor.
AAResults::Concept::~Concept() {}
// Provide a definition for the static object used to identify passes.
template class llvm::AnalysisBase<AAManager>;
namespace {
/// A wrapper pass for external alias analyses. This just squirrels away the
/// callback used to run any analyses and register their results.
struct ExternalAAWrapperPass : ImmutablePass {
typedef std::function<void(Pass &, Function &, AAResults &)> CallbackT;
CallbackT CB;
static char ID;
ExternalAAWrapperPass() : ImmutablePass(ID) {
initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
}
explicit ExternalAAWrapperPass(CallbackT CB)
: ImmutablePass(ID), CB(std::move(CB)) {
initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
};
}
char ExternalAAWrapperPass::ID = 0;
INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
false, true)
ImmutablePass *
llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
return new ExternalAAWrapperPass(std::move(Callback));
}
AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
}
char AAResultsWrapperPass::ID = 0;
INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
"Function Alias Analysis Results", false, true)
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(CFLAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
"Function Alias Analysis Results", false, true)
FunctionPass *llvm::createAAResultsWrapperPass() {
return new AAResultsWrapperPass();
}
/// Run the wrapper pass to rebuild an aggregation over known AA passes.
///
/// This is the legacy pass manager's interface to the new-style AA results
/// aggregation object. Because this is somewhat shoe-horned into the legacy
/// pass manager, we hard code all the specific alias analyses available into
/// it. While the particular set enabled is configured via commandline flags,
/// adding a new alias analysis to LLVM will require adding support for it to
/// this list.
bool AAResultsWrapperPass::runOnFunction(Function &F) {
// NB! This *must* be reset before adding new AA results to the new
// AAResults object because in the legacy pass manager, each instance
// of these will refer to the *same* immutable analyses, registering and
// unregistering themselves with them. We need to carefully tear down the
// previous object first, in this case replacing it with an empty one, before
// registering new results.
AAR.reset(
new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
// BasicAA is always available for function analyses. Also, we add it first
// so that it can trump TBAA results when it proves MustAlias.
// FIXME: TBAA should have an explicit mode to support this and then we
// should reconsider the ordering here.
if (!DisableBasicAA)
AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
// Populate the results with the currently available AAs.
if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
AAR->addAAResult(WrapperPass->getResult());
if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
AAR->addAAResult(WrapperPass->getResult());
if (auto *WrapperPass =
getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
AAR->addAAResult(WrapperPass->getResult());
if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
AAR->addAAResult(WrapperPass->getResult());
if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
AAR->addAAResult(WrapperPass->getResult());
if (auto *WrapperPass = getAnalysisIfAvailable<CFLAAWrapperPass>())
AAR->addAAResult(WrapperPass->getResult());
// If available, run an external AA providing callback over the results as
// well.
if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
if (WrapperPass->CB)
WrapperPass->CB(*this, F, *AAR);
// Analyses don't mutate the IR, so return false.
return false;
}
void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<BasicAAWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
// We also need to mark all the alias analysis passes we will potentially
// probe in runOnFunction as used here to ensure the legacy pass manager
// preserves them. This hard coding of lists of alias analyses is specific to
// the legacy pass manager.
AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
AU.addUsedIfAvailable<SCEVAAWrapperPass>();
AU.addUsedIfAvailable<CFLAAWrapperPass>();
}
AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
BasicAAResult &BAR) {
AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI());
// Add in our explicitly constructed BasicAA results.
if (!DisableBasicAA)
AAR.addAAResult(BAR);
// Populate the results with the other currently available AAs.
if (auto *WrapperPass =
P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
AAR.addAAResult(WrapperPass->getResult());
if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
AAR.addAAResult(WrapperPass->getResult());
if (auto *WrapperPass =
P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
AAR.addAAResult(WrapperPass->getResult());
if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
AAR.addAAResult(WrapperPass->getResult());
if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAAWrapperPass>())
AAR.addAAResult(WrapperPass->getResult());
return AAR;
}
bool llvm::isNoAliasCall(const Value *V) {
if (auto CS = ImmutableCallSite(V))
return CS.paramHasAttr(0, Attribute::NoAlias);
return false;
}
bool llvm::isNoAliasArgument(const Value *V) {
if (const Argument *A = dyn_cast<Argument>(V))
return A->hasNoAliasAttr();
return false;
}
bool llvm::isIdentifiedObject(const Value *V) {
if (isa<AllocaInst>(V))
return true;
if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
return true;
if (isNoAliasCall(V))
return true;
if (const Argument *A = dyn_cast<Argument>(V))
return A->hasNoAliasAttr() || A->hasByValAttr();
return false;
}
bool llvm::isIdentifiedFunctionLocal(const Value *V) {
return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
}
void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
// This function needs to be in sync with llvm::createLegacyPMAAResults -- if
// more alias analyses are added to llvm::createLegacyPMAAResults, they need
// to be added here also.
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
AU.addUsedIfAvailable<CFLAAWrapperPass>();
}