mirror of
https://github.com/RPCS3/llvm.git
synced 2025-04-08 16:31:55 +00:00

parts of the AA interface out of the base class of every single AA result object. Because this logic reformulates the query in terms of some other aspect of the API, it would easily cause O(n^2) query patterns in alias analysis. These could in turn be magnified further based on the number of call arguments, and then further based on the number of AA queries made for a particular call. This ended up causing problems for Rust that were actually noticable enough to get a bug (PR26564) and probably other places as well. When originally re-working the AA infrastructure, the desire was to regularize the pattern of refinement without losing any generality. While I think it was successful, that is clearly proving to be too costly. And the cost is needless: we gain no actual improvement for this generality of making a direct query to tbaa actually be able to re-use some other alias analysis's refinement logic for one of the other APIs, or some such. In short, this is entirely wasted work. To the extent possible, delegation to other API surfaces should be done at the aggregation layer so that we can avoid re-walking the aggregation. In fact, this significantly simplifies the logic as we no longer need to smuggle the aggregation layer into each alias analysis (or the TargetLibraryInfo into each alias analysis just so we can form argument memory locations!). However, we also have some delegation logic inside of BasicAA and some of it even makes sense. When the delegation logic is baking in specific knowledge of aliasing properties of the LLVM IR, as opposed to simply reformulating the query to utilize a different alias analysis interface entry point, it makes a lot of sense to restrict that logic to a different layer such as BasicAA. So one aspect of the delegation that was in every AA base class is that when we don't have operand bundles, we re-use function AA results as a fallback for callsite alias results. This relies on the IR properties of calls and functions w.r.t. aliasing, and so seems a better fit to BasicAA. I've lifted the logic up to that point where it seems to be a natural fit. This still does a bit of redundant work (we query function attributes twice, once via the callsite and once via the function AA query) but it is *exactly* twice here, no more. The end result is that all of the delegation logic is hoisted out of the base class and into either the aggregation layer when it is a pure retargeting to a different API surface, or into BasicAA when it relies on the IR's aliasing properties. This should fix the quadratic query pattern reported in PR26564, although I don't have a stand-alone test case to reproduce it. It also seems general goodness. Now the numerous AAs that don't need target library info don't carry it around and depend on it. I think I can even rip out the general access to the aggregation layer and only expose that in BasicAA as it is the only place where we re-query in that manner. However, this is a non-trivial change to the AA infrastructure so I want to get some additional eyes on this before it lands. Sadly, it can't wait long because we should really cherry pick this into 3.8 if we're going to go this route. Differential Revision: http://reviews.llvm.org/D17329 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262490 91177308-0d34-0410-b5e6-96231b3b80d8
615 lines
21 KiB
C++
615 lines
21 KiB
C++
//===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the TypeBasedAliasAnalysis pass, which implements
|
|
// metadata-based TBAA.
|
|
//
|
|
// In LLVM IR, memory does not have types, so LLVM's own type system is not
|
|
// suitable for doing TBAA. Instead, metadata is added to the IR to describe
|
|
// a type system of a higher level language. This can be used to implement
|
|
// typical C/C++ TBAA, but it can also be used to implement custom alias
|
|
// analysis behavior for other languages.
|
|
//
|
|
// We now support two types of metadata format: scalar TBAA and struct-path
|
|
// aware TBAA. After all testing cases are upgraded to use struct-path aware
|
|
// TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
|
|
// can be dropped.
|
|
//
|
|
// The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
|
|
// three fields, e.g.:
|
|
// !0 = metadata !{ metadata !"an example type tree" }
|
|
// !1 = metadata !{ metadata !"int", metadata !0 }
|
|
// !2 = metadata !{ metadata !"float", metadata !0 }
|
|
// !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
|
|
//
|
|
// The first field is an identity field. It can be any value, usually
|
|
// an MDString, which uniquely identifies the type. The most important
|
|
// name in the tree is the name of the root node. Two trees with
|
|
// different root node names are entirely disjoint, even if they
|
|
// have leaves with common names.
|
|
//
|
|
// The second field identifies the type's parent node in the tree, or
|
|
// is null or omitted for a root node. A type is considered to alias
|
|
// all of its descendants and all of its ancestors in the tree. Also,
|
|
// a type is considered to alias all types in other trees, so that
|
|
// bitcode produced from multiple front-ends is handled conservatively.
|
|
//
|
|
// If the third field is present, it's an integer which if equal to 1
|
|
// indicates that the type is "constant" (meaning pointsToConstantMemory
|
|
// should return true; see
|
|
// http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
|
|
//
|
|
// With struct-path aware TBAA, the MDNodes attached to an instruction using
|
|
// "!tbaa" are called path tag nodes.
|
|
//
|
|
// The path tag node has 4 fields with the last field being optional.
|
|
//
|
|
// The first field is the base type node, it can be a struct type node
|
|
// or a scalar type node. The second field is the access type node, it
|
|
// must be a scalar type node. The third field is the offset into the base type.
|
|
// The last field has the same meaning as the last field of our scalar TBAA:
|
|
// it's an integer which if equal to 1 indicates that the access is "constant".
|
|
//
|
|
// The struct type node has a name and a list of pairs, one pair for each member
|
|
// of the struct. The first element of each pair is a type node (a struct type
|
|
// node or a sclar type node), specifying the type of the member, the second
|
|
// element of each pair is the offset of the member.
|
|
//
|
|
// Given an example
|
|
// typedef struct {
|
|
// short s;
|
|
// } A;
|
|
// typedef struct {
|
|
// uint16_t s;
|
|
// A a;
|
|
// } B;
|
|
//
|
|
// For an access to B.a.s, we attach !5 (a path tag node) to the load/store
|
|
// instruction. The base type is !4 (struct B), the access type is !2 (scalar
|
|
// type short) and the offset is 4.
|
|
//
|
|
// !0 = metadata !{metadata !"Simple C/C++ TBAA"}
|
|
// !1 = metadata !{metadata !"omnipotent char", metadata !0} // Scalar type node
|
|
// !2 = metadata !{metadata !"short", metadata !1} // Scalar type node
|
|
// !3 = metadata !{metadata !"A", metadata !2, i64 0} // Struct type node
|
|
// !4 = metadata !{metadata !"B", metadata !2, i64 0, metadata !3, i64 4}
|
|
// // Struct type node
|
|
// !5 = metadata !{metadata !4, metadata !2, i64 4} // Path tag node
|
|
//
|
|
// The struct type nodes and the scalar type nodes form a type DAG.
|
|
// Root (!0)
|
|
// char (!1) -- edge to Root
|
|
// short (!2) -- edge to char
|
|
// A (!3) -- edge with offset 0 to short
|
|
// B (!4) -- edge with offset 0 to short and edge with offset 4 to A
|
|
//
|
|
// To check if two tags (tagX and tagY) can alias, we start from the base type
|
|
// of tagX, follow the edge with the correct offset in the type DAG and adjust
|
|
// the offset until we reach the base type of tagY or until we reach the Root
|
|
// node.
|
|
// If we reach the base type of tagY, compare the adjusted offset with
|
|
// offset of tagY, return Alias if the offsets are the same, return NoAlias
|
|
// otherwise.
|
|
// If we reach the Root node, perform the above starting from base type of tagY
|
|
// to see if we reach base type of tagX.
|
|
//
|
|
// If they have different roots, they're part of different potentially
|
|
// unrelated type systems, so we return Alias to be conservative.
|
|
// If neither node is an ancestor of the other and they have the same root,
|
|
// then we say NoAlias.
|
|
//
|
|
// TODO: The current metadata format doesn't support struct
|
|
// fields. For example:
|
|
// struct X {
|
|
// double d;
|
|
// int i;
|
|
// };
|
|
// void foo(struct X *x, struct X *y, double *p) {
|
|
// *x = *y;
|
|
// *p = 0.0;
|
|
// }
|
|
// Struct X has a double member, so the store to *x can alias the store to *p.
|
|
// Currently it's not possible to precisely describe all the things struct X
|
|
// aliases, so struct assignments must use conservative TBAA nodes. There's
|
|
// no scheme for attaching metadata to @llvm.memcpy yet either.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
using namespace llvm;
|
|
|
|
// A handy option for disabling TBAA functionality. The same effect can also be
|
|
// achieved by stripping the !tbaa tags from IR, but this option is sometimes
|
|
// more convenient.
|
|
static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true));
|
|
|
|
namespace {
|
|
/// TBAANode - This is a simple wrapper around an MDNode which provides a
|
|
/// higher-level interface by hiding the details of how alias analysis
|
|
/// information is encoded in its operands.
|
|
class TBAANode {
|
|
const MDNode *Node;
|
|
|
|
public:
|
|
TBAANode() : Node(nullptr) {}
|
|
explicit TBAANode(const MDNode *N) : Node(N) {}
|
|
|
|
/// getNode - Get the MDNode for this TBAANode.
|
|
const MDNode *getNode() const { return Node; }
|
|
|
|
/// getParent - Get this TBAANode's Alias tree parent.
|
|
TBAANode getParent() const {
|
|
if (Node->getNumOperands() < 2)
|
|
return TBAANode();
|
|
MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
|
|
if (!P)
|
|
return TBAANode();
|
|
// Ok, this node has a valid parent. Return it.
|
|
return TBAANode(P);
|
|
}
|
|
|
|
/// TypeIsImmutable - Test if this TBAANode represents a type for objects
|
|
/// which are not modified (by any means) in the context where this
|
|
/// AliasAnalysis is relevant.
|
|
bool TypeIsImmutable() const {
|
|
if (Node->getNumOperands() < 3)
|
|
return false;
|
|
ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
|
|
if (!CI)
|
|
return false;
|
|
return CI->getValue()[0];
|
|
}
|
|
};
|
|
|
|
/// This is a simple wrapper around an MDNode which provides a
|
|
/// higher-level interface by hiding the details of how alias analysis
|
|
/// information is encoded in its operands.
|
|
class TBAAStructTagNode {
|
|
/// This node should be created with createTBAAStructTagNode.
|
|
const MDNode *Node;
|
|
|
|
public:
|
|
explicit TBAAStructTagNode(const MDNode *N) : Node(N) {}
|
|
|
|
/// Get the MDNode for this TBAAStructTagNode.
|
|
const MDNode *getNode() const { return Node; }
|
|
|
|
const MDNode *getBaseType() const {
|
|
return dyn_cast_or_null<MDNode>(Node->getOperand(0));
|
|
}
|
|
const MDNode *getAccessType() const {
|
|
return dyn_cast_or_null<MDNode>(Node->getOperand(1));
|
|
}
|
|
uint64_t getOffset() const {
|
|
return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
|
|
}
|
|
/// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for
|
|
/// objects which are not modified (by any means) in the context where this
|
|
/// AliasAnalysis is relevant.
|
|
bool TypeIsImmutable() const {
|
|
if (Node->getNumOperands() < 4)
|
|
return false;
|
|
ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(3));
|
|
if (!CI)
|
|
return false;
|
|
return CI->getValue()[0];
|
|
}
|
|
};
|
|
|
|
/// This is a simple wrapper around an MDNode which provides a
|
|
/// higher-level interface by hiding the details of how alias analysis
|
|
/// information is encoded in its operands.
|
|
class TBAAStructTypeNode {
|
|
/// This node should be created with createTBAAStructTypeNode.
|
|
const MDNode *Node;
|
|
|
|
public:
|
|
TBAAStructTypeNode() : Node(nullptr) {}
|
|
explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
|
|
|
|
/// Get the MDNode for this TBAAStructTypeNode.
|
|
const MDNode *getNode() const { return Node; }
|
|
|
|
/// Get this TBAAStructTypeNode's field in the type DAG with
|
|
/// given offset. Update the offset to be relative to the field type.
|
|
TBAAStructTypeNode getParent(uint64_t &Offset) const {
|
|
// Parent can be omitted for the root node.
|
|
if (Node->getNumOperands() < 2)
|
|
return TBAAStructTypeNode();
|
|
|
|
// Fast path for a scalar type node and a struct type node with a single
|
|
// field.
|
|
if (Node->getNumOperands() <= 3) {
|
|
uint64_t Cur = Node->getNumOperands() == 2
|
|
? 0
|
|
: mdconst::extract<ConstantInt>(Node->getOperand(2))
|
|
->getZExtValue();
|
|
Offset -= Cur;
|
|
MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
|
|
if (!P)
|
|
return TBAAStructTypeNode();
|
|
return TBAAStructTypeNode(P);
|
|
}
|
|
|
|
// Assume the offsets are in order. We return the previous field if
|
|
// the current offset is bigger than the given offset.
|
|
unsigned TheIdx = 0;
|
|
for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) {
|
|
uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
|
|
->getZExtValue();
|
|
if (Cur > Offset) {
|
|
assert(Idx >= 3 &&
|
|
"TBAAStructTypeNode::getParent should have an offset match!");
|
|
TheIdx = Idx - 2;
|
|
break;
|
|
}
|
|
}
|
|
// Move along the last field.
|
|
if (TheIdx == 0)
|
|
TheIdx = Node->getNumOperands() - 2;
|
|
uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
|
|
->getZExtValue();
|
|
Offset -= Cur;
|
|
MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
|
|
if (!P)
|
|
return TBAAStructTypeNode();
|
|
return TBAAStructTypeNode(P);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
|
|
/// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
|
|
/// format.
|
|
static bool isStructPathTBAA(const MDNode *MD) {
|
|
// Anonymous TBAA root starts with a MDNode and dragonegg uses it as
|
|
// a TBAA tag.
|
|
return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
|
|
}
|
|
|
|
AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA,
|
|
const MemoryLocation &LocB) {
|
|
if (!EnableTBAA)
|
|
return AAResultBase::alias(LocA, LocB);
|
|
|
|
// Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
|
|
// be conservative.
|
|
const MDNode *AM = LocA.AATags.TBAA;
|
|
if (!AM)
|
|
return AAResultBase::alias(LocA, LocB);
|
|
const MDNode *BM = LocB.AATags.TBAA;
|
|
if (!BM)
|
|
return AAResultBase::alias(LocA, LocB);
|
|
|
|
// If they may alias, chain to the next AliasAnalysis.
|
|
if (Aliases(AM, BM))
|
|
return AAResultBase::alias(LocA, LocB);
|
|
|
|
// Otherwise return a definitive result.
|
|
return NoAlias;
|
|
}
|
|
|
|
bool TypeBasedAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
|
|
bool OrLocal) {
|
|
if (!EnableTBAA)
|
|
return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
|
|
|
|
const MDNode *M = Loc.AATags.TBAA;
|
|
if (!M)
|
|
return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
|
|
|
|
// If this is an "immutable" type, we can assume the pointer is pointing
|
|
// to constant memory.
|
|
if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
|
|
(isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
|
|
return true;
|
|
|
|
return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
|
|
}
|
|
|
|
FunctionModRefBehavior
|
|
TypeBasedAAResult::getModRefBehavior(ImmutableCallSite CS) {
|
|
if (!EnableTBAA)
|
|
return AAResultBase::getModRefBehavior(CS);
|
|
|
|
FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
|
|
|
|
// If this is an "immutable" type, we can assume the call doesn't write
|
|
// to memory.
|
|
if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
|
|
if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
|
|
(isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
|
|
Min = FMRB_OnlyReadsMemory;
|
|
|
|
return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
|
|
}
|
|
|
|
FunctionModRefBehavior TypeBasedAAResult::getModRefBehavior(const Function *F) {
|
|
// Functions don't have metadata. Just chain to the next implementation.
|
|
return AAResultBase::getModRefBehavior(F);
|
|
}
|
|
|
|
ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS,
|
|
const MemoryLocation &Loc) {
|
|
if (!EnableTBAA)
|
|
return AAResultBase::getModRefInfo(CS, Loc);
|
|
|
|
if (const MDNode *L = Loc.AATags.TBAA)
|
|
if (const MDNode *M =
|
|
CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
|
|
if (!Aliases(L, M))
|
|
return MRI_NoModRef;
|
|
|
|
return AAResultBase::getModRefInfo(CS, Loc);
|
|
}
|
|
|
|
ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS1,
|
|
ImmutableCallSite CS2) {
|
|
if (!EnableTBAA)
|
|
return AAResultBase::getModRefInfo(CS1, CS2);
|
|
|
|
if (const MDNode *M1 =
|
|
CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
|
|
if (const MDNode *M2 =
|
|
CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
|
|
if (!Aliases(M1, M2))
|
|
return MRI_NoModRef;
|
|
|
|
return AAResultBase::getModRefInfo(CS1, CS2);
|
|
}
|
|
|
|
bool MDNode::isTBAAVtableAccess() const {
|
|
if (!isStructPathTBAA(this)) {
|
|
if (getNumOperands() < 1)
|
|
return false;
|
|
if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
|
|
if (Tag1->getString() == "vtable pointer")
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// For struct-path aware TBAA, we use the access type of the tag.
|
|
if (getNumOperands() < 2)
|
|
return false;
|
|
MDNode *Tag = cast_or_null<MDNode>(getOperand(1));
|
|
if (!Tag)
|
|
return false;
|
|
if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
|
|
if (Tag1->getString() == "vtable pointer")
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
|
|
if (!A || !B)
|
|
return nullptr;
|
|
|
|
if (A == B)
|
|
return A;
|
|
|
|
// For struct-path aware TBAA, we use the access type of the tag.
|
|
bool StructPath = isStructPathTBAA(A) && isStructPathTBAA(B);
|
|
if (StructPath) {
|
|
A = cast_or_null<MDNode>(A->getOperand(1));
|
|
if (!A)
|
|
return nullptr;
|
|
B = cast_or_null<MDNode>(B->getOperand(1));
|
|
if (!B)
|
|
return nullptr;
|
|
}
|
|
|
|
SmallSetVector<MDNode *, 4> PathA;
|
|
MDNode *T = A;
|
|
while (T) {
|
|
if (PathA.count(T))
|
|
report_fatal_error("Cycle found in TBAA metadata.");
|
|
PathA.insert(T);
|
|
T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
|
|
: nullptr;
|
|
}
|
|
|
|
SmallSetVector<MDNode *, 4> PathB;
|
|
T = B;
|
|
while (T) {
|
|
if (PathB.count(T))
|
|
report_fatal_error("Cycle found in TBAA metadata.");
|
|
PathB.insert(T);
|
|
T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
|
|
: nullptr;
|
|
}
|
|
|
|
int IA = PathA.size() - 1;
|
|
int IB = PathB.size() - 1;
|
|
|
|
MDNode *Ret = nullptr;
|
|
while (IA >= 0 && IB >= 0) {
|
|
if (PathA[IA] == PathB[IB])
|
|
Ret = PathA[IA];
|
|
else
|
|
break;
|
|
--IA;
|
|
--IB;
|
|
}
|
|
if (!StructPath)
|
|
return Ret;
|
|
|
|
if (!Ret)
|
|
return nullptr;
|
|
// We need to convert from a type node to a tag node.
|
|
Type *Int64 = IntegerType::get(A->getContext(), 64);
|
|
Metadata *Ops[3] = {Ret, Ret,
|
|
ConstantAsMetadata::get(ConstantInt::get(Int64, 0))};
|
|
return MDNode::get(A->getContext(), Ops);
|
|
}
|
|
|
|
void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
|
|
if (Merge)
|
|
N.TBAA =
|
|
MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
|
|
else
|
|
N.TBAA = getMetadata(LLVMContext::MD_tbaa);
|
|
|
|
if (Merge)
|
|
N.Scope = MDNode::getMostGenericAliasScope(
|
|
N.Scope, getMetadata(LLVMContext::MD_alias_scope));
|
|
else
|
|
N.Scope = getMetadata(LLVMContext::MD_alias_scope);
|
|
|
|
if (Merge)
|
|
N.NoAlias =
|
|
MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
|
|
else
|
|
N.NoAlias = getMetadata(LLVMContext::MD_noalias);
|
|
}
|
|
|
|
/// Aliases - Test whether the type represented by A may alias the
|
|
/// type represented by B.
|
|
bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
|
|
// Make sure that both MDNodes are struct-path aware.
|
|
if (isStructPathTBAA(A) && isStructPathTBAA(B))
|
|
return PathAliases(A, B);
|
|
|
|
// Keep track of the root node for A and B.
|
|
TBAANode RootA, RootB;
|
|
|
|
// Climb the tree from A to see if we reach B.
|
|
for (TBAANode T(A);;) {
|
|
if (T.getNode() == B)
|
|
// B is an ancestor of A.
|
|
return true;
|
|
|
|
RootA = T;
|
|
T = T.getParent();
|
|
if (!T.getNode())
|
|
break;
|
|
}
|
|
|
|
// Climb the tree from B to see if we reach A.
|
|
for (TBAANode T(B);;) {
|
|
if (T.getNode() == A)
|
|
// A is an ancestor of B.
|
|
return true;
|
|
|
|
RootB = T;
|
|
T = T.getParent();
|
|
if (!T.getNode())
|
|
break;
|
|
}
|
|
|
|
// Neither node is an ancestor of the other.
|
|
|
|
// If they have different roots, they're part of different potentially
|
|
// unrelated type systems, so we must be conservative.
|
|
if (RootA.getNode() != RootB.getNode())
|
|
return true;
|
|
|
|
// If they have the same root, then we've proved there's no alias.
|
|
return false;
|
|
}
|
|
|
|
/// Test whether the struct-path tag represented by A may alias the
|
|
/// struct-path tag represented by B.
|
|
bool TypeBasedAAResult::PathAliases(const MDNode *A, const MDNode *B) const {
|
|
// Verify that both input nodes are struct-path aware.
|
|
assert(isStructPathTBAA(A) && "MDNode A is not struct-path aware.");
|
|
assert(isStructPathTBAA(B) && "MDNode B is not struct-path aware.");
|
|
|
|
// Keep track of the root node for A and B.
|
|
TBAAStructTypeNode RootA, RootB;
|
|
TBAAStructTagNode TagA(A), TagB(B);
|
|
|
|
// TODO: We need to check if AccessType of TagA encloses AccessType of
|
|
// TagB to support aggregate AccessType. If yes, return true.
|
|
|
|
// Start from the base type of A, follow the edge with the correct offset in
|
|
// the type DAG and adjust the offset until we reach the base type of B or
|
|
// until we reach the Root node.
|
|
// Compare the adjusted offset once we have the same base.
|
|
|
|
// Climb the type DAG from base type of A to see if we reach base type of B.
|
|
const MDNode *BaseA = TagA.getBaseType();
|
|
const MDNode *BaseB = TagB.getBaseType();
|
|
uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset();
|
|
for (TBAAStructTypeNode T(BaseA);;) {
|
|
if (T.getNode() == BaseB)
|
|
// Base type of A encloses base type of B, check if the offsets match.
|
|
return OffsetA == OffsetB;
|
|
|
|
RootA = T;
|
|
// Follow the edge with the correct offset, OffsetA will be adjusted to
|
|
// be relative to the field type.
|
|
T = T.getParent(OffsetA);
|
|
if (!T.getNode())
|
|
break;
|
|
}
|
|
|
|
// Reset OffsetA and climb the type DAG from base type of B to see if we reach
|
|
// base type of A.
|
|
OffsetA = TagA.getOffset();
|
|
for (TBAAStructTypeNode T(BaseB);;) {
|
|
if (T.getNode() == BaseA)
|
|
// Base type of B encloses base type of A, check if the offsets match.
|
|
return OffsetA == OffsetB;
|
|
|
|
RootB = T;
|
|
// Follow the edge with the correct offset, OffsetB will be adjusted to
|
|
// be relative to the field type.
|
|
T = T.getParent(OffsetB);
|
|
if (!T.getNode())
|
|
break;
|
|
}
|
|
|
|
// Neither node is an ancestor of the other.
|
|
|
|
// If they have different roots, they're part of different potentially
|
|
// unrelated type systems, so we must be conservative.
|
|
if (RootA.getNode() != RootB.getNode())
|
|
return true;
|
|
|
|
// If they have the same root, then we've proved there's no alias.
|
|
return false;
|
|
}
|
|
|
|
TypeBasedAAResult TypeBasedAA::run(Function &F, AnalysisManager<Function> *AM) {
|
|
return TypeBasedAAResult();
|
|
}
|
|
|
|
char TypeBasedAAWrapperPass::ID = 0;
|
|
INITIALIZE_PASS(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
|
|
false, true)
|
|
|
|
ImmutablePass *llvm::createTypeBasedAAWrapperPass() {
|
|
return new TypeBasedAAWrapperPass();
|
|
}
|
|
|
|
TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) {
|
|
initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool TypeBasedAAWrapperPass::doInitialization(Module &M) {
|
|
Result.reset(new TypeBasedAAResult());
|
|
return false;
|
|
}
|
|
|
|
bool TypeBasedAAWrapperPass::doFinalization(Module &M) {
|
|
Result.reset();
|
|
return false;
|
|
}
|
|
|
|
void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
}
|