mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-01 17:28:21 +00:00
f7e042324a
Refactoring; no functional changes intended Removed PostRAScheduler bits from subtargets (X86, ARM). Added PostRAScheduler bit to MCSchedModel class. This bit is set by a CPU's scheduling model (if it exists). Removed enablePostRAScheduler() function from TargetSubtargetInfo and subclasses. Fixed the existing enablePostMachineScheduler() method to use the MCSchedModel (was just returning false!). Added methods to TargetSubtargetInfo to allow overrides for AntiDepBreakMode, CriticalPathRCs, and OptLevel for PostRAScheduling. Added enablePostRAScheduler() function to PostRAScheduler class which queries the subtarget for the above values. Preserved existing scheduler behavior for ARM, MIPS, PPC, and X86: a. ARM overrides the CPU's postRA settings by enabling postRA for any non-Thumb or Thumb2 subtarget. b. MIPS overrides the CPU's postRA settings by enabling postRA for everything. c. PPC overrides the CPU's postRA settings by enabling postRA for everything. d. X86 is the only target that actually has postRA specified via sched model info. Differential Revision: http://reviews.llvm.org/D4217 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213101 91177308-0d34-0410-b5e6-96231b3b80d8
233 lines
7.4 KiB
TableGen
233 lines
7.4 KiB
TableGen
//=- X86ScheduleSLM.td - X86 Silvermont Scheduling -----------*- tablegen -*-=//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the machine model for Intel Silvermont to support
|
|
// instruction scheduling and other instruction cost heuristics.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def SLMModel : SchedMachineModel {
|
|
// All x86 instructions are modeled as a single micro-op, and SLM can decode 2
|
|
// instructions per cycle.
|
|
let IssueWidth = 2;
|
|
let MicroOpBufferSize = 32; // Based on the reorder buffer.
|
|
let LoadLatency = 3;
|
|
let MispredictPenalty = 10;
|
|
let PostRAScheduler = 1;
|
|
|
|
// For small loops, expand by a small factor to hide the backedge cost.
|
|
let LoopMicroOpBufferSize = 10;
|
|
|
|
// FIXME: SSE4 is unimplemented. This flag is set to allow
|
|
// the scheduler to assign a default model to unrecognized opcodes.
|
|
let CompleteModel = 0;
|
|
}
|
|
|
|
let SchedModel = SLMModel in {
|
|
|
|
// Silvermont has 5 reservation stations for micro-ops
|
|
|
|
def IEC_RSV0 : ProcResource<1>;
|
|
def IEC_RSV1 : ProcResource<1>;
|
|
def FPC_RSV0 : ProcResource<1> { let BufferSize = 1; }
|
|
def FPC_RSV1 : ProcResource<1> { let BufferSize = 1; }
|
|
def MEC_RSV : ProcResource<1>;
|
|
|
|
// Many micro-ops are capable of issuing on multiple ports.
|
|
def IEC_RSV01 : ProcResGroup<[IEC_RSV0, IEC_RSV1]>;
|
|
def FPC_RSV01 : ProcResGroup<[FPC_RSV0, FPC_RSV1]>;
|
|
|
|
def SMDivider : ProcResource<1>;
|
|
def SMFPMultiplier : ProcResource<1>;
|
|
def SMFPDivider : ProcResource<1>;
|
|
|
|
// Loads are 3 cycles, so ReadAfterLd registers needn't be available until 3
|
|
// cycles after the memory operand.
|
|
def : ReadAdvance<ReadAfterLd, 3>;
|
|
|
|
// Many SchedWrites are defined in pairs with and without a folded load.
|
|
// Instructions with folded loads are usually micro-fused, so they only appear
|
|
// as two micro-ops when queued in the reservation station.
|
|
// This multiclass defines the resource usage for variants with and without
|
|
// folded loads.
|
|
multiclass SMWriteResPair<X86FoldableSchedWrite SchedRW,
|
|
ProcResourceKind ExePort,
|
|
int Lat> {
|
|
// Register variant is using a single cycle on ExePort.
|
|
def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
|
|
|
|
// Memory variant also uses a cycle on MEC_RSV and adds 3 cycles to the
|
|
// latency.
|
|
def : WriteRes<SchedRW.Folded, [MEC_RSV, ExePort]> {
|
|
let Latency = !add(Lat, 3);
|
|
}
|
|
}
|
|
|
|
// A folded store needs a cycle on MEC_RSV for the store data, but it does not
|
|
// need an extra port cycle to recompute the address.
|
|
def : WriteRes<WriteRMW, [MEC_RSV]>;
|
|
|
|
def : WriteRes<WriteStore, [IEC_RSV01, MEC_RSV]>;
|
|
def : WriteRes<WriteLoad, [MEC_RSV]> { let Latency = 3; }
|
|
def : WriteRes<WriteMove, [IEC_RSV01]>;
|
|
def : WriteRes<WriteZero, []>;
|
|
|
|
defm : SMWriteResPair<WriteALU, IEC_RSV01, 1>;
|
|
defm : SMWriteResPair<WriteIMul, IEC_RSV1, 3>;
|
|
defm : SMWriteResPair<WriteShift, IEC_RSV0, 1>;
|
|
defm : SMWriteResPair<WriteJump, IEC_RSV1, 1>;
|
|
|
|
// This is for simple LEAs with one or two input operands.
|
|
// The complex ones can only execute on port 1, and they require two cycles on
|
|
// the port to read all inputs. We don't model that.
|
|
def : WriteRes<WriteLEA, [IEC_RSV1]>;
|
|
|
|
// This is quite rough, latency depends on the dividend.
|
|
def : WriteRes<WriteIDiv, [IEC_RSV01, SMDivider]> {
|
|
let Latency = 25;
|
|
let ResourceCycles = [1, 25];
|
|
}
|
|
def : WriteRes<WriteIDivLd, [MEC_RSV, IEC_RSV01, SMDivider]> {
|
|
let Latency = 29;
|
|
let ResourceCycles = [1, 1, 25];
|
|
}
|
|
|
|
// Scalar and vector floating point.
|
|
defm : SMWriteResPair<WriteFAdd, FPC_RSV1, 3>;
|
|
defm : SMWriteResPair<WriteFRcp, FPC_RSV0, 5>;
|
|
defm : SMWriteResPair<WriteFSqrt, FPC_RSV0, 15>;
|
|
defm : SMWriteResPair<WriteCvtF2I, FPC_RSV01, 4>;
|
|
defm : SMWriteResPair<WriteCvtI2F, FPC_RSV01, 4>;
|
|
defm : SMWriteResPair<WriteCvtF2F, FPC_RSV01, 4>;
|
|
defm : SMWriteResPair<WriteFShuffle, FPC_RSV0, 1>;
|
|
defm : SMWriteResPair<WriteFBlend, FPC_RSV0, 1>;
|
|
|
|
// This is quite rough, latency depends on precision
|
|
def : WriteRes<WriteFMul, [FPC_RSV0, SMFPMultiplier]> {
|
|
let Latency = 5;
|
|
let ResourceCycles = [1, 2];
|
|
}
|
|
def : WriteRes<WriteFMulLd, [MEC_RSV, FPC_RSV0, SMFPMultiplier]> {
|
|
let Latency = 8;
|
|
let ResourceCycles = [1, 1, 2];
|
|
}
|
|
|
|
def : WriteRes<WriteFDiv, [FPC_RSV0, SMFPDivider]> {
|
|
let Latency = 34;
|
|
let ResourceCycles = [1, 34];
|
|
}
|
|
def : WriteRes<WriteFDivLd, [MEC_RSV, FPC_RSV0, SMFPDivider]> {
|
|
let Latency = 37;
|
|
let ResourceCycles = [1, 1, 34];
|
|
}
|
|
|
|
// Vector integer operations.
|
|
defm : SMWriteResPair<WriteVecShift, FPC_RSV0, 1>;
|
|
defm : SMWriteResPair<WriteVecLogic, FPC_RSV01, 1>;
|
|
defm : SMWriteResPair<WriteVecALU, FPC_RSV01, 1>;
|
|
defm : SMWriteResPair<WriteVecIMul, FPC_RSV0, 4>;
|
|
defm : SMWriteResPair<WriteShuffle, FPC_RSV0, 1>;
|
|
defm : SMWriteResPair<WriteBlend, FPC_RSV0, 1>;
|
|
defm : SMWriteResPair<WriteMPSAD, FPC_RSV0, 7>;
|
|
|
|
// String instructions.
|
|
// Packed Compare Implicit Length Strings, Return Mask
|
|
def : WriteRes<WritePCmpIStrM, [FPC_RSV0]> {
|
|
let Latency = 13;
|
|
let ResourceCycles = [13];
|
|
}
|
|
def : WriteRes<WritePCmpIStrMLd, [FPC_RSV0, MEC_RSV]> {
|
|
let Latency = 13;
|
|
let ResourceCycles = [13, 1];
|
|
}
|
|
|
|
// Packed Compare Explicit Length Strings, Return Mask
|
|
def : WriteRes<WritePCmpEStrM, [FPC_RSV0]> {
|
|
let Latency = 17;
|
|
let ResourceCycles = [17];
|
|
}
|
|
def : WriteRes<WritePCmpEStrMLd, [FPC_RSV0, MEC_RSV]> {
|
|
let Latency = 17;
|
|
let ResourceCycles = [17, 1];
|
|
}
|
|
|
|
// Packed Compare Implicit Length Strings, Return Index
|
|
def : WriteRes<WritePCmpIStrI, [FPC_RSV0]> {
|
|
let Latency = 17;
|
|
let ResourceCycles = [17];
|
|
}
|
|
def : WriteRes<WritePCmpIStrILd, [FPC_RSV0, MEC_RSV]> {
|
|
let Latency = 17;
|
|
let ResourceCycles = [17, 1];
|
|
}
|
|
|
|
// Packed Compare Explicit Length Strings, Return Index
|
|
def : WriteRes<WritePCmpEStrI, [FPC_RSV0]> {
|
|
let Latency = 21;
|
|
let ResourceCycles = [21];
|
|
}
|
|
def : WriteRes<WritePCmpEStrILd, [FPC_RSV0, MEC_RSV]> {
|
|
let Latency = 21;
|
|
let ResourceCycles = [21, 1];
|
|
}
|
|
|
|
// AES Instructions.
|
|
def : WriteRes<WriteAESDecEnc, [FPC_RSV0]> {
|
|
let Latency = 8;
|
|
let ResourceCycles = [5];
|
|
}
|
|
def : WriteRes<WriteAESDecEncLd, [FPC_RSV0, MEC_RSV]> {
|
|
let Latency = 8;
|
|
let ResourceCycles = [5, 1];
|
|
}
|
|
|
|
def : WriteRes<WriteAESIMC, [FPC_RSV0]> {
|
|
let Latency = 8;
|
|
let ResourceCycles = [5];
|
|
}
|
|
def : WriteRes<WriteAESIMCLd, [FPC_RSV0, MEC_RSV]> {
|
|
let Latency = 8;
|
|
let ResourceCycles = [5, 1];
|
|
}
|
|
|
|
def : WriteRes<WriteAESKeyGen, [FPC_RSV0]> {
|
|
let Latency = 8;
|
|
let ResourceCycles = [5];
|
|
}
|
|
def : WriteRes<WriteAESKeyGenLd, [FPC_RSV0, MEC_RSV]> {
|
|
let Latency = 8;
|
|
let ResourceCycles = [5, 1];
|
|
}
|
|
|
|
// Carry-less multiplication instructions.
|
|
def : WriteRes<WriteCLMul, [FPC_RSV0]> {
|
|
let Latency = 10;
|
|
let ResourceCycles = [10];
|
|
}
|
|
def : WriteRes<WriteCLMulLd, [FPC_RSV0, MEC_RSV]> {
|
|
let Latency = 10;
|
|
let ResourceCycles = [10, 1];
|
|
}
|
|
|
|
|
|
def : WriteRes<WriteSystem, [FPC_RSV0]> { let Latency = 100; }
|
|
def : WriteRes<WriteMicrocoded, [FPC_RSV0]> { let Latency = 100; }
|
|
def : WriteRes<WriteFence, [MEC_RSV]>;
|
|
def : WriteRes<WriteNop, []>;
|
|
|
|
// AVX is not supported on that architecture, but we should define the basic
|
|
// scheduling resources anyway.
|
|
def : WriteRes<WriteIMulH, [FPC_RSV0]>;
|
|
defm : SMWriteResPair<WriteVarBlend, FPC_RSV0, 1>;
|
|
defm : SMWriteResPair<WriteFVarBlend, FPC_RSV0, 1>;
|
|
defm : SMWriteResPair<WriteFShuffle256, FPC_RSV0, 1>;
|
|
defm : SMWriteResPair<WriteShuffle256, FPC_RSV0, 1>;
|
|
defm : SMWriteResPair<WriteVarVecShift, FPC_RSV0, 1>;
|
|
} // SchedModel
|