llvm/lib/Target/Mips/Mips16ISelLowering.cpp
Eric Christopher d5dd8ce2a5 Reinstate "Nuke the old JIT."
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.

This reinstates commits r215111, 215115, 215116, 215117, 215136.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216982 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-02 22:28:02 +00:00

803 lines
29 KiB
C++

//===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Subclass of MipsTargetLowering specialized for mips16.
//
//===----------------------------------------------------------------------===//
#include "Mips16ISelLowering.h"
#include "MCTargetDesc/MipsBaseInfo.h"
#include "Mips16HardFloatInfo.h"
#include "MipsMachineFunction.h"
#include "MipsRegisterInfo.h"
#include "MipsTargetMachine.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include <string>
using namespace llvm;
#define DEBUG_TYPE "mips-lower"
static cl::opt<bool> DontExpandCondPseudos16(
"mips16-dont-expand-cond-pseudo",
cl::init(false),
cl::desc("Don't expand conditional move related "
"pseudos for Mips 16"),
cl::Hidden);
namespace {
struct Mips16Libcall {
RTLIB::Libcall Libcall;
const char *Name;
bool operator<(const Mips16Libcall &RHS) const {
return std::strcmp(Name, RHS.Name) < 0;
}
};
struct Mips16IntrinsicHelperType{
const char* Name;
const char* Helper;
bool operator<(const Mips16IntrinsicHelperType &RHS) const {
return std::strcmp(Name, RHS.Name) < 0;
}
bool operator==(const Mips16IntrinsicHelperType &RHS) const {
return std::strcmp(Name, RHS.Name) == 0;
}
};
}
// Libcalls for which no helper is generated. Sorted by name for binary search.
static const Mips16Libcall HardFloatLibCalls[] = {
{ RTLIB::ADD_F64, "__mips16_adddf3" },
{ RTLIB::ADD_F32, "__mips16_addsf3" },
{ RTLIB::DIV_F64, "__mips16_divdf3" },
{ RTLIB::DIV_F32, "__mips16_divsf3" },
{ RTLIB::OEQ_F64, "__mips16_eqdf2" },
{ RTLIB::OEQ_F32, "__mips16_eqsf2" },
{ RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2" },
{ RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi" },
{ RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi" },
{ RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf" },
{ RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf" },
{ RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf" },
{ RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf" },
{ RTLIB::OGE_F64, "__mips16_gedf2" },
{ RTLIB::OGE_F32, "__mips16_gesf2" },
{ RTLIB::OGT_F64, "__mips16_gtdf2" },
{ RTLIB::OGT_F32, "__mips16_gtsf2" },
{ RTLIB::OLE_F64, "__mips16_ledf2" },
{ RTLIB::OLE_F32, "__mips16_lesf2" },
{ RTLIB::OLT_F64, "__mips16_ltdf2" },
{ RTLIB::OLT_F32, "__mips16_ltsf2" },
{ RTLIB::MUL_F64, "__mips16_muldf3" },
{ RTLIB::MUL_F32, "__mips16_mulsf3" },
{ RTLIB::UNE_F64, "__mips16_nedf2" },
{ RTLIB::UNE_F32, "__mips16_nesf2" },
{ RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_dc" }, // No associated libcall.
{ RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_df" }, // No associated libcall.
{ RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sc" }, // No associated libcall.
{ RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sf" }, // No associated libcall.
{ RTLIB::SUB_F64, "__mips16_subdf3" },
{ RTLIB::SUB_F32, "__mips16_subsf3" },
{ RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2" },
{ RTLIB::UO_F64, "__mips16_unorddf2" },
{ RTLIB::UO_F32, "__mips16_unordsf2" }
};
static const Mips16IntrinsicHelperType Mips16IntrinsicHelper[] = {
{"__fixunsdfsi", "__mips16_call_stub_2" },
{"ceil", "__mips16_call_stub_df_2"},
{"ceilf", "__mips16_call_stub_sf_1"},
{"copysign", "__mips16_call_stub_df_10"},
{"copysignf", "__mips16_call_stub_sf_5"},
{"cos", "__mips16_call_stub_df_2"},
{"cosf", "__mips16_call_stub_sf_1"},
{"exp2", "__mips16_call_stub_df_2"},
{"exp2f", "__mips16_call_stub_sf_1"},
{"floor", "__mips16_call_stub_df_2"},
{"floorf", "__mips16_call_stub_sf_1"},
{"log2", "__mips16_call_stub_df_2"},
{"log2f", "__mips16_call_stub_sf_1"},
{"nearbyint", "__mips16_call_stub_df_2"},
{"nearbyintf", "__mips16_call_stub_sf_1"},
{"rint", "__mips16_call_stub_df_2"},
{"rintf", "__mips16_call_stub_sf_1"},
{"sin", "__mips16_call_stub_df_2"},
{"sinf", "__mips16_call_stub_sf_1"},
{"sqrt", "__mips16_call_stub_df_2"},
{"sqrtf", "__mips16_call_stub_sf_1"},
{"trunc", "__mips16_call_stub_df_2"},
{"truncf", "__mips16_call_stub_sf_1"},
};
Mips16TargetLowering::Mips16TargetLowering(MipsTargetMachine &TM,
const MipsSubtarget &STI)
: MipsTargetLowering(TM, STI) {
// Set up the register classes
addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
if (!TM.Options.UseSoftFloat)
setMips16HardFloatLibCalls();
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand);
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
setOperationAction(ISD::ROTR, MVT::i32, Expand);
setOperationAction(ISD::ROTR, MVT::i64, Expand);
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
setOperationAction(ISD::BSWAP, MVT::i64, Expand);
computeRegisterProperties();
}
const MipsTargetLowering *
llvm::createMips16TargetLowering(MipsTargetMachine &TM,
const MipsSubtarget &STI) {
return new Mips16TargetLowering(TM, STI);
}
bool
Mips16TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
unsigned,
unsigned,
bool *Fast) const {
return false;
}
MachineBasicBlock *
Mips16TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const {
switch (MI->getOpcode()) {
default:
return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
case Mips::SelBeqZ:
return emitSel16(Mips::BeqzRxImm16, MI, BB);
case Mips::SelBneZ:
return emitSel16(Mips::BnezRxImm16, MI, BB);
case Mips::SelTBteqZCmpi:
return emitSeliT16(Mips::Bteqz16, Mips::CmpiRxImmX16, MI, BB);
case Mips::SelTBteqZSlti:
return emitSeliT16(Mips::Bteqz16, Mips::SltiRxImmX16, MI, BB);
case Mips::SelTBteqZSltiu:
return emitSeliT16(Mips::Bteqz16, Mips::SltiuRxImmX16, MI, BB);
case Mips::SelTBtneZCmpi:
return emitSeliT16(Mips::Btnez16, Mips::CmpiRxImmX16, MI, BB);
case Mips::SelTBtneZSlti:
return emitSeliT16(Mips::Btnez16, Mips::SltiRxImmX16, MI, BB);
case Mips::SelTBtneZSltiu:
return emitSeliT16(Mips::Btnez16, Mips::SltiuRxImmX16, MI, BB);
case Mips::SelTBteqZCmp:
return emitSelT16(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
case Mips::SelTBteqZSlt:
return emitSelT16(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
case Mips::SelTBteqZSltu:
return emitSelT16(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
case Mips::SelTBtneZCmp:
return emitSelT16(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
case Mips::SelTBtneZSlt:
return emitSelT16(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
case Mips::SelTBtneZSltu:
return emitSelT16(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
case Mips::BteqzT8CmpX16:
return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
case Mips::BteqzT8SltX16:
return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
case Mips::BteqzT8SltuX16:
// TBD: figure out a way to get this or remove the instruction
// altogether.
return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
case Mips::BtnezT8CmpX16:
return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
case Mips::BtnezT8SltX16:
return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
case Mips::BtnezT8SltuX16:
// TBD: figure out a way to get this or remove the instruction
// altogether.
return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
case Mips::BteqzT8CmpiX16: return emitFEXT_T8I8I16_ins(
Mips::Bteqz16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
case Mips::BteqzT8SltiX16: return emitFEXT_T8I8I16_ins(
Mips::Bteqz16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
case Mips::BteqzT8SltiuX16: return emitFEXT_T8I8I16_ins(
Mips::Bteqz16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
case Mips::BtnezT8CmpiX16: return emitFEXT_T8I8I16_ins(
Mips::Btnez16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
case Mips::BtnezT8SltiX16: return emitFEXT_T8I8I16_ins(
Mips::Btnez16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
case Mips::BtnezT8SltiuX16: return emitFEXT_T8I8I16_ins(
Mips::Btnez16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
break;
case Mips::SltCCRxRy16:
return emitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB);
break;
case Mips::SltiCCRxImmX16:
return emitFEXT_CCRXI16_ins
(Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
case Mips::SltiuCCRxImmX16:
return emitFEXT_CCRXI16_ins
(Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
case Mips::SltuCCRxRy16:
return emitFEXT_CCRX16_ins
(Mips::SltuRxRy16, MI, BB);
}
}
bool Mips16TargetLowering::
isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
unsigned NextStackOffset,
const MipsFunctionInfo& FI) const {
// No tail call optimization for mips16.
return false;
}
void Mips16TargetLowering::setMips16HardFloatLibCalls() {
for (unsigned I = 0; I != array_lengthof(HardFloatLibCalls); ++I) {
assert((I == 0 || HardFloatLibCalls[I - 1] < HardFloatLibCalls[I]) &&
"Array not sorted!");
if (HardFloatLibCalls[I].Libcall != RTLIB::UNKNOWN_LIBCALL)
setLibcallName(HardFloatLibCalls[I].Libcall, HardFloatLibCalls[I].Name);
}
setLibcallName(RTLIB::O_F64, "__mips16_unorddf2");
setLibcallName(RTLIB::O_F32, "__mips16_unordsf2");
}
//
// The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
// cleaner way to do all of this but it will have to wait until the traditional
// gcc mechanism is completed.
//
// For Pic, in order for Mips16 code to call Mips32 code which according the abi
// have either arguments or returned values placed in floating point registers,
// we use a set of helper functions. (This includes functions which return type
// complex which on Mips are returned in a pair of floating point registers).
//
// This is an encoding that we inherited from gcc.
// In Mips traditional O32, N32 ABI, floating point numbers are passed in
// floating point argument registers 1,2 only when the first and optionally
// the second arguments are float (sf) or double (df).
// For Mips16 we are only concerned with the situations where floating point
// arguments are being passed in floating point registers by the ABI, because
// Mips16 mode code cannot execute floating point instructions to load those
// values and hence helper functions are needed.
// The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
// the helper function suffixs for these are:
// 0, 1, 5, 9, 2, 6, 10
// this suffix can then be calculated as follows:
// for a given argument Arg:
// Arg1x, Arg2x = 1 : Arg is sf
// 2 : Arg is df
// 0: Arg is neither sf or df
// So this stub is the string for number Arg1x + Arg2x*4.
// However not all numbers between 0 and 10 are possible, we check anyway and
// assert if the impossible exists.
//
unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber
(ArgListTy &Args) const {
unsigned int resultNum = 0;
if (Args.size() >= 1) {
Type *t = Args[0].Ty;
if (t->isFloatTy()) {
resultNum = 1;
}
else if (t->isDoubleTy()) {
resultNum = 2;
}
}
if (resultNum) {
if (Args.size() >=2) {
Type *t = Args[1].Ty;
if (t->isFloatTy()) {
resultNum += 4;
}
else if (t->isDoubleTy()) {
resultNum += 8;
}
}
}
return resultNum;
}
//
// prefixs are attached to stub numbers depending on the return type .
// return type: float sf_
// double df_
// single complex sc_
// double complext dc_
// others NO PREFIX
//
//
// The full name of a helper function is__mips16_call_stub +
// return type dependent prefix + stub number
//
//
// This is something that probably should be in a different source file and
// perhaps done differently but my main purpose is to not waste runtime
// on something that we can enumerate in the source. Another possibility is
// to have a python script to generate these mapping tables. This will do
// for now. There are a whole series of helper function mapping arrays, one
// for each return type class as outlined above. There there are 11 possible
// entries. Ones with 0 are ones which should never be selected
//
// All the arrays are similar except for ones which return neither
// sf, df, sc, dc, in which only care about ones which have sf or df as a
// first parameter.
//
#define P_ "__mips16_call_stub_"
#define MAX_STUB_NUMBER 10
#define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
#define T P "0" , T1
#define P P_
static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
{nullptr, T1 };
#undef P
#define P P_ "sf_"
static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
{ T };
#undef P
#define P P_ "df_"
static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
{ T };
#undef P
#define P P_ "sc_"
static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
{ T };
#undef P
#define P P_ "dc_"
static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
{ T };
#undef P
#undef P_
const char* Mips16TargetLowering::
getMips16HelperFunction
(Type* RetTy, ArgListTy &Args, bool &needHelper) const {
const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
#ifndef NDEBUG
const unsigned int maxStubNum = 10;
assert(stubNum <= maxStubNum);
const bool validStubNum[maxStubNum+1] =
{true, true, true, false, false, true, true, false, false, true, true};
assert(validStubNum[stubNum]);
#endif
const char *result;
if (RetTy->isFloatTy()) {
result = sfMips16Helper[stubNum];
}
else if (RetTy ->isDoubleTy()) {
result = dfMips16Helper[stubNum];
}
else if (RetTy->isStructTy()) {
// check if it's complex
if (RetTy->getNumContainedTypes() == 2) {
if ((RetTy->getContainedType(0)->isFloatTy()) &&
(RetTy->getContainedType(1)->isFloatTy())) {
result = scMips16Helper[stubNum];
}
else if ((RetTy->getContainedType(0)->isDoubleTy()) &&
(RetTy->getContainedType(1)->isDoubleTy())) {
result = dcMips16Helper[stubNum];
}
else {
llvm_unreachable("Uncovered condition");
}
}
else {
llvm_unreachable("Uncovered condition");
}
}
else {
if (stubNum == 0) {
needHelper = false;
return "";
}
result = vMips16Helper[stubNum];
}
needHelper = true;
return result;
}
void Mips16TargetLowering::
getOpndList(SmallVectorImpl<SDValue> &Ops,
std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
SelectionDAG &DAG = CLI.DAG;
MachineFunction &MF = DAG.getMachineFunction();
MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
const char* Mips16HelperFunction = nullptr;
bool NeedMips16Helper = false;
if (Subtarget.inMips16HardFloat()) {
//
// currently we don't have symbols tagged with the mips16 or mips32
// qualifier so we will assume that we don't know what kind it is.
// and generate the helper
//
bool LookupHelper = true;
if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(CLI.Callee)) {
Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, S->getSymbol() };
if (std::binary_search(std::begin(HardFloatLibCalls),
std::end(HardFloatLibCalls), Find))
LookupHelper = false;
else {
const char *Symbol = S->getSymbol();
Mips16IntrinsicHelperType IntrinsicFind = { Symbol, "" };
const Mips16HardFloatInfo::FuncSignature *Signature =
Mips16HardFloatInfo::findFuncSignature(Symbol);
if (!IsPICCall && (Signature && (FuncInfo->StubsNeeded.find(Symbol) ==
FuncInfo->StubsNeeded.end()))) {
FuncInfo->StubsNeeded[Symbol] = Signature;
//
// S2 is normally saved if the stub is for a function which
// returns a float or double value and is not otherwise. This is
// because more work is required after the function the stub
// is calling completes, and so the stub cannot directly return
// and the stub has no stack space to store the return address so
// S2 is used for that purpose.
// In order to take advantage of not saving S2, we need to also
// optimize the call in the stub and this requires some further
// functionality in MipsAsmPrinter which we don't have yet.
// So for now we always save S2. The optimization will be done
// in a follow-on patch.
//
if (1 || (Signature->RetSig != Mips16HardFloatInfo::NoFPRet))
FuncInfo->setSaveS2();
}
// one more look at list of intrinsics
const Mips16IntrinsicHelperType *Helper =
std::lower_bound(std::begin(Mips16IntrinsicHelper),
std::end(Mips16IntrinsicHelper), IntrinsicFind);
if (Helper != std::end(Mips16IntrinsicHelper) &&
*Helper == IntrinsicFind) {
Mips16HelperFunction = Helper->Helper;
NeedMips16Helper = true;
LookupHelper = false;
}
}
} else if (GlobalAddressSDNode *G =
dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL,
G->getGlobal()->getName().data() };
if (std::binary_search(std::begin(HardFloatLibCalls),
std::end(HardFloatLibCalls), Find))
LookupHelper = false;
}
if (LookupHelper)
Mips16HelperFunction =
getMips16HelperFunction(CLI.RetTy, CLI.getArgs(), NeedMips16Helper);
}
SDValue JumpTarget = Callee;
// T9 should contain the address of the callee function if
// -reloction-model=pic or it is an indirect call.
if (IsPICCall || !GlobalOrExternal) {
unsigned V0Reg = Mips::V0;
if (NeedMips16Helper) {
RegsToPass.push_front(std::make_pair(V0Reg, Callee));
JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction, getPointerTy());
ExternalSymbolSDNode *S = cast<ExternalSymbolSDNode>(JumpTarget);
JumpTarget = getAddrGlobal(S, JumpTarget.getValueType(), DAG,
MipsII::MO_GOT, Chain,
FuncInfo->callPtrInfo(S->getSymbol()));
} else
RegsToPass.push_front(std::make_pair((unsigned)Mips::T9, Callee));
}
Ops.push_back(JumpTarget);
MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
InternalLinkage, CLI, Callee, Chain);
}
MachineBasicBlock *Mips16TargetLowering::
emitSel16(unsigned Opc, MachineInstr *MI, MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
const TargetInstrInfo *TII =
getTargetMachine().getSubtargetImpl()->getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// setcc r1, r2, r3
// bNE r1, r0, copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
BuildMI(BB, DL, TII->get(Opc)).addReg(MI->getOperand(3).getReg())
.addMBB(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
// ...
BB = sinkMBB;
BuildMI(*BB, BB->begin(), DL,
TII->get(Mips::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
.addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock *Mips16TargetLowering::emitSelT16
(unsigned Opc1, unsigned Opc2,
MachineInstr *MI, MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
const TargetInstrInfo *TII =
getTargetMachine().getSubtargetImpl()->getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// setcc r1, r2, r3
// bNE r1, r0, copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
.addReg(MI->getOperand(4).getReg());
BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
// ...
BB = sinkMBB;
BuildMI(*BB, BB->begin(), DL,
TII->get(Mips::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
.addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock *Mips16TargetLowering::emitSeliT16
(unsigned Opc1, unsigned Opc2,
MachineInstr *MI, MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
const TargetInstrInfo *TII =
getTargetMachine().getSubtargetImpl()->getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// setcc r1, r2, r3
// bNE r1, r0, copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
.addImm(MI->getOperand(4).getImm());
BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
// ...
BB = sinkMBB;
BuildMI(*BB, BB->begin(), DL,
TII->get(Mips::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
.addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock
*Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc,
MachineInstr *MI,
MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
const TargetInstrInfo *TII =
getTargetMachine().getSubtargetImpl()->getInstrInfo();
unsigned regX = MI->getOperand(0).getReg();
unsigned regY = MI->getOperand(1).getReg();
MachineBasicBlock *target = MI->getOperand(2).getMBB();
BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
.addReg(regY);
BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins(
unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc, bool ImmSigned,
MachineInstr *MI, MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
const TargetInstrInfo *TII =
getTargetMachine().getSubtargetImpl()->getInstrInfo();
unsigned regX = MI->getOperand(0).getReg();
int64_t imm = MI->getOperand(1).getImm();
MachineBasicBlock *target = MI->getOperand(2).getMBB();
unsigned CmpOpc;
if (isUInt<8>(imm))
CmpOpc = CmpiOpc;
else if ((!ImmSigned && isUInt<16>(imm)) ||
(ImmSigned && isInt<16>(imm)))
CmpOpc = CmpiXOpc;
else
llvm_unreachable("immediate field not usable");
BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
.addImm(imm);
BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
static unsigned Mips16WhichOp8uOr16simm
(unsigned shortOp, unsigned longOp, int64_t Imm) {
if (isUInt<8>(Imm))
return shortOp;
else if (isInt<16>(Imm))
return longOp;
else
llvm_unreachable("immediate field not usable");
}
MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRX16_ins(
unsigned SltOpc,
MachineInstr *MI, MachineBasicBlock *BB) const {
if (DontExpandCondPseudos16)
return BB;
const TargetInstrInfo *TII =
getTargetMachine().getSubtargetImpl()->getInstrInfo();
unsigned CC = MI->getOperand(0).getReg();
unsigned regX = MI->getOperand(1).getReg();
unsigned regY = MI->getOperand(2).getReg();
BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(SltOpc)).addReg(regX).addReg(
regY);
BuildMI(*BB, MI, MI->getDebugLoc(),
TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRXI16_ins(
unsigned SltiOpc, unsigned SltiXOpc,
MachineInstr *MI, MachineBasicBlock *BB )const {
if (DontExpandCondPseudos16)
return BB;
const TargetInstrInfo *TII =
getTargetMachine().getSubtargetImpl()->getInstrInfo();
unsigned CC = MI->getOperand(0).getReg();
unsigned regX = MI->getOperand(1).getReg();
int64_t Imm = MI->getOperand(2).getImm();
unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm);
BuildMI(*BB, MI, MI->getDebugLoc(),
TII->get(SltOpc)).addReg(regX).addImm(Imm);
BuildMI(*BB, MI, MI->getDebugLoc(),
TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}