mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-28 07:05:03 +00:00
d04a8d4b33
Sooooo many of these had incorrect or strange main module includes. I have manually inspected all of these, and fixed the main module include to be the nearest plausible thing I could find. If you own or care about any of these source files, I encourage you to take some time and check that these edits were sensible. I can't have broken anything (I strictly added headers, and reordered them, never removed), but they may not be the headers you'd really like to identify as containing the API being implemented. Many forward declarations and missing includes were added to a header files to allow them to parse cleanly when included first. The main module rule does in fact have its merits. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
468 lines
14 KiB
C++
468 lines
14 KiB
C++
//===-- StringRef.cpp - Lightweight String References ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/ADT/OwningPtr.h"
|
|
#include "llvm/ADT/edit_distance.h"
|
|
#include <bitset>
|
|
|
|
using namespace llvm;
|
|
|
|
// MSVC emits references to this into the translation units which reference it.
|
|
#ifndef _MSC_VER
|
|
const size_t StringRef::npos;
|
|
#endif
|
|
|
|
static char ascii_tolower(char x) {
|
|
if (x >= 'A' && x <= 'Z')
|
|
return x - 'A' + 'a';
|
|
return x;
|
|
}
|
|
|
|
static char ascii_toupper(char x) {
|
|
if (x >= 'a' && x <= 'z')
|
|
return x - 'a' + 'A';
|
|
return x;
|
|
}
|
|
|
|
static bool ascii_isdigit(char x) {
|
|
return x >= '0' && x <= '9';
|
|
}
|
|
|
|
/// compare_lower - Compare strings, ignoring case.
|
|
int StringRef::compare_lower(StringRef RHS) const {
|
|
for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
|
|
unsigned char LHC = ascii_tolower(Data[I]);
|
|
unsigned char RHC = ascii_tolower(RHS.Data[I]);
|
|
if (LHC != RHC)
|
|
return LHC < RHC ? -1 : 1;
|
|
}
|
|
|
|
if (Length == RHS.Length)
|
|
return 0;
|
|
return Length < RHS.Length ? -1 : 1;
|
|
}
|
|
|
|
/// compare_numeric - Compare strings, handle embedded numbers.
|
|
int StringRef::compare_numeric(StringRef RHS) const {
|
|
for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
|
|
// Check for sequences of digits.
|
|
if (ascii_isdigit(Data[I]) && ascii_isdigit(RHS.Data[I])) {
|
|
// The longer sequence of numbers is considered larger.
|
|
// This doesn't really handle prefixed zeros well.
|
|
size_t J;
|
|
for (J = I + 1; J != E + 1; ++J) {
|
|
bool ld = J < Length && ascii_isdigit(Data[J]);
|
|
bool rd = J < RHS.Length && ascii_isdigit(RHS.Data[J]);
|
|
if (ld != rd)
|
|
return rd ? -1 : 1;
|
|
if (!rd)
|
|
break;
|
|
}
|
|
// The two number sequences have the same length (J-I), just memcmp them.
|
|
if (int Res = compareMemory(Data + I, RHS.Data + I, J - I))
|
|
return Res < 0 ? -1 : 1;
|
|
// Identical number sequences, continue search after the numbers.
|
|
I = J - 1;
|
|
continue;
|
|
}
|
|
if (Data[I] != RHS.Data[I])
|
|
return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
|
|
}
|
|
if (Length == RHS.Length)
|
|
return 0;
|
|
return Length < RHS.Length ? -1 : 1;
|
|
}
|
|
|
|
// Compute the edit distance between the two given strings.
|
|
unsigned StringRef::edit_distance(llvm::StringRef Other,
|
|
bool AllowReplacements,
|
|
unsigned MaxEditDistance) {
|
|
return llvm::ComputeEditDistance(
|
|
llvm::ArrayRef<char>(data(), size()),
|
|
llvm::ArrayRef<char>(Other.data(), Other.size()),
|
|
AllowReplacements, MaxEditDistance);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// String Operations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
std::string StringRef::lower() const {
|
|
std::string Result(size(), char());
|
|
for (size_type i = 0, e = size(); i != e; ++i) {
|
|
Result[i] = ascii_tolower(Data[i]);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
std::string StringRef::upper() const {
|
|
std::string Result(size(), char());
|
|
for (size_type i = 0, e = size(); i != e; ++i) {
|
|
Result[i] = ascii_toupper(Data[i]);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// String Searching
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
/// find - Search for the first string \arg Str in the string.
|
|
///
|
|
/// \return - The index of the first occurrence of \arg Str, or npos if not
|
|
/// found.
|
|
size_t StringRef::find(StringRef Str, size_t From) const {
|
|
size_t N = Str.size();
|
|
if (N > Length)
|
|
return npos;
|
|
|
|
// For short haystacks or unsupported needles fall back to the naive algorithm
|
|
if (Length < 16 || N > 255 || N == 0) {
|
|
for (size_t e = Length - N + 1, i = min(From, e); i != e; ++i)
|
|
if (substr(i, N).equals(Str))
|
|
return i;
|
|
return npos;
|
|
}
|
|
|
|
if (From >= Length)
|
|
return npos;
|
|
|
|
// Build the bad char heuristic table, with uint8_t to reduce cache thrashing.
|
|
uint8_t BadCharSkip[256];
|
|
std::memset(BadCharSkip, N, 256);
|
|
for (unsigned i = 0; i != N-1; ++i)
|
|
BadCharSkip[(uint8_t)Str[i]] = N-1-i;
|
|
|
|
unsigned Len = Length-From, Pos = From;
|
|
while (Len >= N) {
|
|
if (substr(Pos, N).equals(Str)) // See if this is the correct substring.
|
|
return Pos;
|
|
|
|
// Otherwise skip the appropriate number of bytes.
|
|
uint8_t Skip = BadCharSkip[(uint8_t)(*this)[Pos+N-1]];
|
|
Len -= Skip;
|
|
Pos += Skip;
|
|
}
|
|
|
|
return npos;
|
|
}
|
|
|
|
/// rfind - Search for the last string \arg Str in the string.
|
|
///
|
|
/// \return - The index of the last occurrence of \arg Str, or npos if not
|
|
/// found.
|
|
size_t StringRef::rfind(StringRef Str) const {
|
|
size_t N = Str.size();
|
|
if (N > Length)
|
|
return npos;
|
|
for (size_t i = Length - N + 1, e = 0; i != e;) {
|
|
--i;
|
|
if (substr(i, N).equals(Str))
|
|
return i;
|
|
}
|
|
return npos;
|
|
}
|
|
|
|
/// find_first_of - Find the first character in the string that is in \arg
|
|
/// Chars, or npos if not found.
|
|
///
|
|
/// Note: O(size() + Chars.size())
|
|
StringRef::size_type StringRef::find_first_of(StringRef Chars,
|
|
size_t From) const {
|
|
std::bitset<1 << CHAR_BIT> CharBits;
|
|
for (size_type i = 0; i != Chars.size(); ++i)
|
|
CharBits.set((unsigned char)Chars[i]);
|
|
|
|
for (size_type i = min(From, Length), e = Length; i != e; ++i)
|
|
if (CharBits.test((unsigned char)Data[i]))
|
|
return i;
|
|
return npos;
|
|
}
|
|
|
|
/// find_first_not_of - Find the first character in the string that is not
|
|
/// \arg C or npos if not found.
|
|
StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
|
|
for (size_type i = min(From, Length), e = Length; i != e; ++i)
|
|
if (Data[i] != C)
|
|
return i;
|
|
return npos;
|
|
}
|
|
|
|
/// find_first_not_of - Find the first character in the string that is not
|
|
/// in the string \arg Chars, or npos if not found.
|
|
///
|
|
/// Note: O(size() + Chars.size())
|
|
StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
|
|
size_t From) const {
|
|
std::bitset<1 << CHAR_BIT> CharBits;
|
|
for (size_type i = 0; i != Chars.size(); ++i)
|
|
CharBits.set((unsigned char)Chars[i]);
|
|
|
|
for (size_type i = min(From, Length), e = Length; i != e; ++i)
|
|
if (!CharBits.test((unsigned char)Data[i]))
|
|
return i;
|
|
return npos;
|
|
}
|
|
|
|
/// find_last_of - Find the last character in the string that is in \arg C,
|
|
/// or npos if not found.
|
|
///
|
|
/// Note: O(size() + Chars.size())
|
|
StringRef::size_type StringRef::find_last_of(StringRef Chars,
|
|
size_t From) const {
|
|
std::bitset<1 << CHAR_BIT> CharBits;
|
|
for (size_type i = 0; i != Chars.size(); ++i)
|
|
CharBits.set((unsigned char)Chars[i]);
|
|
|
|
for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
|
|
if (CharBits.test((unsigned char)Data[i]))
|
|
return i;
|
|
return npos;
|
|
}
|
|
|
|
/// find_last_not_of - Find the last character in the string that is not
|
|
/// \arg C, or npos if not found.
|
|
StringRef::size_type StringRef::find_last_not_of(char C, size_t From) const {
|
|
for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
|
|
if (Data[i] != C)
|
|
return i;
|
|
return npos;
|
|
}
|
|
|
|
/// find_last_not_of - Find the last character in the string that is not in
|
|
/// \arg Chars, or npos if not found.
|
|
///
|
|
/// Note: O(size() + Chars.size())
|
|
StringRef::size_type StringRef::find_last_not_of(StringRef Chars,
|
|
size_t From) const {
|
|
std::bitset<1 << CHAR_BIT> CharBits;
|
|
for (size_type i = 0, e = Chars.size(); i != e; ++i)
|
|
CharBits.set((unsigned char)Chars[i]);
|
|
|
|
for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
|
|
if (!CharBits.test((unsigned char)Data[i]))
|
|
return i;
|
|
return npos;
|
|
}
|
|
|
|
void StringRef::split(SmallVectorImpl<StringRef> &A,
|
|
StringRef Separators, int MaxSplit,
|
|
bool KeepEmpty) const {
|
|
StringRef rest = *this;
|
|
|
|
// rest.data() is used to distinguish cases like "a," that splits into
|
|
// "a" + "" and "a" that splits into "a" + 0.
|
|
for (int splits = 0;
|
|
rest.data() != NULL && (MaxSplit < 0 || splits < MaxSplit);
|
|
++splits) {
|
|
std::pair<StringRef, StringRef> p = rest.split(Separators);
|
|
|
|
if (KeepEmpty || p.first.size() != 0)
|
|
A.push_back(p.first);
|
|
rest = p.second;
|
|
}
|
|
// If we have a tail left, add it.
|
|
if (rest.data() != NULL && (rest.size() != 0 || KeepEmpty))
|
|
A.push_back(rest);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helpful Algorithms
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// count - Return the number of non-overlapped occurrences of \arg Str in
|
|
/// the string.
|
|
size_t StringRef::count(StringRef Str) const {
|
|
size_t Count = 0;
|
|
size_t N = Str.size();
|
|
if (N > Length)
|
|
return 0;
|
|
for (size_t i = 0, e = Length - N + 1; i != e; ++i)
|
|
if (substr(i, N).equals(Str))
|
|
++Count;
|
|
return Count;
|
|
}
|
|
|
|
static unsigned GetAutoSenseRadix(StringRef &Str) {
|
|
if (Str.startswith("0x")) {
|
|
Str = Str.substr(2);
|
|
return 16;
|
|
}
|
|
|
|
if (Str.startswith("0b")) {
|
|
Str = Str.substr(2);
|
|
return 2;
|
|
}
|
|
|
|
if (Str.startswith("0o")) {
|
|
Str = Str.substr(2);
|
|
return 8;
|
|
}
|
|
|
|
if (Str.startswith("0"))
|
|
return 8;
|
|
|
|
return 10;
|
|
}
|
|
|
|
|
|
/// GetAsUnsignedInteger - Workhorse method that converts a integer character
|
|
/// sequence of radix up to 36 to an unsigned long long value.
|
|
bool llvm::getAsUnsignedInteger(StringRef Str, unsigned Radix,
|
|
unsigned long long &Result) {
|
|
// Autosense radix if not specified.
|
|
if (Radix == 0)
|
|
Radix = GetAutoSenseRadix(Str);
|
|
|
|
// Empty strings (after the radix autosense) are invalid.
|
|
if (Str.empty()) return true;
|
|
|
|
// Parse all the bytes of the string given this radix. Watch for overflow.
|
|
Result = 0;
|
|
while (!Str.empty()) {
|
|
unsigned CharVal;
|
|
if (Str[0] >= '0' && Str[0] <= '9')
|
|
CharVal = Str[0]-'0';
|
|
else if (Str[0] >= 'a' && Str[0] <= 'z')
|
|
CharVal = Str[0]-'a'+10;
|
|
else if (Str[0] >= 'A' && Str[0] <= 'Z')
|
|
CharVal = Str[0]-'A'+10;
|
|
else
|
|
return true;
|
|
|
|
// If the parsed value is larger than the integer radix, the string is
|
|
// invalid.
|
|
if (CharVal >= Radix)
|
|
return true;
|
|
|
|
// Add in this character.
|
|
unsigned long long PrevResult = Result;
|
|
Result = Result*Radix+CharVal;
|
|
|
|
// Check for overflow by shifting back and seeing if bits were lost.
|
|
if (Result/Radix < PrevResult)
|
|
return true;
|
|
|
|
Str = Str.substr(1);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool llvm::getAsSignedInteger(StringRef Str, unsigned Radix,
|
|
long long &Result) {
|
|
unsigned long long ULLVal;
|
|
|
|
// Handle positive strings first.
|
|
if (Str.empty() || Str.front() != '-') {
|
|
if (getAsUnsignedInteger(Str, Radix, ULLVal) ||
|
|
// Check for value so large it overflows a signed value.
|
|
(long long)ULLVal < 0)
|
|
return true;
|
|
Result = ULLVal;
|
|
return false;
|
|
}
|
|
|
|
// Get the positive part of the value.
|
|
if (getAsUnsignedInteger(Str.substr(1), Radix, ULLVal) ||
|
|
// Reject values so large they'd overflow as negative signed, but allow
|
|
// "-0". This negates the unsigned so that the negative isn't undefined
|
|
// on signed overflow.
|
|
(long long)-ULLVal > 0)
|
|
return true;
|
|
|
|
Result = -ULLVal;
|
|
return false;
|
|
}
|
|
|
|
bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
|
|
StringRef Str = *this;
|
|
|
|
// Autosense radix if not specified.
|
|
if (Radix == 0)
|
|
Radix = GetAutoSenseRadix(Str);
|
|
|
|
assert(Radix > 1 && Radix <= 36);
|
|
|
|
// Empty strings (after the radix autosense) are invalid.
|
|
if (Str.empty()) return true;
|
|
|
|
// Skip leading zeroes. This can be a significant improvement if
|
|
// it means we don't need > 64 bits.
|
|
while (!Str.empty() && Str.front() == '0')
|
|
Str = Str.substr(1);
|
|
|
|
// If it was nothing but zeroes....
|
|
if (Str.empty()) {
|
|
Result = APInt(64, 0);
|
|
return false;
|
|
}
|
|
|
|
// (Over-)estimate the required number of bits.
|
|
unsigned Log2Radix = 0;
|
|
while ((1U << Log2Radix) < Radix) Log2Radix++;
|
|
bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
|
|
|
|
unsigned BitWidth = Log2Radix * Str.size();
|
|
if (BitWidth < Result.getBitWidth())
|
|
BitWidth = Result.getBitWidth(); // don't shrink the result
|
|
else if (BitWidth > Result.getBitWidth())
|
|
Result = Result.zext(BitWidth);
|
|
|
|
APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
|
|
if (!IsPowerOf2Radix) {
|
|
// These must have the same bit-width as Result.
|
|
RadixAP = APInt(BitWidth, Radix);
|
|
CharAP = APInt(BitWidth, 0);
|
|
}
|
|
|
|
// Parse all the bytes of the string given this radix.
|
|
Result = 0;
|
|
while (!Str.empty()) {
|
|
unsigned CharVal;
|
|
if (Str[0] >= '0' && Str[0] <= '9')
|
|
CharVal = Str[0]-'0';
|
|
else if (Str[0] >= 'a' && Str[0] <= 'z')
|
|
CharVal = Str[0]-'a'+10;
|
|
else if (Str[0] >= 'A' && Str[0] <= 'Z')
|
|
CharVal = Str[0]-'A'+10;
|
|
else
|
|
return true;
|
|
|
|
// If the parsed value is larger than the integer radix, the string is
|
|
// invalid.
|
|
if (CharVal >= Radix)
|
|
return true;
|
|
|
|
// Add in this character.
|
|
if (IsPowerOf2Radix) {
|
|
Result <<= Log2Radix;
|
|
Result |= CharVal;
|
|
} else {
|
|
Result *= RadixAP;
|
|
CharAP = CharVal;
|
|
Result += CharAP;
|
|
}
|
|
|
|
Str = Str.substr(1);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
// Implementation of StringRef hashing.
|
|
hash_code llvm::hash_value(StringRef S) {
|
|
return hash_combine_range(S.begin(), S.end());
|
|
}
|