mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-07 12:30:57 +00:00
21258ed080
This patch corresponds to review: http://reviews.llvm.org/D15286 This patch was meant to land in revision 255246, but I accidentally uploaded the patch that corresponds to http://reviews.llvm.org/D15372 in that revision accidentally. Thereby, this patch is the actual Bitcasts using direct moves patch, whereas http://reviews.llvm.org/rL255246 actually corresponds to http://reviews.llvm.org/D15372. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@255649 91177308-0d34-0410-b5e6-96231b3b80d8
1786 lines
82 KiB
TableGen
1786 lines
82 KiB
TableGen
//===- PPCInstrVSX.td - The PowerPC VSX Extension --*- tablegen -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file describes the VSX extension to the PowerPC instruction set.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// *********************************** NOTE ***********************************
|
|
// ** For POWER8 Little Endian, the VSX swap optimization relies on knowing **
|
|
// ** which VMX and VSX instructions are lane-sensitive and which are not. **
|
|
// ** A lane-sensitive instruction relies, implicitly or explicitly, on **
|
|
// ** whether lanes are numbered from left to right. An instruction like **
|
|
// ** VADDFP is not lane-sensitive, because each lane of the result vector **
|
|
// ** relies only on the corresponding lane of the source vectors. However, **
|
|
// ** an instruction like VMULESB is lane-sensitive, because "even" and **
|
|
// ** "odd" lanes are different for big-endian and little-endian numbering. **
|
|
// ** **
|
|
// ** When adding new VMX and VSX instructions, please consider whether they **
|
|
// ** are lane-sensitive. If so, they must be added to a switch statement **
|
|
// ** in PPCVSXSwapRemoval::gatherVectorInstructions(). **
|
|
// ****************************************************************************
|
|
|
|
def PPCRegVSRCAsmOperand : AsmOperandClass {
|
|
let Name = "RegVSRC"; let PredicateMethod = "isVSRegNumber";
|
|
}
|
|
def vsrc : RegisterOperand<VSRC> {
|
|
let ParserMatchClass = PPCRegVSRCAsmOperand;
|
|
}
|
|
|
|
def PPCRegVSFRCAsmOperand : AsmOperandClass {
|
|
let Name = "RegVSFRC"; let PredicateMethod = "isVSRegNumber";
|
|
}
|
|
def vsfrc : RegisterOperand<VSFRC> {
|
|
let ParserMatchClass = PPCRegVSFRCAsmOperand;
|
|
}
|
|
|
|
def PPCRegVSSRCAsmOperand : AsmOperandClass {
|
|
let Name = "RegVSSRC"; let PredicateMethod = "isVSRegNumber";
|
|
}
|
|
def vssrc : RegisterOperand<VSSRC> {
|
|
let ParserMatchClass = PPCRegVSSRCAsmOperand;
|
|
}
|
|
|
|
// Little-endian-specific nodes.
|
|
def SDT_PPClxvd2x : SDTypeProfile<1, 1, [
|
|
SDTCisVT<0, v2f64>, SDTCisPtrTy<1>
|
|
]>;
|
|
def SDT_PPCstxvd2x : SDTypeProfile<0, 2, [
|
|
SDTCisVT<0, v2f64>, SDTCisPtrTy<1>
|
|
]>;
|
|
def SDT_PPCxxswapd : SDTypeProfile<1, 1, [
|
|
SDTCisSameAs<0, 1>
|
|
]>;
|
|
|
|
def PPClxvd2x : SDNode<"PPCISD::LXVD2X", SDT_PPClxvd2x,
|
|
[SDNPHasChain, SDNPMayLoad]>;
|
|
def PPCstxvd2x : SDNode<"PPCISD::STXVD2X", SDT_PPCstxvd2x,
|
|
[SDNPHasChain, SDNPMayStore]>;
|
|
def PPCxxswapd : SDNode<"PPCISD::XXSWAPD", SDT_PPCxxswapd, [SDNPHasChain]>;
|
|
def PPCmfvsr : SDNode<"PPCISD::MFVSR", SDTUnaryOp, []>;
|
|
def PPCmtvsra : SDNode<"PPCISD::MTVSRA", SDTUnaryOp, []>;
|
|
def PPCmtvsrz : SDNode<"PPCISD::MTVSRZ", SDTUnaryOp, []>;
|
|
|
|
multiclass XX3Form_Rcr<bits<6> opcode, bits<7> xo, string asmbase,
|
|
string asmstr, InstrItinClass itin, Intrinsic Int,
|
|
ValueType OutTy, ValueType InTy> {
|
|
let BaseName = asmbase in {
|
|
def NAME : XX3Form_Rc<opcode, xo, (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
!strconcat(asmbase, !strconcat(" ", asmstr)), itin,
|
|
[(set OutTy:$XT, (Int InTy:$XA, InTy:$XB))]>;
|
|
let Defs = [CR6] in
|
|
def o : XX3Form_Rc<opcode, xo, (outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
!strconcat(asmbase, !strconcat(". ", asmstr)), itin,
|
|
[(set InTy:$XT,
|
|
(InTy (PPCvcmp_o InTy:$XA, InTy:$XB, xo)))]>,
|
|
isDOT;
|
|
}
|
|
}
|
|
|
|
def HasVSX : Predicate<"PPCSubTarget->hasVSX()">;
|
|
def IsLittleEndian : Predicate<"PPCSubTarget->isLittleEndian()">;
|
|
def IsBigEndian : Predicate<"!PPCSubTarget->isLittleEndian()">;
|
|
|
|
let Predicates = [HasVSX] in {
|
|
let AddedComplexity = 400 in { // Prefer VSX patterns over non-VSX patterns.
|
|
let hasSideEffects = 0 in { // VSX instructions don't have side effects.
|
|
let Uses = [RM] in {
|
|
|
|
// Load indexed instructions
|
|
let mayLoad = 1 in {
|
|
def LXSDX : XX1Form<31, 588,
|
|
(outs vsfrc:$XT), (ins memrr:$src),
|
|
"lxsdx $XT, $src", IIC_LdStLFD,
|
|
[(set f64:$XT, (load xoaddr:$src))]>;
|
|
|
|
def LXVD2X : XX1Form<31, 844,
|
|
(outs vsrc:$XT), (ins memrr:$src),
|
|
"lxvd2x $XT, $src", IIC_LdStLFD,
|
|
[(set v2f64:$XT, (int_ppc_vsx_lxvd2x xoaddr:$src))]>;
|
|
|
|
def LXVDSX : XX1Form<31, 332,
|
|
(outs vsrc:$XT), (ins memrr:$src),
|
|
"lxvdsx $XT, $src", IIC_LdStLFD, []>;
|
|
|
|
def LXVW4X : XX1Form<31, 780,
|
|
(outs vsrc:$XT), (ins memrr:$src),
|
|
"lxvw4x $XT, $src", IIC_LdStLFD,
|
|
[(set v4i32:$XT, (int_ppc_vsx_lxvw4x xoaddr:$src))]>;
|
|
} // mayLoad
|
|
|
|
// Store indexed instructions
|
|
let mayStore = 1 in {
|
|
def STXSDX : XX1Form<31, 716,
|
|
(outs), (ins vsfrc:$XT, memrr:$dst),
|
|
"stxsdx $XT, $dst", IIC_LdStSTFD,
|
|
[(store f64:$XT, xoaddr:$dst)]>;
|
|
|
|
def STXVD2X : XX1Form<31, 972,
|
|
(outs), (ins vsrc:$XT, memrr:$dst),
|
|
"stxvd2x $XT, $dst", IIC_LdStSTFD,
|
|
[(store v2f64:$XT, xoaddr:$dst)]>;
|
|
|
|
def STXVW4X : XX1Form<31, 908,
|
|
(outs), (ins vsrc:$XT, memrr:$dst),
|
|
"stxvw4x $XT, $dst", IIC_LdStSTFD,
|
|
[(store v4i32:$XT, xoaddr:$dst)]>;
|
|
|
|
} // mayStore
|
|
|
|
// Add/Mul Instructions
|
|
let isCommutable = 1 in {
|
|
def XSADDDP : XX3Form<60, 32,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB),
|
|
"xsadddp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (fadd f64:$XA, f64:$XB))]>;
|
|
def XSMULDP : XX3Form<60, 48,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB),
|
|
"xsmuldp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (fmul f64:$XA, f64:$XB))]>;
|
|
|
|
def XVADDDP : XX3Form<60, 96,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xvadddp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set v2f64:$XT, (fadd v2f64:$XA, v2f64:$XB))]>;
|
|
|
|
def XVADDSP : XX3Form<60, 64,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xvaddsp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set v4f32:$XT, (fadd v4f32:$XA, v4f32:$XB))]>;
|
|
|
|
def XVMULDP : XX3Form<60, 112,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xvmuldp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set v2f64:$XT, (fmul v2f64:$XA, v2f64:$XB))]>;
|
|
|
|
def XVMULSP : XX3Form<60, 80,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xvmulsp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set v4f32:$XT, (fmul v4f32:$XA, v4f32:$XB))]>;
|
|
}
|
|
|
|
// Subtract Instructions
|
|
def XSSUBDP : XX3Form<60, 40,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB),
|
|
"xssubdp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (fsub f64:$XA, f64:$XB))]>;
|
|
|
|
def XVSUBDP : XX3Form<60, 104,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xvsubdp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set v2f64:$XT, (fsub v2f64:$XA, v2f64:$XB))]>;
|
|
def XVSUBSP : XX3Form<60, 72,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xvsubsp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set v4f32:$XT, (fsub v4f32:$XA, v4f32:$XB))]>;
|
|
|
|
// FMA Instructions
|
|
let BaseName = "XSMADDADP" in {
|
|
let isCommutable = 1 in
|
|
def XSMADDADP : XX3Form<60, 33,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB),
|
|
"xsmaddadp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (fma f64:$XA, f64:$XB, f64:$XTi))]>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
let IsVSXFMAAlt = 1 in
|
|
def XSMADDMDP : XX3Form<60, 41,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB),
|
|
"xsmaddmdp $XT, $XA, $XB", IIC_VecFP, []>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
}
|
|
|
|
let BaseName = "XSMSUBADP" in {
|
|
let isCommutable = 1 in
|
|
def XSMSUBADP : XX3Form<60, 49,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB),
|
|
"xsmsubadp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (fma f64:$XA, f64:$XB, (fneg f64:$XTi)))]>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
let IsVSXFMAAlt = 1 in
|
|
def XSMSUBMDP : XX3Form<60, 57,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB),
|
|
"xsmsubmdp $XT, $XA, $XB", IIC_VecFP, []>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
}
|
|
|
|
let BaseName = "XSNMADDADP" in {
|
|
let isCommutable = 1 in
|
|
def XSNMADDADP : XX3Form<60, 161,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB),
|
|
"xsnmaddadp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (fneg (fma f64:$XA, f64:$XB, f64:$XTi)))]>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
let IsVSXFMAAlt = 1 in
|
|
def XSNMADDMDP : XX3Form<60, 169,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB),
|
|
"xsnmaddmdp $XT, $XA, $XB", IIC_VecFP, []>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
}
|
|
|
|
let BaseName = "XSNMSUBADP" in {
|
|
let isCommutable = 1 in
|
|
def XSNMSUBADP : XX3Form<60, 177,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB),
|
|
"xsnmsubadp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (fneg (fma f64:$XA, f64:$XB, (fneg f64:$XTi))))]>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
let IsVSXFMAAlt = 1 in
|
|
def XSNMSUBMDP : XX3Form<60, 185,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XTi, vsfrc:$XA, vsfrc:$XB),
|
|
"xsnmsubmdp $XT, $XA, $XB", IIC_VecFP, []>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
}
|
|
|
|
let BaseName = "XVMADDADP" in {
|
|
let isCommutable = 1 in
|
|
def XVMADDADP : XX3Form<60, 97,
|
|
(outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
|
|
"xvmaddadp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set v2f64:$XT, (fma v2f64:$XA, v2f64:$XB, v2f64:$XTi))]>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
let IsVSXFMAAlt = 1 in
|
|
def XVMADDMDP : XX3Form<60, 105,
|
|
(outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
|
|
"xvmaddmdp $XT, $XA, $XB", IIC_VecFP, []>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
}
|
|
|
|
let BaseName = "XVMADDASP" in {
|
|
let isCommutable = 1 in
|
|
def XVMADDASP : XX3Form<60, 65,
|
|
(outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
|
|
"xvmaddasp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set v4f32:$XT, (fma v4f32:$XA, v4f32:$XB, v4f32:$XTi))]>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
let IsVSXFMAAlt = 1 in
|
|
def XVMADDMSP : XX3Form<60, 73,
|
|
(outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
|
|
"xvmaddmsp $XT, $XA, $XB", IIC_VecFP, []>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
}
|
|
|
|
let BaseName = "XVMSUBADP" in {
|
|
let isCommutable = 1 in
|
|
def XVMSUBADP : XX3Form<60, 113,
|
|
(outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
|
|
"xvmsubadp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set v2f64:$XT, (fma v2f64:$XA, v2f64:$XB, (fneg v2f64:$XTi)))]>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
let IsVSXFMAAlt = 1 in
|
|
def XVMSUBMDP : XX3Form<60, 121,
|
|
(outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
|
|
"xvmsubmdp $XT, $XA, $XB", IIC_VecFP, []>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
}
|
|
|
|
let BaseName = "XVMSUBASP" in {
|
|
let isCommutable = 1 in
|
|
def XVMSUBASP : XX3Form<60, 81,
|
|
(outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
|
|
"xvmsubasp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set v4f32:$XT, (fma v4f32:$XA, v4f32:$XB, (fneg v4f32:$XTi)))]>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
let IsVSXFMAAlt = 1 in
|
|
def XVMSUBMSP : XX3Form<60, 89,
|
|
(outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
|
|
"xvmsubmsp $XT, $XA, $XB", IIC_VecFP, []>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
}
|
|
|
|
let BaseName = "XVNMADDADP" in {
|
|
let isCommutable = 1 in
|
|
def XVNMADDADP : XX3Form<60, 225,
|
|
(outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
|
|
"xvnmaddadp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set v2f64:$XT, (fneg (fma v2f64:$XA, v2f64:$XB, v2f64:$XTi)))]>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
let IsVSXFMAAlt = 1 in
|
|
def XVNMADDMDP : XX3Form<60, 233,
|
|
(outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
|
|
"xvnmaddmdp $XT, $XA, $XB", IIC_VecFP, []>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
}
|
|
|
|
let BaseName = "XVNMADDASP" in {
|
|
let isCommutable = 1 in
|
|
def XVNMADDASP : XX3Form<60, 193,
|
|
(outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
|
|
"xvnmaddasp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set v4f32:$XT, (fneg (fma v4f32:$XA, v4f32:$XB, v4f32:$XTi)))]>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
let IsVSXFMAAlt = 1 in
|
|
def XVNMADDMSP : XX3Form<60, 201,
|
|
(outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
|
|
"xvnmaddmsp $XT, $XA, $XB", IIC_VecFP, []>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
}
|
|
|
|
let BaseName = "XVNMSUBADP" in {
|
|
let isCommutable = 1 in
|
|
def XVNMSUBADP : XX3Form<60, 241,
|
|
(outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
|
|
"xvnmsubadp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set v2f64:$XT, (fneg (fma v2f64:$XA, v2f64:$XB, (fneg v2f64:$XTi))))]>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
let IsVSXFMAAlt = 1 in
|
|
def XVNMSUBMDP : XX3Form<60, 249,
|
|
(outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
|
|
"xvnmsubmdp $XT, $XA, $XB", IIC_VecFP, []>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
}
|
|
|
|
let BaseName = "XVNMSUBASP" in {
|
|
let isCommutable = 1 in
|
|
def XVNMSUBASP : XX3Form<60, 209,
|
|
(outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
|
|
"xvnmsubasp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set v4f32:$XT, (fneg (fma v4f32:$XA, v4f32:$XB, (fneg v4f32:$XTi))))]>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
let IsVSXFMAAlt = 1 in
|
|
def XVNMSUBMSP : XX3Form<60, 217,
|
|
(outs vsrc:$XT), (ins vsrc:$XTi, vsrc:$XA, vsrc:$XB),
|
|
"xvnmsubmsp $XT, $XA, $XB", IIC_VecFP, []>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
}
|
|
|
|
// Division Instructions
|
|
def XSDIVDP : XX3Form<60, 56,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB),
|
|
"xsdivdp $XT, $XA, $XB", IIC_FPDivD,
|
|
[(set f64:$XT, (fdiv f64:$XA, f64:$XB))]>;
|
|
def XSSQRTDP : XX2Form<60, 75,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XB),
|
|
"xssqrtdp $XT, $XB", IIC_FPSqrtD,
|
|
[(set f64:$XT, (fsqrt f64:$XB))]>;
|
|
|
|
def XSREDP : XX2Form<60, 90,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XB),
|
|
"xsredp $XT, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (PPCfre f64:$XB))]>;
|
|
def XSRSQRTEDP : XX2Form<60, 74,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XB),
|
|
"xsrsqrtedp $XT, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (PPCfrsqrte f64:$XB))]>;
|
|
|
|
def XSTDIVDP : XX3Form_1<60, 61,
|
|
(outs crrc:$crD), (ins vsfrc:$XA, vsfrc:$XB),
|
|
"xstdivdp $crD, $XA, $XB", IIC_FPCompare, []>;
|
|
def XSTSQRTDP : XX2Form_1<60, 106,
|
|
(outs crrc:$crD), (ins vsfrc:$XB),
|
|
"xstsqrtdp $crD, $XB", IIC_FPCompare, []>;
|
|
|
|
def XVDIVDP : XX3Form<60, 120,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xvdivdp $XT, $XA, $XB", IIC_FPDivD,
|
|
[(set v2f64:$XT, (fdiv v2f64:$XA, v2f64:$XB))]>;
|
|
def XVDIVSP : XX3Form<60, 88,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xvdivsp $XT, $XA, $XB", IIC_FPDivS,
|
|
[(set v4f32:$XT, (fdiv v4f32:$XA, v4f32:$XB))]>;
|
|
|
|
def XVSQRTDP : XX2Form<60, 203,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvsqrtdp $XT, $XB", IIC_FPSqrtD,
|
|
[(set v2f64:$XT, (fsqrt v2f64:$XB))]>;
|
|
def XVSQRTSP : XX2Form<60, 139,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvsqrtsp $XT, $XB", IIC_FPSqrtS,
|
|
[(set v4f32:$XT, (fsqrt v4f32:$XB))]>;
|
|
|
|
def XVTDIVDP : XX3Form_1<60, 125,
|
|
(outs crrc:$crD), (ins vsrc:$XA, vsrc:$XB),
|
|
"xvtdivdp $crD, $XA, $XB", IIC_FPCompare, []>;
|
|
def XVTDIVSP : XX3Form_1<60, 93,
|
|
(outs crrc:$crD), (ins vsrc:$XA, vsrc:$XB),
|
|
"xvtdivsp $crD, $XA, $XB", IIC_FPCompare, []>;
|
|
|
|
def XVTSQRTDP : XX2Form_1<60, 234,
|
|
(outs crrc:$crD), (ins vsrc:$XB),
|
|
"xvtsqrtdp $crD, $XB", IIC_FPCompare, []>;
|
|
def XVTSQRTSP : XX2Form_1<60, 170,
|
|
(outs crrc:$crD), (ins vsrc:$XB),
|
|
"xvtsqrtsp $crD, $XB", IIC_FPCompare, []>;
|
|
|
|
def XVREDP : XX2Form<60, 218,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvredp $XT, $XB", IIC_VecFP,
|
|
[(set v2f64:$XT, (PPCfre v2f64:$XB))]>;
|
|
def XVRESP : XX2Form<60, 154,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvresp $XT, $XB", IIC_VecFP,
|
|
[(set v4f32:$XT, (PPCfre v4f32:$XB))]>;
|
|
|
|
def XVRSQRTEDP : XX2Form<60, 202,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvrsqrtedp $XT, $XB", IIC_VecFP,
|
|
[(set v2f64:$XT, (PPCfrsqrte v2f64:$XB))]>;
|
|
def XVRSQRTESP : XX2Form<60, 138,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvrsqrtesp $XT, $XB", IIC_VecFP,
|
|
[(set v4f32:$XT, (PPCfrsqrte v4f32:$XB))]>;
|
|
|
|
// Compare Instructions
|
|
def XSCMPODP : XX3Form_1<60, 43,
|
|
(outs crrc:$crD), (ins vsfrc:$XA, vsfrc:$XB),
|
|
"xscmpodp $crD, $XA, $XB", IIC_FPCompare, []>;
|
|
def XSCMPUDP : XX3Form_1<60, 35,
|
|
(outs crrc:$crD), (ins vsfrc:$XA, vsfrc:$XB),
|
|
"xscmpudp $crD, $XA, $XB", IIC_FPCompare, []>;
|
|
|
|
defm XVCMPEQDP : XX3Form_Rcr<60, 99,
|
|
"xvcmpeqdp", "$XT, $XA, $XB", IIC_VecFPCompare,
|
|
int_ppc_vsx_xvcmpeqdp, v2i64, v2f64>;
|
|
defm XVCMPEQSP : XX3Form_Rcr<60, 67,
|
|
"xvcmpeqsp", "$XT, $XA, $XB", IIC_VecFPCompare,
|
|
int_ppc_vsx_xvcmpeqsp, v4i32, v4f32>;
|
|
defm XVCMPGEDP : XX3Form_Rcr<60, 115,
|
|
"xvcmpgedp", "$XT, $XA, $XB", IIC_VecFPCompare,
|
|
int_ppc_vsx_xvcmpgedp, v2i64, v2f64>;
|
|
defm XVCMPGESP : XX3Form_Rcr<60, 83,
|
|
"xvcmpgesp", "$XT, $XA, $XB", IIC_VecFPCompare,
|
|
int_ppc_vsx_xvcmpgesp, v4i32, v4f32>;
|
|
defm XVCMPGTDP : XX3Form_Rcr<60, 107,
|
|
"xvcmpgtdp", "$XT, $XA, $XB", IIC_VecFPCompare,
|
|
int_ppc_vsx_xvcmpgtdp, v2i64, v2f64>;
|
|
defm XVCMPGTSP : XX3Form_Rcr<60, 75,
|
|
"xvcmpgtsp", "$XT, $XA, $XB", IIC_VecFPCompare,
|
|
int_ppc_vsx_xvcmpgtsp, v4i32, v4f32>;
|
|
|
|
// Move Instructions
|
|
def XSABSDP : XX2Form<60, 345,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XB),
|
|
"xsabsdp $XT, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (fabs f64:$XB))]>;
|
|
def XSNABSDP : XX2Form<60, 361,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XB),
|
|
"xsnabsdp $XT, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (fneg (fabs f64:$XB)))]>;
|
|
def XSNEGDP : XX2Form<60, 377,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XB),
|
|
"xsnegdp $XT, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (fneg f64:$XB))]>;
|
|
def XSCPSGNDP : XX3Form<60, 176,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB),
|
|
"xscpsgndp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (fcopysign f64:$XB, f64:$XA))]>;
|
|
|
|
def XVABSDP : XX2Form<60, 473,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvabsdp $XT, $XB", IIC_VecFP,
|
|
[(set v2f64:$XT, (fabs v2f64:$XB))]>;
|
|
|
|
def XVABSSP : XX2Form<60, 409,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvabssp $XT, $XB", IIC_VecFP,
|
|
[(set v4f32:$XT, (fabs v4f32:$XB))]>;
|
|
|
|
def XVCPSGNDP : XX3Form<60, 240,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xvcpsgndp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set v2f64:$XT, (fcopysign v2f64:$XB, v2f64:$XA))]>;
|
|
def XVCPSGNSP : XX3Form<60, 208,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xvcpsgnsp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set v4f32:$XT, (fcopysign v4f32:$XB, v4f32:$XA))]>;
|
|
|
|
def XVNABSDP : XX2Form<60, 489,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvnabsdp $XT, $XB", IIC_VecFP,
|
|
[(set v2f64:$XT, (fneg (fabs v2f64:$XB)))]>;
|
|
def XVNABSSP : XX2Form<60, 425,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvnabssp $XT, $XB", IIC_VecFP,
|
|
[(set v4f32:$XT, (fneg (fabs v4f32:$XB)))]>;
|
|
|
|
def XVNEGDP : XX2Form<60, 505,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvnegdp $XT, $XB", IIC_VecFP,
|
|
[(set v2f64:$XT, (fneg v2f64:$XB))]>;
|
|
def XVNEGSP : XX2Form<60, 441,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvnegsp $XT, $XB", IIC_VecFP,
|
|
[(set v4f32:$XT, (fneg v4f32:$XB))]>;
|
|
|
|
// Conversion Instructions
|
|
def XSCVDPSP : XX2Form<60, 265,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XB),
|
|
"xscvdpsp $XT, $XB", IIC_VecFP, []>;
|
|
def XSCVDPSXDS : XX2Form<60, 344,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XB),
|
|
"xscvdpsxds $XT, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (PPCfctidz f64:$XB))]>;
|
|
def XSCVDPSXWS : XX2Form<60, 88,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XB),
|
|
"xscvdpsxws $XT, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (PPCfctiwz f64:$XB))]>;
|
|
def XSCVDPUXDS : XX2Form<60, 328,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XB),
|
|
"xscvdpuxds $XT, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (PPCfctiduz f64:$XB))]>;
|
|
def XSCVDPUXWS : XX2Form<60, 72,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XB),
|
|
"xscvdpuxws $XT, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (PPCfctiwuz f64:$XB))]>;
|
|
def XSCVSPDP : XX2Form<60, 329,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XB),
|
|
"xscvspdp $XT, $XB", IIC_VecFP, []>;
|
|
def XSCVSXDDP : XX2Form<60, 376,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XB),
|
|
"xscvsxddp $XT, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (PPCfcfid f64:$XB))]>;
|
|
def XSCVUXDDP : XX2Form<60, 360,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XB),
|
|
"xscvuxddp $XT, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (PPCfcfidu f64:$XB))]>;
|
|
|
|
def XVCVDPSP : XX2Form<60, 393,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvcvdpsp $XT, $XB", IIC_VecFP, []>;
|
|
def XVCVDPSXDS : XX2Form<60, 472,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvcvdpsxds $XT, $XB", IIC_VecFP,
|
|
[(set v2i64:$XT, (fp_to_sint v2f64:$XB))]>;
|
|
def XVCVDPSXWS : XX2Form<60, 216,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvcvdpsxws $XT, $XB", IIC_VecFP, []>;
|
|
def XVCVDPUXDS : XX2Form<60, 456,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvcvdpuxds $XT, $XB", IIC_VecFP,
|
|
[(set v2i64:$XT, (fp_to_uint v2f64:$XB))]>;
|
|
def XVCVDPUXWS : XX2Form<60, 200,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvcvdpuxws $XT, $XB", IIC_VecFP, []>;
|
|
|
|
def XVCVSPDP : XX2Form<60, 457,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvcvspdp $XT, $XB", IIC_VecFP, []>;
|
|
def XVCVSPSXDS : XX2Form<60, 408,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvcvspsxds $XT, $XB", IIC_VecFP, []>;
|
|
def XVCVSPSXWS : XX2Form<60, 152,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvcvspsxws $XT, $XB", IIC_VecFP, []>;
|
|
def XVCVSPUXDS : XX2Form<60, 392,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvcvspuxds $XT, $XB", IIC_VecFP, []>;
|
|
def XVCVSPUXWS : XX2Form<60, 136,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvcvspuxws $XT, $XB", IIC_VecFP, []>;
|
|
def XVCVSXDDP : XX2Form<60, 504,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvcvsxddp $XT, $XB", IIC_VecFP,
|
|
[(set v2f64:$XT, (sint_to_fp v2i64:$XB))]>;
|
|
def XVCVSXDSP : XX2Form<60, 440,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvcvsxdsp $XT, $XB", IIC_VecFP, []>;
|
|
def XVCVSXWDP : XX2Form<60, 248,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvcvsxwdp $XT, $XB", IIC_VecFP, []>;
|
|
def XVCVSXWSP : XX2Form<60, 184,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvcvsxwsp $XT, $XB", IIC_VecFP, []>;
|
|
def XVCVUXDDP : XX2Form<60, 488,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvcvuxddp $XT, $XB", IIC_VecFP,
|
|
[(set v2f64:$XT, (uint_to_fp v2i64:$XB))]>;
|
|
def XVCVUXDSP : XX2Form<60, 424,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvcvuxdsp $XT, $XB", IIC_VecFP, []>;
|
|
def XVCVUXWDP : XX2Form<60, 232,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvcvuxwdp $XT, $XB", IIC_VecFP, []>;
|
|
def XVCVUXWSP : XX2Form<60, 168,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvcvuxwsp $XT, $XB", IIC_VecFP, []>;
|
|
|
|
// Rounding Instructions
|
|
def XSRDPI : XX2Form<60, 73,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XB),
|
|
"xsrdpi $XT, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (frnd f64:$XB))]>;
|
|
def XSRDPIC : XX2Form<60, 107,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XB),
|
|
"xsrdpic $XT, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (fnearbyint f64:$XB))]>;
|
|
def XSRDPIM : XX2Form<60, 121,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XB),
|
|
"xsrdpim $XT, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (ffloor f64:$XB))]>;
|
|
def XSRDPIP : XX2Form<60, 105,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XB),
|
|
"xsrdpip $XT, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (fceil f64:$XB))]>;
|
|
def XSRDPIZ : XX2Form<60, 89,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XB),
|
|
"xsrdpiz $XT, $XB", IIC_VecFP,
|
|
[(set f64:$XT, (ftrunc f64:$XB))]>;
|
|
|
|
def XVRDPI : XX2Form<60, 201,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvrdpi $XT, $XB", IIC_VecFP,
|
|
[(set v2f64:$XT, (frnd v2f64:$XB))]>;
|
|
def XVRDPIC : XX2Form<60, 235,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvrdpic $XT, $XB", IIC_VecFP,
|
|
[(set v2f64:$XT, (fnearbyint v2f64:$XB))]>;
|
|
def XVRDPIM : XX2Form<60, 249,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvrdpim $XT, $XB", IIC_VecFP,
|
|
[(set v2f64:$XT, (ffloor v2f64:$XB))]>;
|
|
def XVRDPIP : XX2Form<60, 233,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvrdpip $XT, $XB", IIC_VecFP,
|
|
[(set v2f64:$XT, (fceil v2f64:$XB))]>;
|
|
def XVRDPIZ : XX2Form<60, 217,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvrdpiz $XT, $XB", IIC_VecFP,
|
|
[(set v2f64:$XT, (ftrunc v2f64:$XB))]>;
|
|
|
|
def XVRSPI : XX2Form<60, 137,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvrspi $XT, $XB", IIC_VecFP,
|
|
[(set v4f32:$XT, (frnd v4f32:$XB))]>;
|
|
def XVRSPIC : XX2Form<60, 171,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvrspic $XT, $XB", IIC_VecFP,
|
|
[(set v4f32:$XT, (fnearbyint v4f32:$XB))]>;
|
|
def XVRSPIM : XX2Form<60, 185,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvrspim $XT, $XB", IIC_VecFP,
|
|
[(set v4f32:$XT, (ffloor v4f32:$XB))]>;
|
|
def XVRSPIP : XX2Form<60, 169,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvrspip $XT, $XB", IIC_VecFP,
|
|
[(set v4f32:$XT, (fceil v4f32:$XB))]>;
|
|
def XVRSPIZ : XX2Form<60, 153,
|
|
(outs vsrc:$XT), (ins vsrc:$XB),
|
|
"xvrspiz $XT, $XB", IIC_VecFP,
|
|
[(set v4f32:$XT, (ftrunc v4f32:$XB))]>;
|
|
|
|
// Max/Min Instructions
|
|
let isCommutable = 1 in {
|
|
def XSMAXDP : XX3Form<60, 160,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB),
|
|
"xsmaxdp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set vsfrc:$XT,
|
|
(int_ppc_vsx_xsmaxdp vsfrc:$XA, vsfrc:$XB))]>;
|
|
def XSMINDP : XX3Form<60, 168,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB),
|
|
"xsmindp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set vsfrc:$XT,
|
|
(int_ppc_vsx_xsmindp vsfrc:$XA, vsfrc:$XB))]>;
|
|
|
|
def XVMAXDP : XX3Form<60, 224,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xvmaxdp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set vsrc:$XT,
|
|
(int_ppc_vsx_xvmaxdp vsrc:$XA, vsrc:$XB))]>;
|
|
def XVMINDP : XX3Form<60, 232,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xvmindp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set vsrc:$XT,
|
|
(int_ppc_vsx_xvmindp vsrc:$XA, vsrc:$XB))]>;
|
|
|
|
def XVMAXSP : XX3Form<60, 192,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xvmaxsp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set vsrc:$XT,
|
|
(int_ppc_vsx_xvmaxsp vsrc:$XA, vsrc:$XB))]>;
|
|
def XVMINSP : XX3Form<60, 200,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xvminsp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set vsrc:$XT,
|
|
(int_ppc_vsx_xvminsp vsrc:$XA, vsrc:$XB))]>;
|
|
} // isCommutable
|
|
} // Uses = [RM]
|
|
|
|
// Logical Instructions
|
|
let isCommutable = 1 in
|
|
def XXLAND : XX3Form<60, 130,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xxland $XT, $XA, $XB", IIC_VecGeneral,
|
|
[(set v4i32:$XT, (and v4i32:$XA, v4i32:$XB))]>;
|
|
def XXLANDC : XX3Form<60, 138,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xxlandc $XT, $XA, $XB", IIC_VecGeneral,
|
|
[(set v4i32:$XT, (and v4i32:$XA,
|
|
(vnot_ppc v4i32:$XB)))]>;
|
|
let isCommutable = 1 in {
|
|
def XXLNOR : XX3Form<60, 162,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xxlnor $XT, $XA, $XB", IIC_VecGeneral,
|
|
[(set v4i32:$XT, (vnot_ppc (or v4i32:$XA,
|
|
v4i32:$XB)))]>;
|
|
def XXLOR : XX3Form<60, 146,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xxlor $XT, $XA, $XB", IIC_VecGeneral,
|
|
[(set v4i32:$XT, (or v4i32:$XA, v4i32:$XB))]>;
|
|
let isCodeGenOnly = 1 in
|
|
def XXLORf: XX3Form<60, 146,
|
|
(outs vsfrc:$XT), (ins vsfrc:$XA, vsfrc:$XB),
|
|
"xxlor $XT, $XA, $XB", IIC_VecGeneral, []>;
|
|
def XXLXOR : XX3Form<60, 154,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xxlxor $XT, $XA, $XB", IIC_VecGeneral,
|
|
[(set v4i32:$XT, (xor v4i32:$XA, v4i32:$XB))]>;
|
|
} // isCommutable
|
|
|
|
// Permutation Instructions
|
|
def XXMRGHW : XX3Form<60, 18,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xxmrghw $XT, $XA, $XB", IIC_VecPerm, []>;
|
|
def XXMRGLW : XX3Form<60, 50,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xxmrglw $XT, $XA, $XB", IIC_VecPerm, []>;
|
|
|
|
def XXPERMDI : XX3Form_2<60, 10,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB, u2imm:$DM),
|
|
"xxpermdi $XT, $XA, $XB, $DM", IIC_VecPerm, []>;
|
|
def XXSEL : XX4Form<60, 3,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB, vsrc:$XC),
|
|
"xxsel $XT, $XA, $XB, $XC", IIC_VecPerm, []>;
|
|
|
|
def XXSLDWI : XX3Form_2<60, 2,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB, u2imm:$SHW),
|
|
"xxsldwi $XT, $XA, $XB, $SHW", IIC_VecPerm, []>;
|
|
def XXSPLTW : XX2Form_2<60, 164,
|
|
(outs vsrc:$XT), (ins vsrc:$XB, u2imm:$UIM),
|
|
"xxspltw $XT, $XB, $UIM", IIC_VecPerm, []>;
|
|
} // hasSideEffects
|
|
|
|
// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after
|
|
// instruction selection into a branch sequence.
|
|
let usesCustomInserter = 1, // Expanded after instruction selection.
|
|
PPC970_Single = 1 in {
|
|
|
|
def SELECT_CC_VSRC: Pseudo<(outs vsrc:$dst),
|
|
(ins crrc:$cond, vsrc:$T, vsrc:$F, i32imm:$BROPC),
|
|
"#SELECT_CC_VSRC",
|
|
[]>;
|
|
def SELECT_VSRC: Pseudo<(outs vsrc:$dst),
|
|
(ins crbitrc:$cond, vsrc:$T, vsrc:$F),
|
|
"#SELECT_VSRC",
|
|
[(set v2f64:$dst,
|
|
(select i1:$cond, v2f64:$T, v2f64:$F))]>;
|
|
def SELECT_CC_VSFRC: Pseudo<(outs f8rc:$dst),
|
|
(ins crrc:$cond, f8rc:$T, f8rc:$F,
|
|
i32imm:$BROPC), "#SELECT_CC_VSFRC",
|
|
[]>;
|
|
def SELECT_VSFRC: Pseudo<(outs f8rc:$dst),
|
|
(ins crbitrc:$cond, f8rc:$T, f8rc:$F),
|
|
"#SELECT_VSFRC",
|
|
[(set f64:$dst,
|
|
(select i1:$cond, f64:$T, f64:$F))]>;
|
|
def SELECT_CC_VSSRC: Pseudo<(outs f4rc:$dst),
|
|
(ins crrc:$cond, f4rc:$T, f4rc:$F,
|
|
i32imm:$BROPC), "#SELECT_CC_VSSRC",
|
|
[]>;
|
|
def SELECT_VSSRC: Pseudo<(outs f4rc:$dst),
|
|
(ins crbitrc:$cond, f4rc:$T, f4rc:$F),
|
|
"#SELECT_VSSRC",
|
|
[(set f32:$dst,
|
|
(select i1:$cond, f32:$T, f32:$F))]>;
|
|
} // usesCustomInserter
|
|
} // AddedComplexity
|
|
|
|
def : InstAlias<"xvmovdp $XT, $XB",
|
|
(XVCPSGNDP vsrc:$XT, vsrc:$XB, vsrc:$XB)>;
|
|
def : InstAlias<"xvmovsp $XT, $XB",
|
|
(XVCPSGNSP vsrc:$XT, vsrc:$XB, vsrc:$XB)>;
|
|
|
|
def : InstAlias<"xxspltd $XT, $XB, 0",
|
|
(XXPERMDI vsrc:$XT, vsrc:$XB, vsrc:$XB, 0)>;
|
|
def : InstAlias<"xxspltd $XT, $XB, 1",
|
|
(XXPERMDI vsrc:$XT, vsrc:$XB, vsrc:$XB, 3)>;
|
|
def : InstAlias<"xxmrghd $XT, $XA, $XB",
|
|
(XXPERMDI vsrc:$XT, vsrc:$XA, vsrc:$XB, 0)>;
|
|
def : InstAlias<"xxmrgld $XT, $XA, $XB",
|
|
(XXPERMDI vsrc:$XT, vsrc:$XA, vsrc:$XB, 3)>;
|
|
def : InstAlias<"xxswapd $XT, $XB",
|
|
(XXPERMDI vsrc:$XT, vsrc:$XB, vsrc:$XB, 2)>;
|
|
|
|
let AddedComplexity = 400 in { // Prefer VSX patterns over non-VSX patterns.
|
|
|
|
let Predicates = [IsBigEndian] in {
|
|
def : Pat<(v2f64 (scalar_to_vector f64:$A)),
|
|
(v2f64 (SUBREG_TO_REG (i64 1), $A, sub_64))>;
|
|
|
|
def : Pat<(f64 (extractelt v2f64:$S, 0)),
|
|
(f64 (EXTRACT_SUBREG $S, sub_64))>;
|
|
def : Pat<(f64 (extractelt v2f64:$S, 1)),
|
|
(f64 (EXTRACT_SUBREG (XXPERMDI $S, $S, 2), sub_64))>;
|
|
}
|
|
|
|
let Predicates = [IsLittleEndian] in {
|
|
def : Pat<(v2f64 (scalar_to_vector f64:$A)),
|
|
(v2f64 (XXPERMDI (SUBREG_TO_REG (i64 1), $A, sub_64),
|
|
(SUBREG_TO_REG (i64 1), $A, sub_64), 0))>;
|
|
|
|
def : Pat<(f64 (extractelt v2f64:$S, 0)),
|
|
(f64 (EXTRACT_SUBREG (XXPERMDI $S, $S, 2), sub_64))>;
|
|
def : Pat<(f64 (extractelt v2f64:$S, 1)),
|
|
(f64 (EXTRACT_SUBREG $S, sub_64))>;
|
|
}
|
|
|
|
// Additional fnmsub patterns: -a*c + b == -(a*c - b)
|
|
def : Pat<(fma (fneg f64:$A), f64:$C, f64:$B),
|
|
(XSNMSUBADP $B, $C, $A)>;
|
|
def : Pat<(fma f64:$A, (fneg f64:$C), f64:$B),
|
|
(XSNMSUBADP $B, $C, $A)>;
|
|
|
|
def : Pat<(fma (fneg v2f64:$A), v2f64:$C, v2f64:$B),
|
|
(XVNMSUBADP $B, $C, $A)>;
|
|
def : Pat<(fma v2f64:$A, (fneg v2f64:$C), v2f64:$B),
|
|
(XVNMSUBADP $B, $C, $A)>;
|
|
|
|
def : Pat<(fma (fneg v4f32:$A), v4f32:$C, v4f32:$B),
|
|
(XVNMSUBASP $B, $C, $A)>;
|
|
def : Pat<(fma v4f32:$A, (fneg v4f32:$C), v4f32:$B),
|
|
(XVNMSUBASP $B, $C, $A)>;
|
|
|
|
def : Pat<(v2f64 (bitconvert v4f32:$A)),
|
|
(COPY_TO_REGCLASS $A, VSRC)>;
|
|
def : Pat<(v2f64 (bitconvert v4i32:$A)),
|
|
(COPY_TO_REGCLASS $A, VSRC)>;
|
|
def : Pat<(v2f64 (bitconvert v8i16:$A)),
|
|
(COPY_TO_REGCLASS $A, VSRC)>;
|
|
def : Pat<(v2f64 (bitconvert v16i8:$A)),
|
|
(COPY_TO_REGCLASS $A, VSRC)>;
|
|
|
|
def : Pat<(v4f32 (bitconvert v2f64:$A)),
|
|
(COPY_TO_REGCLASS $A, VRRC)>;
|
|
def : Pat<(v4i32 (bitconvert v2f64:$A)),
|
|
(COPY_TO_REGCLASS $A, VRRC)>;
|
|
def : Pat<(v8i16 (bitconvert v2f64:$A)),
|
|
(COPY_TO_REGCLASS $A, VRRC)>;
|
|
def : Pat<(v16i8 (bitconvert v2f64:$A)),
|
|
(COPY_TO_REGCLASS $A, VRRC)>;
|
|
|
|
def : Pat<(v2i64 (bitconvert v4f32:$A)),
|
|
(COPY_TO_REGCLASS $A, VSRC)>;
|
|
def : Pat<(v2i64 (bitconvert v4i32:$A)),
|
|
(COPY_TO_REGCLASS $A, VSRC)>;
|
|
def : Pat<(v2i64 (bitconvert v8i16:$A)),
|
|
(COPY_TO_REGCLASS $A, VSRC)>;
|
|
def : Pat<(v2i64 (bitconvert v16i8:$A)),
|
|
(COPY_TO_REGCLASS $A, VSRC)>;
|
|
|
|
def : Pat<(v4f32 (bitconvert v2i64:$A)),
|
|
(COPY_TO_REGCLASS $A, VRRC)>;
|
|
def : Pat<(v4i32 (bitconvert v2i64:$A)),
|
|
(COPY_TO_REGCLASS $A, VRRC)>;
|
|
def : Pat<(v8i16 (bitconvert v2i64:$A)),
|
|
(COPY_TO_REGCLASS $A, VRRC)>;
|
|
def : Pat<(v16i8 (bitconvert v2i64:$A)),
|
|
(COPY_TO_REGCLASS $A, VRRC)>;
|
|
|
|
def : Pat<(v2f64 (bitconvert v2i64:$A)),
|
|
(COPY_TO_REGCLASS $A, VRRC)>;
|
|
def : Pat<(v2i64 (bitconvert v2f64:$A)),
|
|
(COPY_TO_REGCLASS $A, VRRC)>;
|
|
|
|
def : Pat<(v2f64 (bitconvert v1i128:$A)),
|
|
(COPY_TO_REGCLASS $A, VRRC)>;
|
|
def : Pat<(v1i128 (bitconvert v2f64:$A)),
|
|
(COPY_TO_REGCLASS $A, VRRC)>;
|
|
|
|
// sign extension patterns
|
|
// To extend "in place" from v2i32 to v2i64, we have input data like:
|
|
// | undef | i32 | undef | i32 |
|
|
// but xvcvsxwdp expects the input in big-Endian format:
|
|
// | i32 | undef | i32 | undef |
|
|
// so we need to shift everything to the left by one i32 (word) before
|
|
// the conversion.
|
|
def : Pat<(sext_inreg v2i64:$C, v2i32),
|
|
(XVCVDPSXDS (XVCVSXWDP (XXSLDWI $C, $C, 1)))>;
|
|
def : Pat<(v2f64 (sint_to_fp (sext_inreg v2i64:$C, v2i32))),
|
|
(XVCVSXWDP (XXSLDWI $C, $C, 1))>;
|
|
|
|
// Loads.
|
|
def : Pat<(v2f64 (load xoaddr:$src)), (LXVD2X xoaddr:$src)>;
|
|
def : Pat<(v2i64 (load xoaddr:$src)), (LXVD2X xoaddr:$src)>;
|
|
def : Pat<(v4i32 (load xoaddr:$src)), (LXVW4X xoaddr:$src)>;
|
|
def : Pat<(v2f64 (PPClxvd2x xoaddr:$src)), (LXVD2X xoaddr:$src)>;
|
|
|
|
// Stores.
|
|
def : Pat<(int_ppc_vsx_stxvd2x v2f64:$rS, xoaddr:$dst),
|
|
(STXVD2X $rS, xoaddr:$dst)>;
|
|
def : Pat<(store v2i64:$rS, xoaddr:$dst), (STXVD2X $rS, xoaddr:$dst)>;
|
|
def : Pat<(int_ppc_vsx_stxvw4x v4i32:$rS, xoaddr:$dst),
|
|
(STXVW4X $rS, xoaddr:$dst)>;
|
|
def : Pat<(PPCstxvd2x v2f64:$rS, xoaddr:$dst), (STXVD2X $rS, xoaddr:$dst)>;
|
|
|
|
// Permutes.
|
|
def : Pat<(v2f64 (PPCxxswapd v2f64:$src)), (XXPERMDI $src, $src, 2)>;
|
|
def : Pat<(v2i64 (PPCxxswapd v2i64:$src)), (XXPERMDI $src, $src, 2)>;
|
|
def : Pat<(v4f32 (PPCxxswapd v4f32:$src)), (XXPERMDI $src, $src, 2)>;
|
|
def : Pat<(v4i32 (PPCxxswapd v4i32:$src)), (XXPERMDI $src, $src, 2)>;
|
|
|
|
// Selects.
|
|
def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETLT)),
|
|
(SELECT_VSRC (CRANDC $lhs, $rhs), $tval, $fval)>;
|
|
def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETULT)),
|
|
(SELECT_VSRC (CRANDC $rhs, $lhs), $tval, $fval)>;
|
|
def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETLE)),
|
|
(SELECT_VSRC (CRORC $lhs, $rhs), $tval, $fval)>;
|
|
def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETULE)),
|
|
(SELECT_VSRC (CRORC $rhs, $lhs), $tval, $fval)>;
|
|
def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETEQ)),
|
|
(SELECT_VSRC (CREQV $lhs, $rhs), $tval, $fval)>;
|
|
def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETGE)),
|
|
(SELECT_VSRC (CRORC $rhs, $lhs), $tval, $fval)>;
|
|
def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETUGE)),
|
|
(SELECT_VSRC (CRORC $lhs, $rhs), $tval, $fval)>;
|
|
def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETGT)),
|
|
(SELECT_VSRC (CRANDC $rhs, $lhs), $tval, $fval)>;
|
|
def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETUGT)),
|
|
(SELECT_VSRC (CRANDC $lhs, $rhs), $tval, $fval)>;
|
|
def : Pat<(v2f64 (selectcc i1:$lhs, i1:$rhs, v2f64:$tval, v2f64:$fval, SETNE)),
|
|
(SELECT_VSRC (CRXOR $lhs, $rhs), $tval, $fval)>;
|
|
|
|
def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETLT)),
|
|
(SELECT_VSFRC (CRANDC $lhs, $rhs), $tval, $fval)>;
|
|
def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETULT)),
|
|
(SELECT_VSFRC (CRANDC $rhs, $lhs), $tval, $fval)>;
|
|
def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETLE)),
|
|
(SELECT_VSFRC (CRORC $lhs, $rhs), $tval, $fval)>;
|
|
def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETULE)),
|
|
(SELECT_VSFRC (CRORC $rhs, $lhs), $tval, $fval)>;
|
|
def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETEQ)),
|
|
(SELECT_VSFRC (CREQV $lhs, $rhs), $tval, $fval)>;
|
|
def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETGE)),
|
|
(SELECT_VSFRC (CRORC $rhs, $lhs), $tval, $fval)>;
|
|
def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETUGE)),
|
|
(SELECT_VSFRC (CRORC $lhs, $rhs), $tval, $fval)>;
|
|
def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETGT)),
|
|
(SELECT_VSFRC (CRANDC $rhs, $lhs), $tval, $fval)>;
|
|
def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETUGT)),
|
|
(SELECT_VSFRC (CRANDC $lhs, $rhs), $tval, $fval)>;
|
|
def : Pat<(f64 (selectcc i1:$lhs, i1:$rhs, f64:$tval, f64:$fval, SETNE)),
|
|
(SELECT_VSFRC (CRXOR $lhs, $rhs), $tval, $fval)>;
|
|
|
|
// Divides.
|
|
def : Pat<(int_ppc_vsx_xvdivsp v4f32:$A, v4f32:$B),
|
|
(XVDIVSP $A, $B)>;
|
|
def : Pat<(int_ppc_vsx_xvdivdp v2f64:$A, v2f64:$B),
|
|
(XVDIVDP $A, $B)>;
|
|
|
|
// Reciprocal estimate
|
|
def : Pat<(int_ppc_vsx_xvresp v4f32:$A),
|
|
(XVRESP $A)>;
|
|
def : Pat<(int_ppc_vsx_xvredp v2f64:$A),
|
|
(XVREDP $A)>;
|
|
|
|
// Recip. square root estimate
|
|
def : Pat<(int_ppc_vsx_xvrsqrtesp v4f32:$A),
|
|
(XVRSQRTESP $A)>;
|
|
def : Pat<(int_ppc_vsx_xvrsqrtedp v2f64:$A),
|
|
(XVRSQRTEDP $A)>;
|
|
|
|
} // AddedComplexity
|
|
} // HasVSX
|
|
|
|
// The following VSX instructions were introduced in Power ISA 2.07
|
|
/* FIXME: if the operands are v2i64, these patterns will not match.
|
|
we should define new patterns or otherwise match the same patterns
|
|
when the elements are larger than i32.
|
|
*/
|
|
def HasP8Vector : Predicate<"PPCSubTarget->hasP8Vector()">;
|
|
def HasDirectMove : Predicate<"PPCSubTarget->hasDirectMove()">;
|
|
let Predicates = [HasP8Vector] in {
|
|
let AddedComplexity = 400 in { // Prefer VSX patterns over non-VSX patterns.
|
|
let isCommutable = 1 in {
|
|
def XXLEQV : XX3Form<60, 186,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xxleqv $XT, $XA, $XB", IIC_VecGeneral,
|
|
[(set v4i32:$XT, (vnot_ppc (xor v4i32:$XA, v4i32:$XB)))]>;
|
|
def XXLNAND : XX3Form<60, 178,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xxlnand $XT, $XA, $XB", IIC_VecGeneral,
|
|
[(set v4i32:$XT, (vnot_ppc (and v4i32:$XA,
|
|
v4i32:$XB)))]>;
|
|
} // isCommutable
|
|
|
|
def : Pat<(int_ppc_vsx_xxleqv v4i32:$A, v4i32:$B),
|
|
(XXLEQV $A, $B)>;
|
|
|
|
def XXLORC : XX3Form<60, 170,
|
|
(outs vsrc:$XT), (ins vsrc:$XA, vsrc:$XB),
|
|
"xxlorc $XT, $XA, $XB", IIC_VecGeneral,
|
|
[(set v4i32:$XT, (or v4i32:$XA, (vnot_ppc v4i32:$XB)))]>;
|
|
|
|
// VSX scalar loads introduced in ISA 2.07
|
|
let mayLoad = 1 in {
|
|
def LXSSPX : XX1Form<31, 524, (outs vssrc:$XT), (ins memrr:$src),
|
|
"lxsspx $XT, $src", IIC_LdStLFD,
|
|
[(set f32:$XT, (load xoaddr:$src))]>;
|
|
def LXSIWAX : XX1Form<31, 76, (outs vsfrc:$XT), (ins memrr:$src),
|
|
"lxsiwax $XT, $src", IIC_LdStLFD,
|
|
[(set f64:$XT, (PPClfiwax xoaddr:$src))]>;
|
|
def LXSIWZX : XX1Form<31, 12, (outs vsfrc:$XT), (ins memrr:$src),
|
|
"lxsiwzx $XT, $src", IIC_LdStLFD,
|
|
[(set f64:$XT, (PPClfiwzx xoaddr:$src))]>;
|
|
} // mayLoad
|
|
|
|
// VSX scalar stores introduced in ISA 2.07
|
|
let mayStore = 1 in {
|
|
def STXSSPX : XX1Form<31, 652, (outs), (ins vssrc:$XT, memrr:$dst),
|
|
"stxsspx $XT, $dst", IIC_LdStSTFD,
|
|
[(store f32:$XT, xoaddr:$dst)]>;
|
|
def STXSIWX : XX1Form<31, 140, (outs), (ins vsfrc:$XT, memrr:$dst),
|
|
"stxsiwx $XT, $dst", IIC_LdStSTFD,
|
|
[(PPCstfiwx f64:$XT, xoaddr:$dst)]>;
|
|
} // mayStore
|
|
|
|
def : Pat<(f64 (extloadf32 xoaddr:$src)),
|
|
(COPY_TO_REGCLASS (LXSSPX xoaddr:$src), VSFRC)>;
|
|
def : Pat<(f64 (fextend f32:$src)),
|
|
(COPY_TO_REGCLASS $src, VSFRC)>;
|
|
|
|
def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETLT)),
|
|
(SELECT_VSSRC (CRANDC $lhs, $rhs), $tval, $fval)>;
|
|
def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETULT)),
|
|
(SELECT_VSSRC (CRANDC $rhs, $lhs), $tval, $fval)>;
|
|
def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETLE)),
|
|
(SELECT_VSSRC (CRORC $lhs, $rhs), $tval, $fval)>;
|
|
def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETULE)),
|
|
(SELECT_VSSRC (CRORC $rhs, $lhs), $tval, $fval)>;
|
|
def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETEQ)),
|
|
(SELECT_VSSRC (CREQV $lhs, $rhs), $tval, $fval)>;
|
|
def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETGE)),
|
|
(SELECT_VSSRC (CRORC $rhs, $lhs), $tval, $fval)>;
|
|
def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETUGE)),
|
|
(SELECT_VSSRC (CRORC $lhs, $rhs), $tval, $fval)>;
|
|
def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETGT)),
|
|
(SELECT_VSSRC (CRANDC $rhs, $lhs), $tval, $fval)>;
|
|
def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETUGT)),
|
|
(SELECT_VSSRC (CRANDC $lhs, $rhs), $tval, $fval)>;
|
|
def : Pat<(f32 (selectcc i1:$lhs, i1:$rhs, f32:$tval, f32:$fval, SETNE)),
|
|
(SELECT_VSSRC (CRXOR $lhs, $rhs), $tval, $fval)>;
|
|
|
|
// VSX Elementary Scalar FP arithmetic (SP)
|
|
let isCommutable = 1 in {
|
|
def XSADDSP : XX3Form<60, 0,
|
|
(outs vssrc:$XT), (ins vssrc:$XA, vssrc:$XB),
|
|
"xsaddsp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set f32:$XT, (fadd f32:$XA, f32:$XB))]>;
|
|
def XSMULSP : XX3Form<60, 16,
|
|
(outs vssrc:$XT), (ins vssrc:$XA, vssrc:$XB),
|
|
"xsmulsp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set f32:$XT, (fmul f32:$XA, f32:$XB))]>;
|
|
} // isCommutable
|
|
|
|
def XSDIVSP : XX3Form<60, 24,
|
|
(outs vssrc:$XT), (ins vssrc:$XA, vssrc:$XB),
|
|
"xsdivsp $XT, $XA, $XB", IIC_FPDivS,
|
|
[(set f32:$XT, (fdiv f32:$XA, f32:$XB))]>;
|
|
def XSRESP : XX2Form<60, 26,
|
|
(outs vssrc:$XT), (ins vssrc:$XB),
|
|
"xsresp $XT, $XB", IIC_VecFP,
|
|
[(set f32:$XT, (PPCfre f32:$XB))]>;
|
|
def XSSQRTSP : XX2Form<60, 11,
|
|
(outs vssrc:$XT), (ins vssrc:$XB),
|
|
"xssqrtsp $XT, $XB", IIC_FPSqrtS,
|
|
[(set f32:$XT, (fsqrt f32:$XB))]>;
|
|
def XSRSQRTESP : XX2Form<60, 10,
|
|
(outs vssrc:$XT), (ins vssrc:$XB),
|
|
"xsrsqrtesp $XT, $XB", IIC_VecFP,
|
|
[(set f32:$XT, (PPCfrsqrte f32:$XB))]>;
|
|
def XSSUBSP : XX3Form<60, 8,
|
|
(outs vssrc:$XT), (ins vssrc:$XA, vssrc:$XB),
|
|
"xssubsp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set f32:$XT, (fsub f32:$XA, f32:$XB))]>;
|
|
|
|
// FMA Instructions
|
|
let BaseName = "XSMADDASP" in {
|
|
let isCommutable = 1 in
|
|
def XSMADDASP : XX3Form<60, 1,
|
|
(outs vssrc:$XT),
|
|
(ins vssrc:$XTi, vssrc:$XA, vssrc:$XB),
|
|
"xsmaddasp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set f32:$XT, (fma f32:$XA, f32:$XB, f32:$XTi))]>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
let IsVSXFMAAlt = 1 in
|
|
def XSMADDMSP : XX3Form<60, 9,
|
|
(outs vssrc:$XT),
|
|
(ins vssrc:$XTi, vssrc:$XA, vssrc:$XB),
|
|
"xsmaddmsp $XT, $XA, $XB", IIC_VecFP, []>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
}
|
|
|
|
let BaseName = "XSMSUBASP" in {
|
|
let isCommutable = 1 in
|
|
def XSMSUBASP : XX3Form<60, 17,
|
|
(outs vssrc:$XT),
|
|
(ins vssrc:$XTi, vssrc:$XA, vssrc:$XB),
|
|
"xsmsubasp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set f32:$XT, (fma f32:$XA, f32:$XB,
|
|
(fneg f32:$XTi)))]>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
let IsVSXFMAAlt = 1 in
|
|
def XSMSUBMSP : XX3Form<60, 25,
|
|
(outs vssrc:$XT),
|
|
(ins vssrc:$XTi, vssrc:$XA, vssrc:$XB),
|
|
"xsmsubmsp $XT, $XA, $XB", IIC_VecFP, []>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
}
|
|
|
|
let BaseName = "XSNMADDASP" in {
|
|
let isCommutable = 1 in
|
|
def XSNMADDASP : XX3Form<60, 129,
|
|
(outs vssrc:$XT),
|
|
(ins vssrc:$XTi, vssrc:$XA, vssrc:$XB),
|
|
"xsnmaddasp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set f32:$XT, (fneg (fma f32:$XA, f32:$XB,
|
|
f32:$XTi)))]>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
let IsVSXFMAAlt = 1 in
|
|
def XSNMADDMSP : XX3Form<60, 137,
|
|
(outs vssrc:$XT),
|
|
(ins vssrc:$XTi, vssrc:$XA, vssrc:$XB),
|
|
"xsnmaddmsp $XT, $XA, $XB", IIC_VecFP, []>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
}
|
|
|
|
let BaseName = "XSNMSUBASP" in {
|
|
let isCommutable = 1 in
|
|
def XSNMSUBASP : XX3Form<60, 145,
|
|
(outs vssrc:$XT),
|
|
(ins vssrc:$XTi, vssrc:$XA, vssrc:$XB),
|
|
"xsnmsubasp $XT, $XA, $XB", IIC_VecFP,
|
|
[(set f32:$XT, (fneg (fma f32:$XA, f32:$XB,
|
|
(fneg f32:$XTi))))]>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
let IsVSXFMAAlt = 1 in
|
|
def XSNMSUBMSP : XX3Form<60, 153,
|
|
(outs vssrc:$XT),
|
|
(ins vssrc:$XTi, vssrc:$XA, vssrc:$XB),
|
|
"xsnmsubmsp $XT, $XA, $XB", IIC_VecFP, []>,
|
|
RegConstraint<"$XTi = $XT">, NoEncode<"$XTi">,
|
|
AltVSXFMARel;
|
|
}
|
|
|
|
// Single Precision Conversions (FP <-> INT)
|
|
def XSCVSXDSP : XX2Form<60, 312,
|
|
(outs vssrc:$XT), (ins vsfrc:$XB),
|
|
"xscvsxdsp $XT, $XB", IIC_VecFP,
|
|
[(set f32:$XT, (PPCfcfids f64:$XB))]>;
|
|
def XSCVUXDSP : XX2Form<60, 296,
|
|
(outs vssrc:$XT), (ins vsfrc:$XB),
|
|
"xscvuxdsp $XT, $XB", IIC_VecFP,
|
|
[(set f32:$XT, (PPCfcfidus f64:$XB))]>;
|
|
|
|
// Conversions between vector and scalar single precision
|
|
def XSCVDPSPN : XX2Form<60, 267, (outs vsrc:$XT), (ins vssrc:$XB),
|
|
"xscvdpspn $XT, $XB", IIC_VecFP, []>;
|
|
def XSCVSPDPN : XX2Form<60, 331, (outs vssrc:$XT), (ins vsrc:$XB),
|
|
"xscvspdpn $XT, $XB", IIC_VecFP, []>;
|
|
|
|
} // AddedComplexity = 400
|
|
} // HasP8Vector
|
|
|
|
let Predicates = [HasDirectMove, HasVSX] in {
|
|
// VSX direct move instructions
|
|
def MFVSRD : XX1_RS6_RD5_XO<31, 51, (outs g8rc:$rA), (ins vsfrc:$XT),
|
|
"mfvsrd $rA, $XT", IIC_VecGeneral,
|
|
[(set i64:$rA, (PPCmfvsr f64:$XT))]>,
|
|
Requires<[In64BitMode]>;
|
|
def MFVSRWZ : XX1_RS6_RD5_XO<31, 115, (outs gprc:$rA), (ins vsfrc:$XT),
|
|
"mfvsrwz $rA, $XT", IIC_VecGeneral,
|
|
[(set i32:$rA, (PPCmfvsr f64:$XT))]>;
|
|
def MTVSRD : XX1_RS6_RD5_XO<31, 179, (outs vsfrc:$XT), (ins g8rc:$rA),
|
|
"mtvsrd $XT, $rA", IIC_VecGeneral,
|
|
[(set f64:$XT, (PPCmtvsra i64:$rA))]>,
|
|
Requires<[In64BitMode]>;
|
|
def MTVSRWA : XX1_RS6_RD5_XO<31, 211, (outs vsfrc:$XT), (ins gprc:$rA),
|
|
"mtvsrwa $XT, $rA", IIC_VecGeneral,
|
|
[(set f64:$XT, (PPCmtvsra i32:$rA))]>;
|
|
def MTVSRWZ : XX1_RS6_RD5_XO<31, 243, (outs vsfrc:$XT), (ins gprc:$rA),
|
|
"mtvsrwz $XT, $rA", IIC_VecGeneral,
|
|
[(set f64:$XT, (PPCmtvsrz i32:$rA))]>;
|
|
} // HasDirectMove, HasVSX
|
|
|
|
/* Direct moves of various widths from GPR's into VSR's. Each move lines
|
|
the value up into element 0 (both BE and LE). Namely, entities smaller than
|
|
a doubleword are shifted left and moved for BE. For LE, they're moved, then
|
|
swapped to go into the least significant element of the VSR.
|
|
*/
|
|
def MovesToVSR {
|
|
dag BE_BYTE_0 =
|
|
(MTVSRD
|
|
(RLDICR
|
|
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $A, sub_32), 56, 7));
|
|
dag BE_HALF_0 =
|
|
(MTVSRD
|
|
(RLDICR
|
|
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $A, sub_32), 48, 15));
|
|
dag BE_WORD_0 =
|
|
(MTVSRD
|
|
(RLDICR
|
|
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), $A, sub_32), 32, 31));
|
|
dag BE_DWORD_0 = (MTVSRD $A);
|
|
|
|
dag LE_MTVSRW = (MTVSRD (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $A, sub_32));
|
|
dag LE_WORD_1 = (v2i64 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
|
|
LE_MTVSRW, sub_64));
|
|
dag LE_WORD_0 = (XXPERMDI LE_WORD_1, LE_WORD_1, 2);
|
|
dag LE_DWORD_1 = (v2i64 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
|
|
BE_DWORD_0, sub_64));
|
|
dag LE_DWORD_0 = (XXPERMDI LE_DWORD_1, LE_DWORD_1, 2);
|
|
}
|
|
|
|
/* Patterns for extracting elements out of vectors. Integer elements are
|
|
extracted using direct move operations. Patterns for extracting elements
|
|
whose indices are not available at compile time are also provided with
|
|
various _VARIABLE_ patterns.
|
|
The numbering for the DAG's is for LE, but when used on BE, the correct
|
|
LE element can just be used (i.e. LE_BYTE_2 == BE_BYTE_13).
|
|
*/
|
|
def VectorExtractions {
|
|
// Doubleword extraction
|
|
dag LE_DWORD_0 =
|
|
(MFVSRD
|
|
(EXTRACT_SUBREG
|
|
(XXPERMDI (COPY_TO_REGCLASS $S, VSRC),
|
|
(COPY_TO_REGCLASS $S, VSRC), 2), sub_64));
|
|
dag LE_DWORD_1 = (MFVSRD
|
|
(EXTRACT_SUBREG
|
|
(v2i64 (COPY_TO_REGCLASS $S, VSRC)), sub_64));
|
|
|
|
// Word extraction
|
|
dag LE_WORD_0 = (MFVSRWZ (EXTRACT_SUBREG (XXSLDWI $S, $S, 2), sub_64));
|
|
dag LE_WORD_1 = (MFVSRWZ (EXTRACT_SUBREG (XXSLDWI $S, $S, 1), sub_64));
|
|
dag LE_WORD_2 = (MFVSRWZ (EXTRACT_SUBREG
|
|
(v2i64 (COPY_TO_REGCLASS $S, VSRC)), sub_64));
|
|
dag LE_WORD_3 = (MFVSRWZ (EXTRACT_SUBREG (XXSLDWI $S, $S, 3), sub_64));
|
|
|
|
// Halfword extraction
|
|
dag LE_HALF_0 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 0, 48), sub_32));
|
|
dag LE_HALF_1 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 48, 48), sub_32));
|
|
dag LE_HALF_2 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 32, 48), sub_32));
|
|
dag LE_HALF_3 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 16, 48), sub_32));
|
|
dag LE_HALF_4 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 0, 48), sub_32));
|
|
dag LE_HALF_5 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 48, 48), sub_32));
|
|
dag LE_HALF_6 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 32, 48), sub_32));
|
|
dag LE_HALF_7 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 16, 48), sub_32));
|
|
|
|
// Byte extraction
|
|
dag LE_BYTE_0 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 0, 56), sub_32));
|
|
dag LE_BYTE_1 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 56, 56), sub_32));
|
|
dag LE_BYTE_2 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 48, 56), sub_32));
|
|
dag LE_BYTE_3 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 40, 56), sub_32));
|
|
dag LE_BYTE_4 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 32, 56), sub_32));
|
|
dag LE_BYTE_5 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 24, 56), sub_32));
|
|
dag LE_BYTE_6 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 16, 56), sub_32));
|
|
dag LE_BYTE_7 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_0, 8, 56), sub_32));
|
|
dag LE_BYTE_8 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 0, 56), sub_32));
|
|
dag LE_BYTE_9 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 56, 56), sub_32));
|
|
dag LE_BYTE_10 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 48, 56), sub_32));
|
|
dag LE_BYTE_11 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 40, 56), sub_32));
|
|
dag LE_BYTE_12 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 32, 56), sub_32));
|
|
dag LE_BYTE_13 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 24, 56), sub_32));
|
|
dag LE_BYTE_14 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 16, 56), sub_32));
|
|
dag LE_BYTE_15 = (i32 (EXTRACT_SUBREG (RLDICL LE_DWORD_1, 8, 56), sub_32));
|
|
|
|
/* Variable element number (BE and LE patterns must be specified separately)
|
|
This is a rather involved process.
|
|
|
|
Conceptually, this is how the move is accomplished:
|
|
1. Identify which doubleword contains the element
|
|
2. Shift in the VMX register so that the correct doubleword is correctly
|
|
lined up for the MFVSRD
|
|
3. Perform the move so that the element (along with some extra stuff)
|
|
is in the GPR
|
|
4. Right shift within the GPR so that the element is right-justified
|
|
|
|
Of course, the index is an element number which has a different meaning
|
|
on LE/BE so the patterns have to be specified separately.
|
|
|
|
Note: The final result will be the element right-justified with high
|
|
order bits being arbitrarily defined (namely, whatever was in the
|
|
vector register to the left of the value originally).
|
|
*/
|
|
|
|
/* LE variable byte
|
|
Number 1. above:
|
|
- For elements 0-7, we shift left by 8 bytes since they're on the right
|
|
- For elements 8-15, we need not shift (shift left by zero bytes)
|
|
This is accomplished by inverting the bits of the index and AND-ing
|
|
with 0x8 (i.e. clearing all bits of the index and inverting bit 60).
|
|
*/
|
|
dag LE_VBYTE_PERM_VEC = (LVSL ZERO8, (ANDC8 (LI8 8), $Idx));
|
|
|
|
// Number 2. above:
|
|
// - Now that we set up the shift amount, we shift in the VMX register
|
|
dag LE_VBYTE_PERMUTE = (VPERM $S, $S, LE_VBYTE_PERM_VEC);
|
|
|
|
// Number 3. above:
|
|
// - The doubleword containing our element is moved to a GPR
|
|
dag LE_MV_VBYTE = (MFVSRD
|
|
(EXTRACT_SUBREG
|
|
(v2i64 (COPY_TO_REGCLASS LE_VBYTE_PERMUTE, VSRC)),
|
|
sub_64));
|
|
|
|
/* Number 4. above:
|
|
- Truncate the element number to the range 0-7 (8-15 are symmetrical
|
|
and out of range values are truncated accordingly)
|
|
- Multiply by 8 as we need to shift right by the number of bits, not bytes
|
|
- Shift right in the GPR by the calculated value
|
|
*/
|
|
dag LE_VBYTE_SHIFT = (EXTRACT_SUBREG (RLDICR (AND8 (LI8 7), $Idx), 3, 60),
|
|
sub_32);
|
|
dag LE_VARIABLE_BYTE = (EXTRACT_SUBREG (SRD LE_MV_VBYTE, LE_VBYTE_SHIFT),
|
|
sub_32);
|
|
|
|
/* LE variable halfword
|
|
Number 1. above:
|
|
- For elements 0-3, we shift left by 8 since they're on the right
|
|
- For elements 4-7, we need not shift (shift left by zero bytes)
|
|
Similarly to the byte pattern, we invert the bits of the index, but we
|
|
AND with 0x4 (i.e. clear all bits of the index and invert bit 61).
|
|
Of course, the shift is still by 8 bytes, so we must multiply by 2.
|
|
*/
|
|
dag LE_VHALF_PERM_VEC = (LVSL ZERO8, (RLDICR (ANDC8 (LI8 4), $Idx), 1, 62));
|
|
|
|
// Number 2. above:
|
|
// - Now that we set up the shift amount, we shift in the VMX register
|
|
dag LE_VHALF_PERMUTE = (VPERM $S, $S, LE_VHALF_PERM_VEC);
|
|
|
|
// Number 3. above:
|
|
// - The doubleword containing our element is moved to a GPR
|
|
dag LE_MV_VHALF = (MFVSRD
|
|
(EXTRACT_SUBREG
|
|
(v2i64 (COPY_TO_REGCLASS LE_VHALF_PERMUTE, VSRC)),
|
|
sub_64));
|
|
|
|
/* Number 4. above:
|
|
- Truncate the element number to the range 0-3 (4-7 are symmetrical
|
|
and out of range values are truncated accordingly)
|
|
- Multiply by 16 as we need to shift right by the number of bits
|
|
- Shift right in the GPR by the calculated value
|
|
*/
|
|
dag LE_VHALF_SHIFT = (EXTRACT_SUBREG (RLDICR (AND8 (LI8 3), $Idx), 4, 59),
|
|
sub_32);
|
|
dag LE_VARIABLE_HALF = (EXTRACT_SUBREG (SRD LE_MV_VHALF, LE_VHALF_SHIFT),
|
|
sub_32);
|
|
|
|
/* LE variable word
|
|
Number 1. above:
|
|
- For elements 0-1, we shift left by 8 since they're on the right
|
|
- For elements 2-3, we need not shift
|
|
*/
|
|
dag LE_VWORD_PERM_VEC = (LVSL ZERO8, (RLDICR (ANDC8 (LI8 2), $Idx), 2, 61));
|
|
|
|
// Number 2. above:
|
|
// - Now that we set up the shift amount, we shift in the VMX register
|
|
dag LE_VWORD_PERMUTE = (VPERM $S, $S, LE_VWORD_PERM_VEC);
|
|
|
|
// Number 3. above:
|
|
// - The doubleword containing our element is moved to a GPR
|
|
dag LE_MV_VWORD = (MFVSRD
|
|
(EXTRACT_SUBREG
|
|
(v2i64 (COPY_TO_REGCLASS LE_VWORD_PERMUTE, VSRC)),
|
|
sub_64));
|
|
|
|
/* Number 4. above:
|
|
- Truncate the element number to the range 0-1 (2-3 are symmetrical
|
|
and out of range values are truncated accordingly)
|
|
- Multiply by 32 as we need to shift right by the number of bits
|
|
- Shift right in the GPR by the calculated value
|
|
*/
|
|
dag LE_VWORD_SHIFT = (EXTRACT_SUBREG (RLDICR (AND8 (LI8 1), $Idx), 5, 58),
|
|
sub_32);
|
|
dag LE_VARIABLE_WORD = (EXTRACT_SUBREG (SRD LE_MV_VWORD, LE_VWORD_SHIFT),
|
|
sub_32);
|
|
|
|
/* LE variable doubleword
|
|
Number 1. above:
|
|
- For element 0, we shift left by 8 since it's on the right
|
|
- For element 1, we need not shift
|
|
*/
|
|
dag LE_VDWORD_PERM_VEC = (LVSL ZERO8, (RLDICR (ANDC8 (LI8 1), $Idx), 3, 60));
|
|
|
|
// Number 2. above:
|
|
// - Now that we set up the shift amount, we shift in the VMX register
|
|
dag LE_VDWORD_PERMUTE = (VPERM $S, $S, LE_VDWORD_PERM_VEC);
|
|
|
|
// Number 3. above:
|
|
// - The doubleword containing our element is moved to a GPR
|
|
// - Number 4. is not needed for the doubleword as the value is 64-bits
|
|
dag LE_VARIABLE_DWORD =
|
|
(MFVSRD (EXTRACT_SUBREG
|
|
(v2i64 (COPY_TO_REGCLASS LE_VDWORD_PERMUTE, VSRC)),
|
|
sub_64));
|
|
|
|
/* LE variable float
|
|
- Shift the vector to line up the desired element to BE Word 0
|
|
- Convert 32-bit float to a 64-bit single precision float
|
|
*/
|
|
dag LE_VFLOAT_PERM_VEC = (LVSL ZERO8, (RLDICR (XOR8 (LI8 3), $Idx), 2, 61));
|
|
dag LE_VFLOAT_PERMUTE = (VPERM $S, $S, LE_VFLOAT_PERM_VEC);
|
|
dag LE_VARIABLE_FLOAT = (XSCVSPDPN LE_VFLOAT_PERMUTE);
|
|
|
|
/* LE variable double
|
|
Same as the LE doubleword except there is no move.
|
|
*/
|
|
dag LE_VDOUBLE_PERMUTE = (VPERM (COPY_TO_REGCLASS $S, VRRC),
|
|
(COPY_TO_REGCLASS $S, VRRC),
|
|
LE_VDWORD_PERM_VEC);
|
|
dag LE_VARIABLE_DOUBLE = (COPY_TO_REGCLASS LE_VDOUBLE_PERMUTE, VSRC);
|
|
|
|
/* BE variable byte
|
|
The algorithm here is the same as the LE variable byte except:
|
|
- The shift in the VMX register is by 0/8 for opposite element numbers so
|
|
we simply AND the element number with 0x8
|
|
- The order of elements after the move to GPR is reversed, so we invert
|
|
the bits of the index prior to truncating to the range 0-7
|
|
*/
|
|
dag BE_VBYTE_PERM_VEC = (LVSL ZERO8, (ANDIo8 $Idx, 8));
|
|
dag BE_VBYTE_PERMUTE = (VPERM $S, $S, BE_VBYTE_PERM_VEC);
|
|
dag BE_MV_VBYTE = (MFVSRD
|
|
(EXTRACT_SUBREG
|
|
(v2i64 (COPY_TO_REGCLASS BE_VBYTE_PERMUTE, VSRC)),
|
|
sub_64));
|
|
dag BE_VBYTE_SHIFT = (EXTRACT_SUBREG (RLDICR (ANDC8 (LI8 7), $Idx), 3, 60),
|
|
sub_32);
|
|
dag BE_VARIABLE_BYTE = (EXTRACT_SUBREG (SRD BE_MV_VBYTE, BE_VBYTE_SHIFT),
|
|
sub_32);
|
|
|
|
/* BE variable halfword
|
|
The algorithm here is the same as the LE variable halfword except:
|
|
- The shift in the VMX register is by 0/8 for opposite element numbers so
|
|
we simply AND the element number with 0x4 and multiply by 2
|
|
- The order of elements after the move to GPR is reversed, so we invert
|
|
the bits of the index prior to truncating to the range 0-3
|
|
*/
|
|
dag BE_VHALF_PERM_VEC = (LVSL ZERO8, (RLDICR (ANDIo8 $Idx, 4), 1, 62));
|
|
dag BE_VHALF_PERMUTE = (VPERM $S, $S, BE_VHALF_PERM_VEC);
|
|
dag BE_MV_VHALF = (MFVSRD
|
|
(EXTRACT_SUBREG
|
|
(v2i64 (COPY_TO_REGCLASS BE_VHALF_PERMUTE, VSRC)),
|
|
sub_64));
|
|
dag BE_VHALF_SHIFT = (EXTRACT_SUBREG (RLDICR (ANDC8 (LI8 3), $Idx), 4, 59),
|
|
sub_32);
|
|
dag BE_VARIABLE_HALF = (EXTRACT_SUBREG (SRD BE_MV_VHALF, BE_VHALF_SHIFT),
|
|
sub_32);
|
|
|
|
/* BE variable word
|
|
The algorithm is the same as the LE variable word except:
|
|
- The shift in the VMX register happens for opposite element numbers
|
|
- The order of elements after the move to GPR is reversed, so we invert
|
|
the bits of the index prior to truncating to the range 0-1
|
|
*/
|
|
dag BE_VWORD_PERM_VEC = (LVSL ZERO8, (RLDICR (ANDIo8 $Idx, 2), 2, 61));
|
|
dag BE_VWORD_PERMUTE = (VPERM $S, $S, BE_VWORD_PERM_VEC);
|
|
dag BE_MV_VWORD = (MFVSRD
|
|
(EXTRACT_SUBREG
|
|
(v2i64 (COPY_TO_REGCLASS BE_VWORD_PERMUTE, VSRC)),
|
|
sub_64));
|
|
dag BE_VWORD_SHIFT = (EXTRACT_SUBREG (RLDICR (ANDC8 (LI8 1), $Idx), 5, 58),
|
|
sub_32);
|
|
dag BE_VARIABLE_WORD = (EXTRACT_SUBREG (SRD BE_MV_VWORD, BE_VWORD_SHIFT),
|
|
sub_32);
|
|
|
|
/* BE variable doubleword
|
|
Same as the LE doubleword except we shift in the VMX register for opposite
|
|
element indices.
|
|
*/
|
|
dag BE_VDWORD_PERM_VEC = (LVSL ZERO8, (RLDICR (ANDIo8 $Idx, 1), 3, 60));
|
|
dag BE_VDWORD_PERMUTE = (VPERM $S, $S, BE_VDWORD_PERM_VEC);
|
|
dag BE_VARIABLE_DWORD =
|
|
(MFVSRD (EXTRACT_SUBREG
|
|
(v2i64 (COPY_TO_REGCLASS BE_VDWORD_PERMUTE, VSRC)),
|
|
sub_64));
|
|
|
|
/* BE variable float
|
|
- Shift the vector to line up the desired element to BE Word 0
|
|
- Convert 32-bit float to a 64-bit single precision float
|
|
*/
|
|
dag BE_VFLOAT_PERM_VEC = (LVSL ZERO8, (RLDICR $Idx, 2, 61));
|
|
dag BE_VFLOAT_PERMUTE = (VPERM $S, $S, BE_VFLOAT_PERM_VEC);
|
|
dag BE_VARIABLE_FLOAT = (XSCVSPDPN BE_VFLOAT_PERMUTE);
|
|
|
|
/* BE variable double
|
|
Same as the BE doubleword except there is no move.
|
|
*/
|
|
dag BE_VDOUBLE_PERMUTE = (VPERM (COPY_TO_REGCLASS $S, VRRC),
|
|
(COPY_TO_REGCLASS $S, VRRC),
|
|
BE_VDWORD_PERM_VEC);
|
|
dag BE_VARIABLE_DOUBLE = (COPY_TO_REGCLASS BE_VDOUBLE_PERMUTE, VSRC);
|
|
}
|
|
|
|
// v4f32 scalar <-> vector conversions (BE)
|
|
let Predicates = [IsBigEndian, HasP8Vector] in {
|
|
def : Pat<(v4f32 (scalar_to_vector f32:$A)),
|
|
(v4f32 (XSCVDPSPN $A))>;
|
|
def : Pat<(f32 (vector_extract v4f32:$S, 0)),
|
|
(f32 (XSCVSPDPN $S))>;
|
|
def : Pat<(f32 (vector_extract v4f32:$S, 1)),
|
|
(f32 (XSCVSPDPN (XXSLDWI $S, $S, 1)))>;
|
|
def : Pat<(f32 (vector_extract v4f32:$S, 2)),
|
|
(f32 (XSCVSPDPN (XXSLDWI $S, $S, 2)))>;
|
|
def : Pat<(f32 (vector_extract v4f32:$S, 3)),
|
|
(f32 (XSCVSPDPN (XXSLDWI $S, $S, 3)))>;
|
|
def : Pat<(f32 (vector_extract v4f32:$S, i64:$Idx)),
|
|
(f32 VectorExtractions.BE_VARIABLE_FLOAT)>;
|
|
} // IsBigEndian, HasP8Vector
|
|
|
|
// Variable index vector_extract for v2f64 does not require P8Vector
|
|
let Predicates = [IsBigEndian, HasVSX] in
|
|
def : Pat<(f64 (vector_extract v2f64:$S, i64:$Idx)),
|
|
(f64 VectorExtractions.BE_VARIABLE_DOUBLE)>;
|
|
|
|
let Predicates = [IsBigEndian, HasDirectMove] in {
|
|
// v16i8 scalar <-> vector conversions (BE)
|
|
def : Pat<(v16i8 (scalar_to_vector i32:$A)),
|
|
(v16i8 (SUBREG_TO_REG (i64 1), MovesToVSR.BE_BYTE_0, sub_64))>;
|
|
def : Pat<(v8i16 (scalar_to_vector i32:$A)),
|
|
(v8i16 (SUBREG_TO_REG (i64 1), MovesToVSR.BE_HALF_0, sub_64))>;
|
|
def : Pat<(v4i32 (scalar_to_vector i32:$A)),
|
|
(v4i32 (SUBREG_TO_REG (i64 1), MovesToVSR.BE_WORD_0, sub_64))>;
|
|
def : Pat<(v2i64 (scalar_to_vector i64:$A)),
|
|
(v2i64 (SUBREG_TO_REG (i64 1), MovesToVSR.BE_DWORD_0, sub_64))>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 0)),
|
|
(i32 VectorExtractions.LE_BYTE_15)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 1)),
|
|
(i32 VectorExtractions.LE_BYTE_14)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 2)),
|
|
(i32 VectorExtractions.LE_BYTE_13)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 3)),
|
|
(i32 VectorExtractions.LE_BYTE_12)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 4)),
|
|
(i32 VectorExtractions.LE_BYTE_11)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 5)),
|
|
(i32 VectorExtractions.LE_BYTE_10)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 6)),
|
|
(i32 VectorExtractions.LE_BYTE_9)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 7)),
|
|
(i32 VectorExtractions.LE_BYTE_8)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 8)),
|
|
(i32 VectorExtractions.LE_BYTE_7)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 9)),
|
|
(i32 VectorExtractions.LE_BYTE_6)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 10)),
|
|
(i32 VectorExtractions.LE_BYTE_5)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 11)),
|
|
(i32 VectorExtractions.LE_BYTE_4)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 12)),
|
|
(i32 VectorExtractions.LE_BYTE_3)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 13)),
|
|
(i32 VectorExtractions.LE_BYTE_2)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 14)),
|
|
(i32 VectorExtractions.LE_BYTE_1)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 15)),
|
|
(i32 VectorExtractions.LE_BYTE_0)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, i64:$Idx)),
|
|
(i32 VectorExtractions.BE_VARIABLE_BYTE)>;
|
|
|
|
// v8i16 scalar <-> vector conversions (BE)
|
|
def : Pat<(i32 (vector_extract v8i16:$S, 0)),
|
|
(i32 VectorExtractions.LE_HALF_7)>;
|
|
def : Pat<(i32 (vector_extract v8i16:$S, 1)),
|
|
(i32 VectorExtractions.LE_HALF_6)>;
|
|
def : Pat<(i32 (vector_extract v8i16:$S, 2)),
|
|
(i32 VectorExtractions.LE_HALF_5)>;
|
|
def : Pat<(i32 (vector_extract v8i16:$S, 3)),
|
|
(i32 VectorExtractions.LE_HALF_4)>;
|
|
def : Pat<(i32 (vector_extract v8i16:$S, 4)),
|
|
(i32 VectorExtractions.LE_HALF_3)>;
|
|
def : Pat<(i32 (vector_extract v8i16:$S, 5)),
|
|
(i32 VectorExtractions.LE_HALF_2)>;
|
|
def : Pat<(i32 (vector_extract v8i16:$S, 6)),
|
|
(i32 VectorExtractions.LE_HALF_1)>;
|
|
def : Pat<(i32 (vector_extract v8i16:$S, 7)),
|
|
(i32 VectorExtractions.LE_HALF_0)>;
|
|
def : Pat<(i32 (vector_extract v8i16:$S, i64:$Idx)),
|
|
(i32 VectorExtractions.BE_VARIABLE_HALF)>;
|
|
|
|
// v4i32 scalar <-> vector conversions (BE)
|
|
def : Pat<(i32 (vector_extract v4i32:$S, 0)),
|
|
(i32 VectorExtractions.LE_WORD_3)>;
|
|
def : Pat<(i32 (vector_extract v4i32:$S, 1)),
|
|
(i32 VectorExtractions.LE_WORD_2)>;
|
|
def : Pat<(i32 (vector_extract v4i32:$S, 2)),
|
|
(i32 VectorExtractions.LE_WORD_1)>;
|
|
def : Pat<(i32 (vector_extract v4i32:$S, 3)),
|
|
(i32 VectorExtractions.LE_WORD_0)>;
|
|
def : Pat<(i32 (vector_extract v4i32:$S, i64:$Idx)),
|
|
(i32 VectorExtractions.BE_VARIABLE_WORD)>;
|
|
|
|
// v2i64 scalar <-> vector conversions (BE)
|
|
def : Pat<(i64 (vector_extract v2i64:$S, 0)),
|
|
(i64 VectorExtractions.LE_DWORD_1)>;
|
|
def : Pat<(i64 (vector_extract v2i64:$S, 1)),
|
|
(i64 VectorExtractions.LE_DWORD_0)>;
|
|
def : Pat<(i64 (vector_extract v2i64:$S, i64:$Idx)),
|
|
(i64 VectorExtractions.BE_VARIABLE_DWORD)>;
|
|
} // IsBigEndian, HasDirectMove
|
|
|
|
// v4f32 scalar <-> vector conversions (LE)
|
|
let Predicates = [IsLittleEndian, HasP8Vector] in {
|
|
def : Pat<(v4f32 (scalar_to_vector f32:$A)),
|
|
(v4f32 (XXSLDWI (XSCVDPSPN $A), (XSCVDPSPN $A), 1))>;
|
|
def : Pat<(f32 (vector_extract v4f32:$S, 0)),
|
|
(f32 (XSCVSPDPN (XXSLDWI $S, $S, 3)))>;
|
|
def : Pat<(f32 (vector_extract v4f32:$S, 1)),
|
|
(f32 (XSCVSPDPN (XXSLDWI $S, $S, 2)))>;
|
|
def : Pat<(f32 (vector_extract v4f32:$S, 2)),
|
|
(f32 (XSCVSPDPN (XXSLDWI $S, $S, 1)))>;
|
|
def : Pat<(f32 (vector_extract v4f32:$S, 3)),
|
|
(f32 (XSCVSPDPN $S))>;
|
|
def : Pat<(f32 (vector_extract v4f32:$S, i64:$Idx)),
|
|
(f32 VectorExtractions.LE_VARIABLE_FLOAT)>;
|
|
} // IsLittleEndian, HasP8Vector
|
|
|
|
// Variable index vector_extract for v2f64 does not require P8Vector
|
|
let Predicates = [IsLittleEndian, HasVSX] in
|
|
def : Pat<(f64 (vector_extract v2f64:$S, i64:$Idx)),
|
|
(f64 VectorExtractions.LE_VARIABLE_DOUBLE)>;
|
|
|
|
let Predicates = [IsLittleEndian, HasDirectMove] in {
|
|
// v16i8 scalar <-> vector conversions (LE)
|
|
def : Pat<(v16i8 (scalar_to_vector i32:$A)),
|
|
(v16i8 (COPY_TO_REGCLASS MovesToVSR.LE_WORD_0, VSRC))>;
|
|
def : Pat<(v8i16 (scalar_to_vector i32:$A)),
|
|
(v8i16 (COPY_TO_REGCLASS MovesToVSR.LE_WORD_0, VSRC))>;
|
|
def : Pat<(v4i32 (scalar_to_vector i32:$A)),
|
|
(v4i32 MovesToVSR.LE_WORD_0)>;
|
|
def : Pat<(v2i64 (scalar_to_vector i64:$A)),
|
|
(v2i64 MovesToVSR.LE_DWORD_0)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 0)),
|
|
(i32 VectorExtractions.LE_BYTE_0)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 1)),
|
|
(i32 VectorExtractions.LE_BYTE_1)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 2)),
|
|
(i32 VectorExtractions.LE_BYTE_2)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 3)),
|
|
(i32 VectorExtractions.LE_BYTE_3)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 4)),
|
|
(i32 VectorExtractions.LE_BYTE_4)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 5)),
|
|
(i32 VectorExtractions.LE_BYTE_5)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 6)),
|
|
(i32 VectorExtractions.LE_BYTE_6)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 7)),
|
|
(i32 VectorExtractions.LE_BYTE_7)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 8)),
|
|
(i32 VectorExtractions.LE_BYTE_8)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 9)),
|
|
(i32 VectorExtractions.LE_BYTE_9)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 10)),
|
|
(i32 VectorExtractions.LE_BYTE_10)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 11)),
|
|
(i32 VectorExtractions.LE_BYTE_11)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 12)),
|
|
(i32 VectorExtractions.LE_BYTE_12)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 13)),
|
|
(i32 VectorExtractions.LE_BYTE_13)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 14)),
|
|
(i32 VectorExtractions.LE_BYTE_14)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, 15)),
|
|
(i32 VectorExtractions.LE_BYTE_15)>;
|
|
def : Pat<(i32 (vector_extract v16i8:$S, i64:$Idx)),
|
|
(i32 VectorExtractions.LE_VARIABLE_BYTE)>;
|
|
|
|
// v8i16 scalar <-> vector conversions (LE)
|
|
def : Pat<(i32 (vector_extract v8i16:$S, 0)),
|
|
(i32 VectorExtractions.LE_HALF_0)>;
|
|
def : Pat<(i32 (vector_extract v8i16:$S, 1)),
|
|
(i32 VectorExtractions.LE_HALF_1)>;
|
|
def : Pat<(i32 (vector_extract v8i16:$S, 2)),
|
|
(i32 VectorExtractions.LE_HALF_2)>;
|
|
def : Pat<(i32 (vector_extract v8i16:$S, 3)),
|
|
(i32 VectorExtractions.LE_HALF_3)>;
|
|
def : Pat<(i32 (vector_extract v8i16:$S, 4)),
|
|
(i32 VectorExtractions.LE_HALF_4)>;
|
|
def : Pat<(i32 (vector_extract v8i16:$S, 5)),
|
|
(i32 VectorExtractions.LE_HALF_5)>;
|
|
def : Pat<(i32 (vector_extract v8i16:$S, 6)),
|
|
(i32 VectorExtractions.LE_HALF_6)>;
|
|
def : Pat<(i32 (vector_extract v8i16:$S, 7)),
|
|
(i32 VectorExtractions.LE_HALF_7)>;
|
|
def : Pat<(i32 (vector_extract v8i16:$S, i64:$Idx)),
|
|
(i32 VectorExtractions.LE_VARIABLE_HALF)>;
|
|
|
|
// v4i32 scalar <-> vector conversions (LE)
|
|
def : Pat<(i32 (vector_extract v4i32:$S, 0)),
|
|
(i32 VectorExtractions.LE_WORD_0)>;
|
|
def : Pat<(i32 (vector_extract v4i32:$S, 1)),
|
|
(i32 VectorExtractions.LE_WORD_1)>;
|
|
def : Pat<(i32 (vector_extract v4i32:$S, 2)),
|
|
(i32 VectorExtractions.LE_WORD_2)>;
|
|
def : Pat<(i32 (vector_extract v4i32:$S, 3)),
|
|
(i32 VectorExtractions.LE_WORD_3)>;
|
|
def : Pat<(i32 (vector_extract v4i32:$S, i64:$Idx)),
|
|
(i32 VectorExtractions.LE_VARIABLE_WORD)>;
|
|
|
|
// v2i64 scalar <-> vector conversions (LE)
|
|
def : Pat<(i64 (vector_extract v2i64:$S, 0)),
|
|
(i64 VectorExtractions.LE_DWORD_0)>;
|
|
def : Pat<(i64 (vector_extract v2i64:$S, 1)),
|
|
(i64 VectorExtractions.LE_DWORD_1)>;
|
|
def : Pat<(i64 (vector_extract v2i64:$S, i64:$Idx)),
|
|
(i64 VectorExtractions.LE_VARIABLE_DWORD)>;
|
|
} // IsLittleEndian, HasDirectMove
|
|
|
|
let Predicates = [HasDirectMove, HasVSX] in {
|
|
// bitconvert f32 -> i32
|
|
// (convert to 32-bit fp single, shift right 1 word, move to GPR)
|
|
def : Pat<(i32 (bitconvert f32:$S)),
|
|
(i32 (MFVSRWZ (EXTRACT_SUBREG
|
|
(XXSLDWI (XSCVDPSPN $S),(XSCVDPSPN $S), 3),
|
|
sub_64)))>;
|
|
// bitconvert i32 -> f32
|
|
// (move to FPR, shift left 1 word, convert to 64-bit fp single)
|
|
def : Pat<(f32 (bitconvert i32:$A)),
|
|
(f32 (XSCVSPDPN
|
|
(XXSLDWI MovesToVSR.LE_WORD_1, MovesToVSR.LE_WORD_1, 1)))>;
|
|
|
|
// bitconvert f64 -> i64
|
|
// (move to GPR, nothing else needed)
|
|
def : Pat<(i64 (bitconvert f64:$S)),
|
|
(i64 (MFVSRD $S))>;
|
|
|
|
// bitconvert i64 -> f64
|
|
// (move to FPR, nothing else needed)
|
|
def : Pat<(f64 (bitconvert i64:$S)),
|
|
(f64 (MTVSRD $S))>;
|
|
}
|