llvm/tools/llvm-objdump/MachODump.cpp
Rafael Espindola d5132f9073 Remove system_error.h.
This is a minimal change to remove the header. I will remove the occurrences
of "using std::error_code" in a followup patch.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210803 91177308-0d34-0410-b5e6-96231b3b80d8
2014-06-12 17:38:55 +00:00

462 lines
15 KiB
C++

//===-- MachODump.cpp - Object file dumping utility for llvm --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the MachO-specific dumper for llvm-objdump.
//
//===----------------------------------------------------------------------===//
#include "llvm-objdump.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Object/MachO.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/MachO.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstring>
#include <system_error>
using namespace llvm;
using namespace object;
static cl::opt<bool>
UseDbg("g", cl::desc("Print line information from debug info if available"));
static cl::opt<std::string>
DSYMFile("dsym", cl::desc("Use .dSYM file for debug info"));
static const Target *GetTarget(const MachOObjectFile *MachOObj) {
// Figure out the target triple.
if (TripleName.empty()) {
llvm::Triple TT("unknown-unknown-unknown");
TT.setArch(Triple::ArchType(MachOObj->getArch()));
TripleName = TT.str();
}
// Get the target specific parser.
std::string Error;
const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error);
if (TheTarget)
return TheTarget;
errs() << "llvm-objdump: error: unable to get target for '" << TripleName
<< "', see --version and --triple.\n";
return nullptr;
}
struct SymbolSorter {
bool operator()(const SymbolRef &A, const SymbolRef &B) {
SymbolRef::Type AType, BType;
A.getType(AType);
B.getType(BType);
uint64_t AAddr, BAddr;
if (AType != SymbolRef::ST_Function)
AAddr = 0;
else
A.getAddress(AAddr);
if (BType != SymbolRef::ST_Function)
BAddr = 0;
else
B.getAddress(BAddr);
return AAddr < BAddr;
}
};
// Types for the storted data in code table that is built before disassembly
// and the predicate function to sort them.
typedef std::pair<uint64_t, DiceRef> DiceTableEntry;
typedef std::vector<DiceTableEntry> DiceTable;
typedef DiceTable::iterator dice_table_iterator;
static bool
compareDiceTableEntries(const DiceTableEntry i,
const DiceTableEntry j) {
return i.first == j.first;
}
static void DumpDataInCode(const char *bytes, uint64_t Size,
unsigned short Kind) {
uint64_t Value;
switch (Kind) {
case MachO::DICE_KIND_DATA:
switch (Size) {
case 4:
Value = bytes[3] << 24 |
bytes[2] << 16 |
bytes[1] << 8 |
bytes[0];
outs() << "\t.long " << Value;
break;
case 2:
Value = bytes[1] << 8 |
bytes[0];
outs() << "\t.short " << Value;
break;
case 1:
Value = bytes[0];
outs() << "\t.byte " << Value;
break;
}
outs() << "\t@ KIND_DATA\n";
break;
case MachO::DICE_KIND_JUMP_TABLE8:
Value = bytes[0];
outs() << "\t.byte " << Value << "\t@ KIND_JUMP_TABLE8";
break;
case MachO::DICE_KIND_JUMP_TABLE16:
Value = bytes[1] << 8 |
bytes[0];
outs() << "\t.short " << Value << "\t@ KIND_JUMP_TABLE16";
break;
case MachO::DICE_KIND_JUMP_TABLE32:
Value = bytes[3] << 24 |
bytes[2] << 16 |
bytes[1] << 8 |
bytes[0];
outs() << "\t.long " << Value << "\t@ KIND_JUMP_TABLE32";
break;
default:
outs() << "\t@ data in code kind = " << Kind << "\n";
break;
}
}
static void getSectionsAndSymbols(const MachO::mach_header Header,
MachOObjectFile *MachOObj,
std::vector<SectionRef> &Sections,
std::vector<SymbolRef> &Symbols,
SmallVectorImpl<uint64_t> &FoundFns,
uint64_t &BaseSegmentAddress) {
for (const SymbolRef &Symbol : MachOObj->symbols())
Symbols.push_back(Symbol);
for (const SectionRef &Section : MachOObj->sections()) {
StringRef SectName;
Section.getName(SectName);
Sections.push_back(Section);
}
MachOObjectFile::LoadCommandInfo Command =
MachOObj->getFirstLoadCommandInfo();
bool BaseSegmentAddressSet = false;
for (unsigned i = 0; ; ++i) {
if (Command.C.cmd == MachO::LC_FUNCTION_STARTS) {
// We found a function starts segment, parse the addresses for later
// consumption.
MachO::linkedit_data_command LLC =
MachOObj->getLinkeditDataLoadCommand(Command);
MachOObj->ReadULEB128s(LLC.dataoff, FoundFns);
}
else if (Command.C.cmd == MachO::LC_SEGMENT) {
MachO::segment_command SLC =
MachOObj->getSegmentLoadCommand(Command);
StringRef SegName = SLC.segname;
if(!BaseSegmentAddressSet && SegName != "__PAGEZERO") {
BaseSegmentAddressSet = true;
BaseSegmentAddress = SLC.vmaddr;
}
}
if (i == Header.ncmds - 1)
break;
else
Command = MachOObj->getNextLoadCommandInfo(Command);
}
}
static void DisassembleInputMachO2(StringRef Filename,
MachOObjectFile *MachOOF);
void llvm::DisassembleInputMachO(StringRef Filename) {
std::unique_ptr<MemoryBuffer> Buff;
if (error_code ec = MemoryBuffer::getFileOrSTDIN(Filename, Buff)) {
errs() << "llvm-objdump: " << Filename << ": " << ec.message() << "\n";
return;
}
std::unique_ptr<MachOObjectFile> MachOOF(static_cast<MachOObjectFile *>(
ObjectFile::createMachOObjectFile(Buff.release()).get()));
DisassembleInputMachO2(Filename, MachOOF.get());
}
static void DisassembleInputMachO2(StringRef Filename,
MachOObjectFile *MachOOF) {
const Target *TheTarget = GetTarget(MachOOF);
if (!TheTarget) {
// GetTarget prints out stuff.
return;
}
std::unique_ptr<const MCInstrInfo> InstrInfo(TheTarget->createMCInstrInfo());
std::unique_ptr<MCInstrAnalysis> InstrAnalysis(
TheTarget->createMCInstrAnalysis(InstrInfo.get()));
// Set up disassembler.
std::unique_ptr<const MCRegisterInfo> MRI(
TheTarget->createMCRegInfo(TripleName));
std::unique_ptr<const MCAsmInfo> AsmInfo(
TheTarget->createMCAsmInfo(*MRI, TripleName));
std::unique_ptr<const MCSubtargetInfo> STI(
TheTarget->createMCSubtargetInfo(TripleName, "", ""));
MCContext Ctx(AsmInfo.get(), MRI.get(), nullptr);
std::unique_ptr<const MCDisassembler> DisAsm(
TheTarget->createMCDisassembler(*STI, Ctx));
int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
AsmPrinterVariant, *AsmInfo, *InstrInfo, *MRI, *STI));
if (!InstrAnalysis || !AsmInfo || !STI || !DisAsm || !IP) {
errs() << "error: couldn't initialize disassembler for target "
<< TripleName << '\n';
return;
}
outs() << '\n' << Filename << ":\n\n";
MachO::mach_header Header = MachOOF->getHeader();
// FIXME: FoundFns isn't used anymore. Using symbols/LC_FUNCTION_STARTS to
// determine function locations will eventually go in MCObjectDisassembler.
// FIXME: Using the -cfg command line option, this code used to be able to
// annotate relocations with the referenced symbol's name, and if this was
// inside a __[cf]string section, the data it points to. This is now replaced
// by the upcoming MCSymbolizer, which needs the appropriate setup done above.
std::vector<SectionRef> Sections;
std::vector<SymbolRef> Symbols;
SmallVector<uint64_t, 8> FoundFns;
uint64_t BaseSegmentAddress;
getSectionsAndSymbols(Header, MachOOF, Sections, Symbols, FoundFns,
BaseSegmentAddress);
// Sort the symbols by address, just in case they didn't come in that way.
std::sort(Symbols.begin(), Symbols.end(), SymbolSorter());
// Build a data in code table that is sorted on by the address of each entry.
uint64_t BaseAddress = 0;
if (Header.filetype == MachO::MH_OBJECT)
Sections[0].getAddress(BaseAddress);
else
BaseAddress = BaseSegmentAddress;
DiceTable Dices;
for (dice_iterator DI = MachOOF->begin_dices(), DE = MachOOF->end_dices();
DI != DE; ++DI) {
uint32_t Offset;
DI->getOffset(Offset);
Dices.push_back(std::make_pair(BaseAddress + Offset, *DI));
}
array_pod_sort(Dices.begin(), Dices.end());
#ifndef NDEBUG
raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
#else
raw_ostream &DebugOut = nulls();
#endif
std::unique_ptr<DIContext> diContext;
ObjectFile *DbgObj = MachOOF;
// Try to find debug info and set up the DIContext for it.
if (UseDbg) {
// A separate DSym file path was specified, parse it as a macho file,
// get the sections and supply it to the section name parsing machinery.
if (!DSYMFile.empty()) {
std::unique_ptr<MemoryBuffer> Buf;
if (error_code ec = MemoryBuffer::getFileOrSTDIN(DSYMFile, Buf)) {
errs() << "llvm-objdump: " << Filename << ": " << ec.message() << '\n';
return;
}
DbgObj = ObjectFile::createMachOObjectFile(Buf.release()).get();
}
// Setup the DIContext
diContext.reset(DIContext::getDWARFContext(DbgObj));
}
for (unsigned SectIdx = 0; SectIdx != Sections.size(); SectIdx++) {
bool SectIsText = false;
Sections[SectIdx].isText(SectIsText);
if (SectIsText == false)
continue;
StringRef SectName;
if (Sections[SectIdx].getName(SectName) ||
SectName != "__text")
continue; // Skip non-text sections
DataRefImpl DR = Sections[SectIdx].getRawDataRefImpl();
StringRef SegmentName = MachOOF->getSectionFinalSegmentName(DR);
if (SegmentName != "__TEXT")
continue;
StringRef Bytes;
Sections[SectIdx].getContents(Bytes);
StringRefMemoryObject memoryObject(Bytes);
bool symbolTableWorked = false;
// Parse relocations.
std::vector<std::pair<uint64_t, SymbolRef>> Relocs;
for (const RelocationRef &Reloc : Sections[SectIdx].relocations()) {
uint64_t RelocOffset, SectionAddress;
Reloc.getOffset(RelocOffset);
Sections[SectIdx].getAddress(SectionAddress);
RelocOffset -= SectionAddress;
symbol_iterator RelocSym = Reloc.getSymbol();
Relocs.push_back(std::make_pair(RelocOffset, *RelocSym));
}
array_pod_sort(Relocs.begin(), Relocs.end());
// Disassemble symbol by symbol.
for (unsigned SymIdx = 0; SymIdx != Symbols.size(); SymIdx++) {
StringRef SymName;
Symbols[SymIdx].getName(SymName);
SymbolRef::Type ST;
Symbols[SymIdx].getType(ST);
if (ST != SymbolRef::ST_Function)
continue;
// Make sure the symbol is defined in this section.
bool containsSym = false;
Sections[SectIdx].containsSymbol(Symbols[SymIdx], containsSym);
if (!containsSym)
continue;
// Start at the address of the symbol relative to the section's address.
uint64_t SectionAddress = 0;
uint64_t Start = 0;
Sections[SectIdx].getAddress(SectionAddress);
Symbols[SymIdx].getAddress(Start);
Start -= SectionAddress;
// Stop disassembling either at the beginning of the next symbol or at
// the end of the section.
bool containsNextSym = false;
uint64_t NextSym = 0;
uint64_t NextSymIdx = SymIdx+1;
while (Symbols.size() > NextSymIdx) {
SymbolRef::Type NextSymType;
Symbols[NextSymIdx].getType(NextSymType);
if (NextSymType == SymbolRef::ST_Function) {
Sections[SectIdx].containsSymbol(Symbols[NextSymIdx],
containsNextSym);
Symbols[NextSymIdx].getAddress(NextSym);
NextSym -= SectionAddress;
break;
}
++NextSymIdx;
}
uint64_t SectSize;
Sections[SectIdx].getSize(SectSize);
uint64_t End = containsNextSym ? NextSym : SectSize;
uint64_t Size;
symbolTableWorked = true;
outs() << SymName << ":\n";
DILineInfo lastLine;
for (uint64_t Index = Start; Index < End; Index += Size) {
MCInst Inst;
uint64_t SectAddress = 0;
Sections[SectIdx].getAddress(SectAddress);
outs() << format("%8" PRIx64 ":\t", SectAddress + Index);
// Check the data in code table here to see if this is data not an
// instruction to be disassembled.
DiceTable Dice;
Dice.push_back(std::make_pair(SectAddress + Index, DiceRef()));
dice_table_iterator DTI = std::search(Dices.begin(), Dices.end(),
Dice.begin(), Dice.end(),
compareDiceTableEntries);
if (DTI != Dices.end()){
uint16_t Length;
DTI->second.getLength(Length);
DumpBytes(StringRef(Bytes.data() + Index, Length));
uint16_t Kind;
DTI->second.getKind(Kind);
DumpDataInCode(Bytes.data() + Index, Length, Kind);
continue;
}
if (DisAsm->getInstruction(Inst, Size, memoryObject, Index,
DebugOut, nulls())) {
DumpBytes(StringRef(Bytes.data() + Index, Size));
IP->printInst(&Inst, outs(), "");
// Print debug info.
if (diContext) {
DILineInfo dli =
diContext->getLineInfoForAddress(SectAddress + Index);
// Print valid line info if it changed.
if (dli != lastLine && dli.Line != 0)
outs() << "\t## " << dli.FileName << ':' << dli.Line << ':'
<< dli.Column;
lastLine = dli;
}
outs() << "\n";
} else {
errs() << "llvm-objdump: warning: invalid instruction encoding\n";
if (Size == 0)
Size = 1; // skip illegible bytes
}
}
}
if (!symbolTableWorked) {
// Reading the symbol table didn't work, disassemble the whole section.
uint64_t SectAddress;
Sections[SectIdx].getAddress(SectAddress);
uint64_t SectSize;
Sections[SectIdx].getSize(SectSize);
uint64_t InstSize;
for (uint64_t Index = 0; Index < SectSize; Index += InstSize) {
MCInst Inst;
if (DisAsm->getInstruction(Inst, InstSize, memoryObject, Index,
DebugOut, nulls())) {
outs() << format("%8" PRIx64 ":\t", SectAddress + Index);
DumpBytes(StringRef(Bytes.data() + Index, InstSize));
IP->printInst(&Inst, outs(), "");
outs() << "\n";
} else {
errs() << "llvm-objdump: warning: invalid instruction encoding\n";
if (InstSize == 0)
InstSize = 1; // skip illegible bytes
}
}
}
}
}