mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-09 05:31:37 +00:00
63e1cbe0bb
This is a follow-up to: https://reviews.llvm.org/rL289855 (https://reviews.llvm.org/D27531) https://reviews.llvm.org/rL290111 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@290118 91177308-0d34-0410-b5e6-96231b3b80d8
235 lines
6.2 KiB
LLVM
235 lines
6.2 KiB
LLVM
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
|
|
; RUN: opt -S -instcombine < %s | FileCheck %s
|
|
|
|
; If we have a umin feeding an unsigned or equality icmp that shares an
|
|
; operand with the umin, the compare should always be folded.
|
|
; Test all 4 foldable predicates (eq,ne,uge,ult) * 4 commutation
|
|
; possibilities for each predicate. Note that folds to true/false
|
|
; (predicate is ule/ugt) or folds to an existing instruction should be
|
|
; handled by InstSimplify.
|
|
|
|
; umin(X, Y) == X --> X <= Y
|
|
|
|
define i1 @eq_umin1(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @eq_umin1(
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 %x, %y
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%cmp1 = icmp ult i32 %x, %y
|
|
%sel = select i1 %cmp1, i32 %x, i32 %y
|
|
%cmp2 = icmp eq i32 %sel, %x
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Commute min operands.
|
|
|
|
define i1 @eq_umin2(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @eq_umin2(
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 %x, %y
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%cmp1 = icmp ult i32 %y, %x
|
|
%sel = select i1 %cmp1, i32 %y, i32 %x
|
|
%cmp2 = icmp eq i32 %sel, %x
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Disguise the icmp predicate by commuting the min op to the RHS.
|
|
|
|
define i1 @eq_umin3(i32 %a, i32 %y) {
|
|
; CHECK-LABEL: @eq_umin3(
|
|
; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 [[X]], %y
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
|
|
%cmp1 = icmp ult i32 %x, %y
|
|
%sel = select i1 %cmp1, i32 %x, i32 %y
|
|
%cmp2 = icmp eq i32 %x, %sel
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Commute min operands.
|
|
|
|
define i1 @eq_umin4(i32 %a, i32 %y) {
|
|
; CHECK-LABEL: @eq_umin4(
|
|
; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 [[X]], %y
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
|
|
%cmp1 = icmp ult i32 %y, %x
|
|
%sel = select i1 %cmp1, i32 %y, i32 %x
|
|
%cmp2 = icmp eq i32 %x, %sel
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; umin(X, Y) >= X --> X <= Y
|
|
|
|
define i1 @uge_umin1(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @uge_umin1(
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 %x, %y
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%cmp1 = icmp ult i32 %x, %y
|
|
%sel = select i1 %cmp1, i32 %x, i32 %y
|
|
%cmp2 = icmp uge i32 %sel, %x
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Commute min operands.
|
|
|
|
define i1 @uge_umin2(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @uge_umin2(
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 %x, %y
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%cmp1 = icmp ult i32 %y, %x
|
|
%sel = select i1 %cmp1, i32 %y, i32 %x
|
|
%cmp2 = icmp uge i32 %sel, %x
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Disguise the icmp predicate by commuting the min op to the RHS.
|
|
|
|
define i1 @uge_umin3(i32 %a, i32 %y) {
|
|
; CHECK-LABEL: @uge_umin3(
|
|
; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 [[X]], %y
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
|
|
%cmp1 = icmp ult i32 %x, %y
|
|
%sel = select i1 %cmp1, i32 %x, i32 %y
|
|
%cmp2 = icmp ule i32 %x, %sel
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Commute min operands.
|
|
|
|
define i1 @uge_umin4(i32 %a, i32 %y) {
|
|
; CHECK-LABEL: @uge_umin4(
|
|
; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp ule i32 [[X]], %y
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
|
|
%cmp1 = icmp ult i32 %y, %x
|
|
%sel = select i1 %cmp1, i32 %y, i32 %x
|
|
%cmp2 = icmp ule i32 %x, %sel
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; umin(X, Y) != X --> X > Y
|
|
|
|
define i1 @ne_umin1(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @ne_umin1(
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp ugt i32 %x, %y
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%cmp1 = icmp ult i32 %x, %y
|
|
%sel = select i1 %cmp1, i32 %x, i32 %y
|
|
%cmp2 = icmp ne i32 %sel, %x
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Commute min operands.
|
|
|
|
define i1 @ne_umin2(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @ne_umin2(
|
|
; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i32 %y, %x
|
|
; CHECK-NEXT: ret i1 [[CMP1]]
|
|
;
|
|
%cmp1 = icmp ult i32 %y, %x
|
|
%sel = select i1 %cmp1, i32 %y, i32 %x
|
|
%cmp2 = icmp ne i32 %sel, %x
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Disguise the icmp predicate by commuting the min op to the RHS.
|
|
|
|
define i1 @ne_umin3(i32 %a, i32 %y) {
|
|
; CHECK-LABEL: @ne_umin3(
|
|
; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp ugt i32 [[X]], %y
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
|
|
%cmp1 = icmp ult i32 %x, %y
|
|
%sel = select i1 %cmp1, i32 %x, i32 %y
|
|
%cmp2 = icmp ne i32 %x, %sel
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Commute min operands.
|
|
|
|
define i1 @ne_umin4(i32 %a, i32 %y) {
|
|
; CHECK-LABEL: @ne_umin4(
|
|
; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3
|
|
; CHECK-NEXT: [[CMP1:%.*]] = icmp ugt i32 [[X]], %y
|
|
; CHECK-NEXT: ret i1 [[CMP1]]
|
|
;
|
|
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
|
|
%cmp1 = icmp ult i32 %y, %x
|
|
%sel = select i1 %cmp1, i32 %y, i32 %x
|
|
%cmp2 = icmp ne i32 %x, %sel
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; umin(X, Y) < X --> X > Y
|
|
|
|
define i1 @ult_umin1(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @ult_umin1(
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp ugt i32 %x, %y
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%cmp1 = icmp ult i32 %x, %y
|
|
%sel = select i1 %cmp1, i32 %x, i32 %y
|
|
%cmp2 = icmp ult i32 %sel, %x
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Commute min operands.
|
|
|
|
define i1 @ult_umin2(i32 %x, i32 %y) {
|
|
; CHECK-LABEL: @ult_umin2(
|
|
; CHECK-NEXT: [[CMP1:%.*]] = icmp ult i32 %y, %x
|
|
; CHECK-NEXT: ret i1 [[CMP1]]
|
|
;
|
|
%cmp1 = icmp ult i32 %y, %x
|
|
%sel = select i1 %cmp1, i32 %y, i32 %x
|
|
%cmp2 = icmp ult i32 %sel, %x
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Disguise the icmp predicate by commuting the min op to the RHS.
|
|
|
|
define i1 @ult_umin3(i32 %a, i32 %y) {
|
|
; CHECK-LABEL: @ult_umin3(
|
|
; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3
|
|
; CHECK-NEXT: [[CMP2:%.*]] = icmp ugt i32 [[X]], %y
|
|
; CHECK-NEXT: ret i1 [[CMP2]]
|
|
;
|
|
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
|
|
%cmp1 = icmp ult i32 %x, %y
|
|
%sel = select i1 %cmp1, i32 %x, i32 %y
|
|
%cmp2 = icmp ugt i32 %x, %sel
|
|
ret i1 %cmp2
|
|
}
|
|
|
|
; Commute min operands.
|
|
|
|
define i1 @ult_umin4(i32 %a, i32 %y) {
|
|
; CHECK-LABEL: @ult_umin4(
|
|
; CHECK-NEXT: [[X:%.*]] = add i32 %a, 3
|
|
; CHECK-NEXT: [[CMP1:%.*]] = icmp ugt i32 [[X]], %y
|
|
; CHECK-NEXT: ret i1 [[CMP1]]
|
|
;
|
|
%x = add i32 %a, 3 ; thwart complexity-based canonicalization
|
|
%cmp1 = icmp ult i32 %y, %x
|
|
%sel = select i1 %cmp1, i32 %y, i32 %x
|
|
%cmp2 = icmp ugt i32 %x, %sel
|
|
ret i1 %cmp2
|
|
}
|
|
|