llvm/lib/CodeGen/ExecutionDomainFix.cpp
Marina Yatsina d6bf9cdf27 Rename ExecutionDepsFix files to ExecutionDomainFix
This is the one of multiple patches that fix bugzilla https://bugs.llvm.org/show_bug.cgi?id=33869
Most of the patches are intended at refactoring the existent code.

Additional relevant reviews:
https://reviews.llvm.org/D40330
https://reviews.llvm.org/D40331
https://reviews.llvm.org/D40333
https://reviews.llvm.org/D40334

Differential Revision: https://reviews.llvm.org/D40332

Change-Id: I6a048cca7fdafbfc42fb1bac94343e483befded8

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@323094 91177308-0d34-0410-b5e6-96231b3b80d8
2018-01-22 10:06:33 +00:00

890 lines
29 KiB
C++

//===- ExecutionDepsFix.cpp - Fix execution domain issues ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/ExecutionDomainFix.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
using namespace llvm;
#define DEBUG_TYPE "execution-deps-fix"
char ReachingDefAnalysis::ID = 0;
INITIALIZE_PASS(ReachingDefAnalysis, "reaching-deps-analysis",
"ReachingDefAnalysis", false, true)
char BreakFalseDeps::ID = 0;
INITIALIZE_PASS_BEGIN(BreakFalseDeps, "break-false-deps", "BreakFalseDeps",
false, false)
INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
INITIALIZE_PASS_END(BreakFalseDeps, "break-false-deps", "BreakFalseDeps", false,
false)
iterator_range<SmallVectorImpl<int>::const_iterator>
ExecutionDomainFix::regIndices(unsigned Reg) const {
assert(Reg < AliasMap.size() && "Invalid register");
const auto &Entry = AliasMap[Reg];
return make_range(Entry.begin(), Entry.end());
}
DomainValue *ExecutionDomainFix::alloc(int domain) {
DomainValue *dv = Avail.empty() ? new (Allocator.Allocate()) DomainValue
: Avail.pop_back_val();
if (domain >= 0)
dv->addDomain(domain);
assert(dv->Refs == 0 && "Reference count wasn't cleared");
assert(!dv->Next && "Chained DomainValue shouldn't have been recycled");
return dv;
}
void ExecutionDomainFix::release(DomainValue *DV) {
while (DV) {
assert(DV->Refs && "Bad DomainValue");
if (--DV->Refs)
return;
// There are no more DV references. Collapse any contained instructions.
if (DV->AvailableDomains && !DV->isCollapsed())
collapse(DV, DV->getFirstDomain());
DomainValue *Next = DV->Next;
DV->clear();
Avail.push_back(DV);
// Also release the next DomainValue in the chain.
DV = Next;
}
}
DomainValue *ExecutionDomainFix::resolve(DomainValue *&DVRef) {
DomainValue *DV = DVRef;
if (!DV || !DV->Next)
return DV;
// DV has a chain. Find the end.
do
DV = DV->Next;
while (DV->Next);
// Update DVRef to point to DV.
retain(DV);
release(DVRef);
DVRef = DV;
return DV;
}
void ExecutionDomainFix::setLiveReg(int rx, DomainValue *dv) {
assert(unsigned(rx) < NumRegs && "Invalid index");
assert(!LiveRegs.empty() && "Must enter basic block first.");
if (LiveRegs[rx] == dv)
return;
if (LiveRegs[rx])
release(LiveRegs[rx]);
LiveRegs[rx] = retain(dv);
}
void ExecutionDomainFix::kill(int rx) {
assert(unsigned(rx) < NumRegs && "Invalid index");
assert(!LiveRegs.empty() && "Must enter basic block first.");
if (!LiveRegs[rx])
return;
release(LiveRegs[rx]);
LiveRegs[rx] = nullptr;
}
void ExecutionDomainFix::force(int rx, unsigned domain) {
assert(unsigned(rx) < NumRegs && "Invalid index");
assert(!LiveRegs.empty() && "Must enter basic block first.");
if (DomainValue *dv = LiveRegs[rx]) {
if (dv->isCollapsed())
dv->addDomain(domain);
else if (dv->hasDomain(domain))
collapse(dv, domain);
else {
// This is an incompatible open DomainValue. Collapse it to whatever and
// force the new value into domain. This costs a domain crossing.
collapse(dv, dv->getFirstDomain());
assert(LiveRegs[rx] && "Not live after collapse?");
LiveRegs[rx]->addDomain(domain);
}
} else {
// Set up basic collapsed DomainValue.
setLiveReg(rx, alloc(domain));
}
}
void ExecutionDomainFix::collapse(DomainValue *dv, unsigned domain) {
assert(dv->hasDomain(domain) && "Cannot collapse");
// Collapse all the instructions.
while (!dv->Instrs.empty())
TII->setExecutionDomain(*dv->Instrs.pop_back_val(), domain);
dv->setSingleDomain(domain);
// If there are multiple users, give them new, unique DomainValues.
if (!LiveRegs.empty() && dv->Refs > 1)
for (unsigned rx = 0; rx != NumRegs; ++rx)
if (LiveRegs[rx] == dv)
setLiveReg(rx, alloc(domain));
}
bool ExecutionDomainFix::merge(DomainValue *A, DomainValue *B) {
assert(!A->isCollapsed() && "Cannot merge into collapsed");
assert(!B->isCollapsed() && "Cannot merge from collapsed");
if (A == B)
return true;
// Restrict to the domains that A and B have in common.
unsigned common = A->getCommonDomains(B->AvailableDomains);
if (!common)
return false;
A->AvailableDomains = common;
A->Instrs.append(B->Instrs.begin(), B->Instrs.end());
// Clear the old DomainValue so we won't try to swizzle instructions twice.
B->clear();
// All uses of B are referred to A.
B->Next = retain(A);
for (unsigned rx = 0; rx != NumRegs; ++rx) {
assert(!LiveRegs.empty() && "no space allocated for live registers");
if (LiveRegs[rx] == B)
setLiveReg(rx, A);
}
return true;
}
void ReachingDefAnalysis::enterBasicBlock(
const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
MachineBasicBlock *MBB = TraversedMBB.MBB;
int MBBNumber = MBB->getNumber();
assert(MBBNumber < MBBReachingDefs.size() &&
"Unexpected basic block number.");
MBBReachingDefs[MBBNumber].resize(NumRegUnits);
// Reset instruction counter in each basic block.
CurInstr = 0;
// Set up LiveRegs to represent registers entering MBB.
// Default values are 'nothing happened a long time ago'.
if (LiveRegs.empty())
LiveRegs.assign(NumRegUnits, ReachingDedDefaultVal);
// This is the entry block.
if (MBB->pred_empty()) {
for (const auto &LI : MBB->liveins()) {
for (MCRegUnitIterator Unit(LI.PhysReg, TRI); Unit.isValid(); ++Unit) {
// Treat function live-ins as if they were defined just before the first
// instruction. Usually, function arguments are set up immediately
// before the call.
LiveRegs[*Unit] = -1;
MBBReachingDefs[MBBNumber][*Unit].push_back(LiveRegs[*Unit]);
}
}
DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n");
return;
}
// Try to coalesce live-out registers from predecessors.
for (MachineBasicBlock *pred : MBB->predecessors()) {
assert(pred->getNumber() < MBBOutRegsInfos.size() &&
"Should have pre-allocated MBBInfos for all MBBs");
const LiveRegsDefInfo &Incoming = MBBOutRegsInfos[pred->getNumber()];
// Incoming is null if this is a backedge from a BB
// we haven't processed yet
if (Incoming.empty())
continue;
for (unsigned Unit = 0; Unit != NumRegUnits; ++Unit) {
// Use the most recent predecessor def for each register.
LiveRegs[Unit] = std::max(LiveRegs[Unit], Incoming[Unit]);
if ((LiveRegs[Unit] != ReachingDedDefaultVal))
MBBReachingDefs[MBBNumber][Unit].push_back(LiveRegs[Unit]);
}
}
DEBUG(dbgs() << printMBBReference(*MBB)
<< (!TraversedMBB.IsDone ? ": incomplete\n"
: ": all preds known\n"));
}
void ExecutionDomainFix::enterBasicBlock(
const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
MachineBasicBlock *MBB = TraversedMBB.MBB;
// Set up LiveRegs to represent registers entering MBB.
// Set default domain values to 'no domain' (nullptr)
if (LiveRegs.empty())
LiveRegs.assign(NumRegs, nullptr);
// This is the entry block.
if (MBB->pred_empty()) {
DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n");
return;
}
// Try to coalesce live-out registers from predecessors.
for (MachineBasicBlock *pred : MBB->predecessors()) {
assert(pred->getNumber() < MBBOutRegsInfos.size() &&
"Should have pre-allocated MBBInfos for all MBBs");
LiveRegsDVInfo &Incoming = MBBOutRegsInfos[pred->getNumber()];
// Incoming is null if this is a backedge from a BB
// we haven't processed yet
if (Incoming.empty())
continue;
for (unsigned rx = 0; rx != NumRegs; ++rx) {
DomainValue *pdv = resolve(Incoming[rx]);
if (!pdv)
continue;
if (!LiveRegs[rx]) {
setLiveReg(rx, pdv);
continue;
}
// We have a live DomainValue from more than one predecessor.
if (LiveRegs[rx]->isCollapsed()) {
// We are already collapsed, but predecessor is not. Force it.
unsigned Domain = LiveRegs[rx]->getFirstDomain();
if (!pdv->isCollapsed() && pdv->hasDomain(Domain))
collapse(pdv, Domain);
continue;
}
// Currently open, merge in predecessor.
if (!pdv->isCollapsed())
merge(LiveRegs[rx], pdv);
else
force(rx, pdv->getFirstDomain());
}
}
DEBUG(dbgs() << printMBBReference(*MBB)
<< (!TraversedMBB.IsDone ? ": incomplete\n"
: ": all preds known\n"));
}
void ReachingDefAnalysis::leaveBasicBlock(
const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
assert(!LiveRegs.empty() && "Must enter basic block first.");
int MBBNumber = TraversedMBB.MBB->getNumber();
assert(MBBNumber < MBBOutRegsInfos.size() &&
"Unexpected basic block number.");
// Save register clearances at end of MBB - used by enterBasicBlock().
MBBOutRegsInfos[MBBNumber] = LiveRegs;
// While processing the basic block, we kept `Def` relative to the start
// of the basic block for convenience. However, future use of this information
// only cares about the clearance from the end of the block, so adjust
// everything to be relative to the end of the basic block.
for (int &OutLiveReg : MBBOutRegsInfos[MBBNumber])
OutLiveReg -= CurInstr;
LiveRegs.clear();
}
void ExecutionDomainFix::leaveBasicBlock(
const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
assert(!LiveRegs.empty() && "Must enter basic block first.");
int MBBNumber = TraversedMBB.MBB->getNumber();
assert(MBBNumber < MBBOutRegsInfos.size() &&
"Unexpected basic block number.");
// Save register clearances at end of MBB - used by enterBasicBlock().
for (DomainValue *OldLiveReg : MBBOutRegsInfos[MBBNumber]) {
release(OldLiveReg);
}
MBBOutRegsInfos[MBBNumber] = LiveRegs;
LiveRegs.clear();
}
bool ExecutionDomainFix::visitInstr(MachineInstr *MI) {
// Update instructions with explicit execution domains.
std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(*MI);
if (DomP.first) {
if (DomP.second)
visitSoftInstr(MI, DomP.second);
else
visitHardInstr(MI, DomP.first);
}
return !DomP.first;
}
bool BreakFalseDeps::pickBestRegisterForUndef(MachineInstr *MI, unsigned OpIdx,
unsigned Pref) {
MachineOperand &MO = MI->getOperand(OpIdx);
assert(MO.isUndef() && "Expected undef machine operand");
unsigned OriginalReg = MO.getReg();
// Update only undef operands that have reg units that are mapped to one root.
for (MCRegUnitIterator Unit(OriginalReg, TRI); Unit.isValid(); ++Unit) {
unsigned NumRoots = 0;
for (MCRegUnitRootIterator Root(*Unit, TRI); Root.isValid(); ++Root) {
NumRoots++;
if (NumRoots > 1)
return false;
}
}
// Get the undef operand's register class
const TargetRegisterClass *OpRC =
TII->getRegClass(MI->getDesc(), OpIdx, TRI, *MF);
// If the instruction has a true dependency, we can hide the false depdency
// behind it.
for (MachineOperand &CurrMO : MI->operands()) {
if (!CurrMO.isReg() || CurrMO.isDef() || CurrMO.isUndef() ||
!OpRC->contains(CurrMO.getReg()))
continue;
// We found a true dependency - replace the undef register with the true
// dependency.
MO.setReg(CurrMO.getReg());
return true;
}
// Go over all registers in the register class and find the register with
// max clearance or clearance higher than Pref.
unsigned MaxClearance = 0;
unsigned MaxClearanceReg = OriginalReg;
ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(OpRC);
for (MCPhysReg Reg : Order) {
unsigned Clearance = RDA->getClearance(MI, Reg);
if (Clearance <= MaxClearance)
continue;
MaxClearance = Clearance;
MaxClearanceReg = Reg;
if (MaxClearance > Pref)
break;
}
// Update the operand if we found a register with better clearance.
if (MaxClearanceReg != OriginalReg)
MO.setReg(MaxClearanceReg);
return false;
}
bool BreakFalseDeps::shouldBreakDependence(MachineInstr *MI, unsigned OpIdx,
unsigned Pref) {
unsigned reg = MI->getOperand(OpIdx).getReg();
unsigned Clearance = RDA->getClearance(MI, reg);
DEBUG(dbgs() << "Clearance: " << Clearance << ", want " << Pref);
if (Pref > Clearance) {
DEBUG(dbgs() << ": Break dependency.\n");
return true;
}
DEBUG(dbgs() << ": OK .\n");
return false;
}
void ExecutionDomainFix::processDefs(MachineInstr *MI, bool Kill) {
assert(!MI->isDebugValue() && "Won't process debug values");
const MCInstrDesc &MCID = MI->getDesc();
for (unsigned i = 0,
e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg())
continue;
if (MO.isUse())
continue;
for (int rx : regIndices(MO.getReg())) {
// This instruction explicitly defines rx.
DEBUG(dbgs() << printReg(RC->getRegister(rx), TRI) << ":\t" << *MI);
// Kill off domains redefined by generic instructions.
if (Kill)
kill(rx);
}
}
}
void ReachingDefAnalysis::processDefs(MachineInstr *MI) {
assert(!MI->isDebugValue() && "Won't process debug values");
int MBBNumber = MI->getParent()->getNumber();
assert(MBBNumber < MBBReachingDefs.size() &&
"Unexpected basic block number.");
const MCInstrDesc &MCID = MI->getDesc();
for (unsigned i = 0,
e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.getReg())
continue;
if (MO.isUse())
continue;
for (MCRegUnitIterator Unit(MO.getReg(), TRI); Unit.isValid(); ++Unit) {
// This instruction explicitly defines the current reg unit.
DEBUG(dbgs() << printReg(MO.getReg(), TRI) << ":\t" << CurInstr << '\t'
<< *MI);
// How many instructions since this reg unit was last written?
LiveRegs[*Unit] = CurInstr;
MBBReachingDefs[MBBNumber][*Unit].push_back(CurInstr);
}
}
InstIds[MI] = CurInstr;
++CurInstr;
}
void BreakFalseDeps::processDefs(MachineInstr *MI) {
assert(!MI->isDebugValue() && "Won't process debug values");
// Break dependence on undef uses. Do this before updating LiveRegs below.
unsigned OpNum;
unsigned Pref = TII->getUndefRegClearance(*MI, OpNum, TRI);
if (Pref) {
bool HadTrueDependency = pickBestRegisterForUndef(MI, OpNum, Pref);
// We don't need to bother trying to break a dependency if this
// instruction has a true dependency on that register through another
// operand - we'll have to wait for it to be available regardless.
if (!HadTrueDependency && shouldBreakDependence(MI, OpNum, Pref))
UndefReads.push_back(std::make_pair(MI, OpNum));
}
const MCInstrDesc &MCID = MI->getDesc();
for (unsigned i = 0,
e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.getReg())
continue;
if (MO.isUse())
continue;
// Check clearance before partial register updates.
unsigned Pref = TII->getPartialRegUpdateClearance(*MI, i, TRI);
if (Pref && shouldBreakDependence(MI, i, Pref))
TII->breakPartialRegDependency(*MI, i, TRI);
}
}
void BreakFalseDeps::processUndefReads(MachineBasicBlock *MBB) {
if (UndefReads.empty())
return;
// Collect this block's live out register units.
LiveRegSet.init(*TRI);
// We do not need to care about pristine registers as they are just preserved
// but not actually used in the function.
LiveRegSet.addLiveOutsNoPristines(*MBB);
MachineInstr *UndefMI = UndefReads.back().first;
unsigned OpIdx = UndefReads.back().second;
for (MachineInstr &I : make_range(MBB->rbegin(), MBB->rend())) {
// Update liveness, including the current instruction's defs.
LiveRegSet.stepBackward(I);
if (UndefMI == &I) {
if (!LiveRegSet.contains(UndefMI->getOperand(OpIdx).getReg()))
TII->breakPartialRegDependency(*UndefMI, OpIdx, TRI);
UndefReads.pop_back();
if (UndefReads.empty())
return;
UndefMI = UndefReads.back().first;
OpIdx = UndefReads.back().second;
}
}
}
void ExecutionDomainFix::visitHardInstr(MachineInstr *mi, unsigned domain) {
// Collapse all uses.
for (unsigned i = mi->getDesc().getNumDefs(),
e = mi->getDesc().getNumOperands();
i != e; ++i) {
MachineOperand &mo = mi->getOperand(i);
if (!mo.isReg())
continue;
for (int rx : regIndices(mo.getReg())) {
force(rx, domain);
}
}
// Kill all defs and force them.
for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
MachineOperand &mo = mi->getOperand(i);
if (!mo.isReg())
continue;
for (int rx : regIndices(mo.getReg())) {
kill(rx);
force(rx, domain);
}
}
}
void ExecutionDomainFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
// Bitmask of available domains for this instruction after taking collapsed
// operands into account.
unsigned available = mask;
// Scan the explicit use operands for incoming domains.
SmallVector<int, 4> used;
if (!LiveRegs.empty())
for (unsigned i = mi->getDesc().getNumDefs(),
e = mi->getDesc().getNumOperands();
i != e; ++i) {
MachineOperand &mo = mi->getOperand(i);
if (!mo.isReg())
continue;
for (int rx : regIndices(mo.getReg())) {
DomainValue *dv = LiveRegs[rx];
if (dv == nullptr)
continue;
// Bitmask of domains that dv and available have in common.
unsigned common = dv->getCommonDomains(available);
// Is it possible to use this collapsed register for free?
if (dv->isCollapsed()) {
// Restrict available domains to the ones in common with the operand.
// If there are no common domains, we must pay the cross-domain
// penalty for this operand.
if (common)
available = common;
} else if (common)
// Open DomainValue is compatible, save it for merging.
used.push_back(rx);
else
// Open DomainValue is not compatible with instruction. It is useless
// now.
kill(rx);
}
}
// If the collapsed operands force a single domain, propagate the collapse.
if (isPowerOf2_32(available)) {
unsigned domain = countTrailingZeros(available);
TII->setExecutionDomain(*mi, domain);
visitHardInstr(mi, domain);
return;
}
// Kill off any remaining uses that don't match available, and build a list of
// incoming DomainValues that we want to merge.
SmallVector<int, 4> Regs;
for (int rx : used) {
assert(!LiveRegs.empty() && "no space allocated for live registers");
DomainValue *&LR = LiveRegs[rx];
// This useless DomainValue could have been missed above.
if (!LR->getCommonDomains(available)) {
kill(rx);
continue;
}
// Sorted insertion.
// Enables giving priority to the latest domains during merging.
auto I = std::upper_bound(
Regs.begin(), Regs.end(), rx, [&](int LHS, const int RHS) {
return RDA->getReachingDef(mi, RC->getRegister(LHS)) <
RDA->getReachingDef(mi, RC->getRegister(RHS));
});
Regs.insert(I, rx);
}
// doms are now sorted in order of appearance. Try to merge them all, giving
// priority to the latest ones.
DomainValue *dv = nullptr;
while (!Regs.empty()) {
if (!dv) {
dv = LiveRegs[Regs.pop_back_val()];
// Force the first dv to match the current instruction.
dv->AvailableDomains = dv->getCommonDomains(available);
assert(dv->AvailableDomains && "Domain should have been filtered");
continue;
}
DomainValue *Latest = LiveRegs[Regs.pop_back_val()];
// Skip already merged values.
if (Latest == dv || Latest->Next)
continue;
if (merge(dv, Latest))
continue;
// If latest didn't merge, it is useless now. Kill all registers using it.
for (int i : used) {
assert(!LiveRegs.empty() && "no space allocated for live registers");
if (LiveRegs[i] == Latest)
kill(i);
}
}
// dv is the DomainValue we are going to use for this instruction.
if (!dv) {
dv = alloc();
dv->AvailableDomains = available;
}
dv->Instrs.push_back(mi);
// Finally set all defs and non-collapsed uses to dv. We must iterate through
// all the operators, including imp-def ones.
for (MachineOperand &mo : mi->operands()) {
if (!mo.isReg())
continue;
for (int rx : regIndices(mo.getReg())) {
if (!LiveRegs[rx] || (mo.isDef() && LiveRegs[rx] != dv)) {
kill(rx);
setLiveReg(rx, dv);
}
}
}
}
void ExecutionDomainFix::processBasicBlock(
const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
enterBasicBlock(TraversedMBB);
// If this block is not done, it makes little sense to make any decisions
// based on clearance information. We need to make a second pass anyway,
// and by then we'll have better information, so we can avoid doing the work
// to try and break dependencies now.
for (MachineInstr &MI : *TraversedMBB.MBB) {
if (!MI.isDebugValue()) {
bool Kill = false;
if (TraversedMBB.PrimaryPass)
Kill = visitInstr(&MI);
processDefs(&MI, Kill);
}
}
leaveBasicBlock(TraversedMBB);
}
void ReachingDefAnalysis::processBasicBlock(
const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
enterBasicBlock(TraversedMBB);
for (MachineInstr &MI : *TraversedMBB.MBB) {
if (!MI.isDebugValue())
processDefs(&MI);
}
leaveBasicBlock(TraversedMBB);
}
void BreakFalseDeps::processBasicBlock(MachineBasicBlock *MBB) {
UndefReads.clear();
// If this block is not done, it makes little sense to make any decisions
// based on clearance information. We need to make a second pass anyway,
// and by then we'll have better information, so we can avoid doing the work
// to try and break dependencies now.
for (MachineInstr &MI : *MBB) {
if (!MI.isDebugValue())
processDefs(&MI);
}
processUndefReads(MBB);
}
bool LoopTraversal::isBlockDone(MachineBasicBlock *MBB) {
int MBBNumber = MBB->getNumber();
assert(MBBNumber < MBBInfos.size() && "Unexpected basic block number.");
return MBBInfos[MBBNumber].PrimaryCompleted &&
MBBInfos[MBBNumber].IncomingCompleted ==
MBBInfos[MBBNumber].PrimaryIncoming &&
MBBInfos[MBBNumber].IncomingProcessed == MBB->pred_size();
}
LoopTraversal::TraversalOrder LoopTraversal::traverse(MachineFunction &MF) {
// Initialize the MMBInfos
MBBInfos.assign(MF.getNumBlockIDs(), MBBInfo());
MachineBasicBlock *Entry = &*MF.begin();
ReversePostOrderTraversal<MachineBasicBlock *> RPOT(Entry);
SmallVector<MachineBasicBlock *, 4> Workqueue;
SmallVector<TraversedMBBInfo, 4> MBBTraversalOrder;
for (MachineBasicBlock *MBB : RPOT) {
// N.B: IncomingProcessed and IncomingCompleted were already updated while
// processing this block's predecessors.
int MBBNumber = MBB->getNumber();
assert(MBBNumber < MBBInfos.size() && "Unexpected basic block number.");
MBBInfos[MBBNumber].PrimaryCompleted = true;
MBBInfos[MBBNumber].PrimaryIncoming = MBBInfos[MBBNumber].IncomingProcessed;
bool Primary = true;
Workqueue.push_back(MBB);
while (!Workqueue.empty()) {
MachineBasicBlock *ActiveMBB = &*Workqueue.back();
Workqueue.pop_back();
bool Done = isBlockDone(ActiveMBB);
MBBTraversalOrder.push_back(TraversedMBBInfo(ActiveMBB, Primary, Done));
for (MachineBasicBlock *Succ : ActiveMBB->successors()) {
int SuccNumber = Succ->getNumber();
assert(SuccNumber < MBBInfos.size() &&
"Unexpected basic block number.");
if (!isBlockDone(Succ)) {
if (Primary)
MBBInfos[SuccNumber].IncomingProcessed++;
if (Done)
MBBInfos[SuccNumber].IncomingCompleted++;
if (isBlockDone(Succ))
Workqueue.push_back(Succ);
}
}
Primary = false;
}
}
// We need to go through again and finalize any blocks that are not done yet.
// This is possible if blocks have dead predecessors, so we didn't visit them
// above.
for (MachineBasicBlock *MBB : RPOT) {
if (!isBlockDone(MBB))
MBBTraversalOrder.push_back(TraversedMBBInfo(MBB, false, true));
// Don't update successors here. We'll get to them anyway through this
// loop.
}
MBBInfos.clear();
return MBBTraversalOrder;
}
bool ExecutionDomainFix::runOnMachineFunction(MachineFunction &mf) {
if (skipFunction(mf.getFunction()))
return false;
MF = &mf;
TII = MF->getSubtarget().getInstrInfo();
TRI = MF->getSubtarget().getRegisterInfo();
LiveRegs.clear();
assert(NumRegs == RC->getNumRegs() && "Bad regclass");
DEBUG(dbgs() << "********** FIX EXECUTION DOMAIN: "
<< TRI->getRegClassName(RC) << " **********\n");
// If no relevant registers are used in the function, we can skip it
// completely.
bool anyregs = false;
const MachineRegisterInfo &MRI = mf.getRegInfo();
for (unsigned Reg : *RC) {
if (MRI.isPhysRegUsed(Reg)) {
anyregs = true;
break;
}
}
if (!anyregs)
return false;
RDA = &getAnalysis<ReachingDefAnalysis>();
// Initialize the AliasMap on the first use.
if (AliasMap.empty()) {
// Given a PhysReg, AliasMap[PhysReg] returns a list of indices into RC and
// therefore the LiveRegs array.
AliasMap.resize(TRI->getNumRegs());
for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i)
for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true); AI.isValid();
++AI)
AliasMap[*AI].push_back(i);
}
// Initialize the MBBOutRegsInfos
MBBOutRegsInfos.resize(mf.getNumBlockIDs());
// Traverse the basic blocks.
LoopTraversal Traversal;
LoopTraversal::TraversalOrder TraversedMBBOrder = Traversal.traverse(mf);
for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder) {
processBasicBlock(TraversedMBB);
}
for (LiveRegsDVInfo OutLiveRegs : MBBOutRegsInfos) {
for (DomainValue *OutLiveReg : OutLiveRegs) {
if (OutLiveReg)
release(OutLiveReg);
}
}
MBBOutRegsInfos.clear();
Avail.clear();
Allocator.DestroyAll();
return false;
}
bool ReachingDefAnalysis::runOnMachineFunction(MachineFunction &mf) {
if (skipFunction(mf.getFunction()))
return false;
MF = &mf;
TII = MF->getSubtarget().getInstrInfo();
TRI = MF->getSubtarget().getRegisterInfo();
LiveRegs.clear();
NumRegUnits = TRI->getNumRegUnits();
MBBReachingDefs.resize(mf.getNumBlockIDs());
DEBUG(dbgs() << "********** REACHING DEFINITION ANALYSIS **********\n");
// Initialize the MBBOutRegsInfos
MBBOutRegsInfos.resize(mf.getNumBlockIDs());
// Traverse the basic blocks.
LoopTraversal Traversal;
LoopTraversal::TraversalOrder TraversedMBBOrder = Traversal.traverse(mf);
for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder) {
processBasicBlock(TraversedMBB);
}
// Sorting all reaching defs found for a ceartin reg unit in a given BB.
for (MBBDefsInfo &MBBDefs : MBBReachingDefs) {
for (MBBRegUnitDefs &RegUnitDefs : MBBDefs)
std::sort(RegUnitDefs.begin(), RegUnitDefs.end());
}
return false;
}
void ReachingDefAnalysis::releaseMemory() {
// Clear the internal vectors.
MBBOutRegsInfos.clear();
MBBReachingDefs.clear();
InstIds.clear();
}
bool BreakFalseDeps::runOnMachineFunction(MachineFunction &mf) {
if (skipFunction(mf.getFunction()))
return false;
MF = &mf;
TII = MF->getSubtarget().getInstrInfo();
TRI = MF->getSubtarget().getRegisterInfo();
RDA = &getAnalysis<ReachingDefAnalysis>();
RegClassInfo.runOnMachineFunction(mf);
DEBUG(dbgs() << "********** BREAK FALSE DEPENDENCIES **********\n");
// Traverse the basic blocks.
for (MachineBasicBlock &MBB : mf) {
processBasicBlock(&MBB);
}
return false;
}
int ReachingDefAnalysis::getReachingDef(MachineInstr *MI, int PhysReg) {
assert(InstIds.count(MI) && "Unexpected machine instuction.");
int InstId = InstIds[MI];
int DefRes = ReachingDedDefaultVal;
int MBBNumber = MI->getParent()->getNumber();
assert(MBBNumber < MBBReachingDefs.size() &&
"Unexpected basic block number.");
int LatestDef = ReachingDedDefaultVal;
for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid(); ++Unit) {
for (int Def : MBBReachingDefs[MBBNumber][*Unit]) {
if (Def >= InstId)
break;
DefRes = Def;
}
LatestDef = std::max(LatestDef, DefRes);
}
return LatestDef;
}
int ReachingDefAnalysis::getClearance(MachineInstr *MI, MCPhysReg PhysReg) {
assert(InstIds.count(MI) && "Unexpected machine instuction.");
return InstIds[MI] - getReachingDef(MI, PhysReg);
}