llvm/lib/VMCore/LLVMContextImpl.h
2010-02-18 20:53:16 +00:00

255 lines
7.8 KiB
C++

//===-- LLVMContextImpl.h - The LLVMContextImpl opaque class --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares LLVMContextImpl, the opaque implementation
// of LLVMContext.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LLVMCONTEXT_IMPL_H
#define LLVM_LLVMCONTEXT_IMPL_H
#include "ConstantsContext.h"
#include "LeaksContext.h"
#include "TypesContext.h"
#include "llvm/LLVMContext.h"
#include "llvm/Metadata.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringMap.h"
#include <vector>
namespace llvm {
class ConstantInt;
class ConstantFP;
class MDString;
class MDNode;
class LLVMContext;
class Type;
class Value;
struct DenseMapAPIntKeyInfo {
struct KeyTy {
APInt val;
const Type* type;
KeyTy(const APInt& V, const Type* Ty) : val(V), type(Ty) {}
KeyTy(const KeyTy& that) : val(that.val), type(that.type) {}
bool operator==(const KeyTy& that) const {
return type == that.type && this->val == that.val;
}
bool operator!=(const KeyTy& that) const {
return !this->operator==(that);
}
};
static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); }
static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); }
static unsigned getHashValue(const KeyTy &Key) {
return DenseMapInfo<void*>::getHashValue(Key.type) ^
Key.val.getHashValue();
}
static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
return LHS == RHS;
}
};
struct DenseMapAPFloatKeyInfo {
struct KeyTy {
APFloat val;
KeyTy(const APFloat& V) : val(V){}
KeyTy(const KeyTy& that) : val(that.val) {}
bool operator==(const KeyTy& that) const {
return this->val.bitwiseIsEqual(that.val);
}
bool operator!=(const KeyTy& that) const {
return !this->operator==(that);
}
};
static inline KeyTy getEmptyKey() {
return KeyTy(APFloat(APFloat::Bogus,1));
}
static inline KeyTy getTombstoneKey() {
return KeyTy(APFloat(APFloat::Bogus,2));
}
static unsigned getHashValue(const KeyTy &Key) {
return Key.val.getHashValue();
}
static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
return LHS == RHS;
}
};
class LLVMContextImpl {
public:
typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt*,
DenseMapAPIntKeyInfo> IntMapTy;
IntMapTy IntConstants;
typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*,
DenseMapAPFloatKeyInfo> FPMapTy;
FPMapTy FPConstants;
StringMap<MDString*> MDStringCache;
FoldingSet<MDNode> MDNodeSet;
ConstantUniqueMap<char, Type, ConstantAggregateZero> AggZeroConstants;
typedef ConstantUniqueMap<std::vector<Constant*>, ArrayType,
ConstantArray, true /*largekey*/> ArrayConstantsTy;
ArrayConstantsTy ArrayConstants;
typedef ConstantUniqueMap<std::vector<Constant*>, StructType,
ConstantStruct, true /*largekey*/> StructConstantsTy;
StructConstantsTy StructConstants;
typedef ConstantUniqueMap<Constant*, UnionType, ConstantUnion>
UnionConstantsTy;
UnionConstantsTy UnionConstants;
typedef ConstantUniqueMap<std::vector<Constant*>, VectorType,
ConstantVector> VectorConstantsTy;
VectorConstantsTy VectorConstants;
ConstantUniqueMap<char, PointerType, ConstantPointerNull> NullPtrConstants;
ConstantUniqueMap<char, Type, UndefValue> UndefValueConstants;
DenseMap<std::pair<Function*, BasicBlock*> , BlockAddress*> BlockAddresses;
ConstantUniqueMap<ExprMapKeyType, Type, ConstantExpr> ExprConstants;
ConstantInt *TheTrueVal;
ConstantInt *TheFalseVal;
LeakDetectorImpl<Value> LLVMObjects;
// Basic type instances.
const Type VoidTy;
const Type LabelTy;
const Type FloatTy;
const Type DoubleTy;
const Type MetadataTy;
const Type X86_FP80Ty;
const Type FP128Ty;
const Type PPC_FP128Ty;
const IntegerType Int1Ty;
const IntegerType Int8Ty;
const IntegerType Int16Ty;
const IntegerType Int32Ty;
const IntegerType Int64Ty;
// Concrete/Abstract TypeDescriptions - We lazily calculate type descriptions
// for types as they are needed. Because resolution of types must invalidate
// all of the abstract type descriptions, we keep them in a seperate map to
// make this easy.
TypePrinting ConcreteTypeDescriptions;
TypePrinting AbstractTypeDescriptions;
TypeMap<ArrayValType, ArrayType> ArrayTypes;
TypeMap<VectorValType, VectorType> VectorTypes;
TypeMap<PointerValType, PointerType> PointerTypes;
TypeMap<FunctionValType, FunctionType> FunctionTypes;
TypeMap<StructValType, StructType> StructTypes;
TypeMap<UnionValType, UnionType> UnionTypes;
TypeMap<IntegerValType, IntegerType> IntegerTypes;
// Opaque types are not structurally uniqued, so don't use TypeMap.
typedef SmallPtrSet<const OpaqueType*, 8> OpaqueTypesTy;
OpaqueTypesTy OpaqueTypes;
/// Used as an abstract type that will never be resolved.
OpaqueType *const AlwaysOpaqueTy;
/// ValueHandles - This map keeps track of all of the value handles that are
/// watching a Value*. The Value::HasValueHandle bit is used to know
// whether or not a value has an entry in this map.
typedef DenseMap<Value*, ValueHandleBase*> ValueHandlesTy;
ValueHandlesTy ValueHandles;
/// CustomMDKindNames - Map to hold the metadata string to ID mapping.
StringMap<unsigned> CustomMDKindNames;
typedef std::pair<unsigned, TrackingVH<MDNode> > MDPairTy;
typedef SmallVector<MDPairTy, 2> MDMapTy;
/// MetadataStore - Collection of per-instruction metadata used in this
/// context.
DenseMap<const Instruction *, MDMapTy> MetadataStore;
LLVMContextImpl(LLVMContext &C) : TheTrueVal(0), TheFalseVal(0),
VoidTy(C, Type::VoidTyID),
LabelTy(C, Type::LabelTyID),
FloatTy(C, Type::FloatTyID),
DoubleTy(C, Type::DoubleTyID),
MetadataTy(C, Type::MetadataTyID),
X86_FP80Ty(C, Type::X86_FP80TyID),
FP128Ty(C, Type::FP128TyID),
PPC_FP128Ty(C, Type::PPC_FP128TyID),
Int1Ty(C, 1),
Int8Ty(C, 8),
Int16Ty(C, 16),
Int32Ty(C, 32),
Int64Ty(C, 64),
AlwaysOpaqueTy(new OpaqueType(C)) {
// Make sure the AlwaysOpaqueTy stays alive as long as the Context.
AlwaysOpaqueTy->addRef();
OpaqueTypes.insert(AlwaysOpaqueTy);
}
~LLVMContextImpl() {
ExprConstants.freeConstants();
ArrayConstants.freeConstants();
StructConstants.freeConstants();
VectorConstants.freeConstants();
AggZeroConstants.freeConstants();
NullPtrConstants.freeConstants();
UndefValueConstants.freeConstants();
for (IntMapTy::iterator I = IntConstants.begin(), E = IntConstants.end();
I != E; ++I) {
if (I->second->use_empty())
delete I->second;
}
for (FPMapTy::iterator I = FPConstants.begin(), E = FPConstants.end();
I != E; ++I) {
if (I->second->use_empty())
delete I->second;
}
AlwaysOpaqueTy->dropRef();
for (OpaqueTypesTy::iterator I = OpaqueTypes.begin(), E = OpaqueTypes.end();
I != E; ++I) {
(*I)->AbstractTypeUsers.clear();
delete *I;
}
// Destroy MDNode operands first.
for (FoldingSetIterator<MDNode> I = MDNodeSet.begin(), E = MDNodeSet.end();
I != E;) {
MDNode *N = &(*I);
++I;
N->replaceAllOperandsWithNull();
}
while (!MDNodeSet.empty()) {
MDNode *N = &(*MDNodeSet.begin());
N->destroy();
}
}
};
}
#endif