llvm/lib/Target/SparcV9/SparcV9SchedInfo.cpp
John Criswell b576c94c15 Added LLVM project notice to the top of every C++ source file.
Header files will be on the way.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9298 91177308-0d34-0410-b5e6-96231b3b80d8
2003-10-20 19:43:21 +00:00

772 lines
25 KiB
C++

//===-- UltraSparcSchedInfo.cpp -------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Describe the scheduling characteristics of the UltraSparc
//
//===----------------------------------------------------------------------===//
#include "SparcInternals.h"
/*---------------------------------------------------------------------------
Scheduling guidelines for SPARC IIi:
I-Cache alignment rules (pg 326)
-- Align a branch target instruction so that it's entire group is within
the same cache line (may be 1-4 instructions).
** Don't let a branch that is predicted taken be the last instruction
on an I-cache line: delay slot will need an entire line to be fetched
-- Make a FP instruction or a branch be the 4th instruction in a group.
For branches, there are tradeoffs in reordering to make this happen
(see pg. 327).
** Don't put a branch in a group that crosses a 32-byte boundary!
An artificial branch is inserted after every 32 bytes, and having
another branch will force the group to be broken into 2 groups.
iTLB rules:
-- Don't let a loop span two memory pages, if possible
Branch prediction performance:
-- Don't make the branch in a delay slot the target of a branch
-- Try not to have 2 predicted branches within a group of 4 instructions
(because each such group has a single branch target field).
-- Try to align branches in slots 0, 2, 4 or 6 of a cache line (to avoid
the wrong prediction bits being used in some cases).
D-Cache timing constraints:
-- Signed int loads of less than 64 bits have 3 cycle latency, not 2
-- All other loads that hit in D-Cache have 2 cycle latency
-- All loads are returned IN ORDER, so a D-Cache miss will delay a later hit
-- Mis-aligned loads or stores cause a trap. In particular, replace
mis-aligned FP double precision l/s with 2 single-precision l/s.
-- Simulations of integer codes show increase in avg. group size of
33% when code (including esp. non-faulting loads) is moved across
one branch, and 50% across 2 branches.
E-Cache timing constraints:
-- Scheduling for E-cache (D-Cache misses) is effective (due to load buffering)
Store buffer timing constraints:
-- Stores can be executed in same cycle as instruction producing the value
-- Stores are buffered and have lower priority for E-cache until
highwater mark is reached in the store buffer (5 stores)
Pipeline constraints:
-- Shifts can only use IEU0.
-- CC setting instructions can only use IEU1.
-- Several other instructions must only use IEU1:
EDGE(?), ARRAY(?), CALL, JMPL, BPr, PST, and FCMP.
-- Two instructions cannot store to the same register file in a single cycle
(single write port per file).
Issue and grouping constraints:
-- FP and branch instructions must use slot 4.
-- Shift instructions cannot be grouped with other IEU0-specific instructions.
-- CC setting instructions cannot be grouped with other IEU1-specific instrs.
-- Several instructions must be issued in a single-instruction group:
MOVcc or MOVr, MULs/x and DIVs/x, SAVE/RESTORE, many others
-- A CALL or JMPL breaks a group, ie, is not combined with subsequent instrs.
--
--
Branch delay slot scheduling rules:
-- A CTI couple (two back-to-back CTI instructions in the dynamic stream)
has a 9-instruction penalty: the entire pipeline is flushed when the
second instruction reaches stage 9 (W-Writeback).
-- Avoid putting multicycle instructions, and instructions that may cause
load misses, in the delay slot of an annulling branch.
-- Avoid putting WR, SAVE..., RESTORE and RETURN instructions in the
delay slot of an annulling branch.
*--------------------------------------------------------------------------- */
//---------------------------------------------------------------------------
// List of CPUResources for UltraSPARC IIi.
//---------------------------------------------------------------------------
static const CPUResource AllIssueSlots( "All Instr Slots", 4);
static const CPUResource IntIssueSlots( "Int Instr Slots", 3);
static const CPUResource First3IssueSlots("Instr Slots 0-3", 3);
static const CPUResource LSIssueSlots( "Load-Store Instr Slot", 1);
static const CPUResource CTIIssueSlots( "Ctrl Transfer Instr Slot", 1);
static const CPUResource FPAIssueSlots( "FP Instr Slot 1", 1);
static const CPUResource FPMIssueSlots( "FP Instr Slot 2", 1);
// IEUN instructions can use either Alu and should use IAluN.
// IEU0 instructions must use Alu 1 and should use both IAluN and IAlu0.
// IEU1 instructions must use Alu 2 and should use both IAluN and IAlu1.
static const CPUResource IAluN("Int ALU 1or2", 2);
static const CPUResource IAlu0("Int ALU 1", 1);
static const CPUResource IAlu1("Int ALU 2", 1);
static const CPUResource LSAluC1("Load/Store Unit Addr Cycle", 1);
static const CPUResource LSAluC2("Load/Store Unit Issue Cycle", 1);
static const CPUResource LdReturn("Load Return Unit", 1);
static const CPUResource FPMAluC1("FP Mul/Div Alu Cycle 1", 1);
static const CPUResource FPMAluC2("FP Mul/Div Alu Cycle 2", 1);
static const CPUResource FPMAluC3("FP Mul/Div Alu Cycle 3", 1);
static const CPUResource FPAAluC1("FP Other Alu Cycle 1", 1);
static const CPUResource FPAAluC2("FP Other Alu Cycle 2", 1);
static const CPUResource FPAAluC3("FP Other Alu Cycle 3", 1);
static const CPUResource IRegReadPorts("Int Reg ReadPorts", INT_MAX); // CHECK
static const CPUResource IRegWritePorts("Int Reg WritePorts", 2); // CHECK
static const CPUResource FPRegReadPorts("FP Reg Read Ports", INT_MAX);// CHECK
static const CPUResource FPRegWritePorts("FP Reg Write Ports", 1); // CHECK
static const CPUResource CTIDelayCycle( "CTI delay cycle", 1);
static const CPUResource FCMPDelayCycle("FCMP delay cycle", 1);
//---------------------------------------------------------------------------
// const InstrClassRUsage SparcRUsageDesc[]
//
// Purpose:
// Resource usage information for instruction in each scheduling class.
// The InstrRUsage Objects for individual classes are specified first.
// Note that fetch and decode are decoupled from the execution pipelines
// via an instr buffer, so they are not included in the cycles below.
//---------------------------------------------------------------------------
static const InstrClassRUsage NoneClassRUsage = {
SPARC_NONE,
/*totCycles*/ 7,
/* maxIssueNum */ 4,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 4,
/* feasibleSlots[] */ { 0, 1, 2, 3 },
/*numEntries*/ 0,
/* V[] */ {
/*Cycle G */
/*Ccle E */
/*Cycle C */
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */
}
};
static const InstrClassRUsage IEUNClassRUsage = {
SPARC_IEUN,
/*totCycles*/ 7,
/* maxIssueNum */ 3,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 3,
/* feasibleSlots[] */ { 0, 1, 2 },
/*numEntries*/ 4,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ IntIssueSlots.rid, 0, 1 },
/*Cycle E */ { IAluN.rid, 1, 1 },
/*Cycle C */
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */ { IRegWritePorts.rid, 6, 1 }
}
};
static const InstrClassRUsage IEU0ClassRUsage = {
SPARC_IEU0,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 3,
/* feasibleSlots[] */ { 0, 1, 2 },
/*numEntries*/ 5,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ IntIssueSlots.rid, 0, 1 },
/*Cycle E */ { IAluN.rid, 1, 1 },
{ IAlu0.rid, 1, 1 },
/*Cycle C */
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */ { IRegWritePorts.rid, 6, 1 }
}
};
static const InstrClassRUsage IEU1ClassRUsage = {
SPARC_IEU1,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 3,
/* feasibleSlots[] */ { 0, 1, 2 },
/*numEntries*/ 5,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ IntIssueSlots.rid, 0, 1 },
/*Cycle E */ { IAluN.rid, 1, 1 },
{ IAlu1.rid, 1, 1 },
/*Cycle C */
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */ { IRegWritePorts.rid, 6, 1 }
}
};
static const InstrClassRUsage FPMClassRUsage = {
SPARC_FPM,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 4,
/* feasibleSlots[] */ { 0, 1, 2, 3 },
/*numEntries*/ 7,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ FPMIssueSlots.rid, 0, 1 },
/*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
/*Cycle C */ { FPMAluC1.rid, 2, 1 },
/*Cycle N1*/ { FPMAluC2.rid, 3, 1 },
/*Cycle N1*/ { FPMAluC3.rid, 4, 1 },
/*Cycle N1*/
/*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
}
};
static const InstrClassRUsage FPAClassRUsage = {
SPARC_FPA,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 4,
/* feasibleSlots[] */ { 0, 1, 2, 3 },
/*numEntries*/ 7,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ FPAIssueSlots.rid, 0, 1 },
/*Cycle E */ { FPRegReadPorts.rid, 1, 1 },
/*Cycle C */ { FPAAluC1.rid, 2, 1 },
/*Cycle N1*/ { FPAAluC2.rid, 3, 1 },
/*Cycle N1*/ { FPAAluC3.rid, 4, 1 },
/*Cycle N1*/
/*Cycle W */ { FPRegWritePorts.rid, 6, 1 }
}
};
static const InstrClassRUsage LDClassRUsage = {
SPARC_LD,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 3,
/* feasibleSlots[] */ { 0, 1, 2, },
/*numEntries*/ 6,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ First3IssueSlots.rid, 0, 1 },
{ LSIssueSlots.rid, 0, 1 },
/*Cycle E */ { LSAluC1.rid, 1, 1 },
/*Cycle C */ { LSAluC2.rid, 2, 1 },
{ LdReturn.rid, 2, 1 },
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */ { IRegWritePorts.rid, 6, 1 }
}
};
static const InstrClassRUsage STClassRUsage = {
SPARC_ST,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 3,
/* feasibleSlots[] */ { 0, 1, 2 },
/*numEntries*/ 4,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ First3IssueSlots.rid, 0, 1 },
{ LSIssueSlots.rid, 0, 1 },
/*Cycle E */ { LSAluC1.rid, 1, 1 },
/*Cycle C */ { LSAluC2.rid, 2, 1 }
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */
}
};
static const InstrClassRUsage CTIClassRUsage = {
SPARC_CTI,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ false,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 4,
/* feasibleSlots[] */ { 0, 1, 2, 3 },
/*numEntries*/ 4,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ CTIIssueSlots.rid, 0, 1 },
/*Cycle E */ { IAlu0.rid, 1, 1 },
/*Cycles E-C */ { CTIDelayCycle.rid, 1, 2 }
/*Cycle C */
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */
}
};
static const InstrClassRUsage SingleClassRUsage = {
SPARC_SINGLE,
/*totCycles*/ 7,
/* maxIssueNum */ 1,
/* isSingleIssue */ true,
/* breaksGroup */ false,
/* numBubbles */ 0,
/*numSlots*/ 1,
/* feasibleSlots[] */ { 0 },
/*numEntries*/ 5,
/* V[] */ {
/*Cycle G */ { AllIssueSlots.rid, 0, 1 },
{ AllIssueSlots.rid, 0, 1 },
{ AllIssueSlots.rid, 0, 1 },
{ AllIssueSlots.rid, 0, 1 },
/*Cycle E */ { IAlu0.rid, 1, 1 }
/*Cycle C */
/*Cycle N1*/
/*Cycle N1*/
/*Cycle N1*/
/*Cycle W */
}
};
static const InstrClassRUsage SparcRUsageDesc[] = {
NoneClassRUsage,
IEUNClassRUsage,
IEU0ClassRUsage,
IEU1ClassRUsage,
FPMClassRUsage,
FPAClassRUsage,
CTIClassRUsage,
LDClassRUsage,
STClassRUsage,
SingleClassRUsage
};
//---------------------------------------------------------------------------
// const InstrIssueDelta SparcInstrIssueDeltas[]
//
// Purpose:
// Changes to issue restrictions information in InstrClassRUsage for
// instructions that differ from other instructions in their class.
//---------------------------------------------------------------------------
static const InstrIssueDelta SparcInstrIssueDeltas[] = {
// opCode, isSingleIssue, breaksGroup, numBubbles
// Special cases for single-issue only
// Other single issue cases are below.
//{ V9::LDDA, true, true, 0 },
//{ V9::STDA, true, true, 0 },
//{ V9::LDDF, true, true, 0 },
//{ V9::LDDFA, true, true, 0 },
{ V9::ADDCr, true, true, 0 },
{ V9::ADDCi, true, true, 0 },
{ V9::ADDCccr, true, true, 0 },
{ V9::ADDCcci, true, true, 0 },
{ V9::SUBCr, true, true, 0 },
{ V9::SUBCi, true, true, 0 },
{ V9::SUBCccr, true, true, 0 },
{ V9::SUBCcci, true, true, 0 },
//{ V9::LDSTUB, true, true, 0 },
//{ V9::SWAP, true, true, 0 },
//{ V9::SWAPA, true, true, 0 },
//{ V9::CAS, true, true, 0 },
//{ V9::CASA, true, true, 0 },
//{ V9::CASX, true, true, 0 },
//{ V9::CASXA, true, true, 0 },
//{ V9::LDFSR, true, true, 0 },
//{ V9::LDFSRA, true, true, 0 },
//{ V9::LDXFSR, true, true, 0 },
//{ V9::LDXFSRA, true, true, 0 },
//{ V9::STFSR, true, true, 0 },
//{ V9::STFSRA, true, true, 0 },
//{ V9::STXFSR, true, true, 0 },
//{ V9::STXFSRA, true, true, 0 },
//{ V9::SAVED, true, true, 0 },
//{ V9::RESTORED, true, true, 0 },
//{ V9::FLUSH, true, true, 9 },
//{ V9::FLUSHW, true, true, 9 },
//{ V9::ALIGNADDR, true, true, 0 },
{ V9::RETURNr, true, true, 0 },
{ V9::RETURNi, true, true, 0 },
//{ V9::DONE, true, true, 0 },
//{ V9::RETRY, true, true, 0 },
//{ V9::TCC, true, true, 0 },
//{ V9::SHUTDOWN, true, true, 0 },
// Special cases for breaking group *before*
// CURRENTLY NOT SUPPORTED!
{ V9::CALL, false, false, 0 },
{ V9::JMPLCALLr, false, false, 0 },
{ V9::JMPLCALLi, false, false, 0 },
{ V9::JMPLRETr, false, false, 0 },
{ V9::JMPLRETi, false, false, 0 },
// Special cases for breaking the group *after*
{ V9::MULXr, true, true, (4+34)/2 },
{ V9::MULXi, true, true, (4+34)/2 },
{ V9::FDIVS, false, true, 0 },
{ V9::FDIVD, false, true, 0 },
{ V9::FDIVQ, false, true, 0 },
{ V9::FSQRTS, false, true, 0 },
{ V9::FSQRTD, false, true, 0 },
{ V9::FSQRTQ, false, true, 0 },
//{ V9::FCMP{LE,GT,NE,EQ}, false, true, 0 },
// Instructions that introduce bubbles
//{ V9::MULScc, true, true, 2 },
//{ V9::SMULcc, true, true, (4+18)/2 },
//{ V9::UMULcc, true, true, (4+19)/2 },
{ V9::SDIVXr, true, true, 68 },
{ V9::SDIVXi, true, true, 68 },
{ V9::UDIVXr, true, true, 68 },
{ V9::UDIVXi, true, true, 68 },
//{ V9::SDIVcc, true, true, 36 },
//{ V9::UDIVcc, true, true, 37 },
{ V9::WRCCRr, true, true, 4 },
{ V9::WRCCRi, true, true, 4 },
//{ V9::WRPR, true, true, 4 },
//{ V9::RDCCR, true, true, 0 }, // no bubbles after, but see below
//{ V9::RDPR, true, true, 0 },
};
//---------------------------------------------------------------------------
// const InstrRUsageDelta SparcInstrUsageDeltas[]
//
// Purpose:
// Changes to resource usage information in InstrClassRUsage for
// instructions that differ from other instructions in their class.
//---------------------------------------------------------------------------
static const InstrRUsageDelta SparcInstrUsageDeltas[] = {
// MachineOpCode, Resource, Start cycle, Num cycles
//
// JMPL counts as a load/store instruction for issue!
//
{ V9::JMPLCALLr, LSIssueSlots.rid, 0, 1 },
{ V9::JMPLCALLi, LSIssueSlots.rid, 0, 1 },
{ V9::JMPLRETr, LSIssueSlots.rid, 0, 1 },
{ V9::JMPLRETi, LSIssueSlots.rid, 0, 1 },
//
// Many instructions cannot issue for the next 2 cycles after an FCMP
// We model that with a fake resource FCMPDelayCycle.
//
{ V9::FCMPS, FCMPDelayCycle.rid, 1, 3 },
{ V9::FCMPD, FCMPDelayCycle.rid, 1, 3 },
{ V9::FCMPQ, FCMPDelayCycle.rid, 1, 3 },
{ V9::MULXr, FCMPDelayCycle.rid, 1, 1 },
{ V9::MULXi, FCMPDelayCycle.rid, 1, 1 },
{ V9::SDIVXr, FCMPDelayCycle.rid, 1, 1 },
{ V9::SDIVXi, FCMPDelayCycle.rid, 1, 1 },
{ V9::UDIVXr, FCMPDelayCycle.rid, 1, 1 },
{ V9::UDIVXi, FCMPDelayCycle.rid, 1, 1 },
//{ V9::SMULcc, FCMPDelayCycle.rid, 1, 1 },
//{ V9::UMULcc, FCMPDelayCycle.rid, 1, 1 },
//{ V9::SDIVcc, FCMPDelayCycle.rid, 1, 1 },
//{ V9::UDIVcc, FCMPDelayCycle.rid, 1, 1 },
{ V9::STDFr, FCMPDelayCycle.rid, 1, 1 },
{ V9::STDFi, FCMPDelayCycle.rid, 1, 1 },
{ V9::FMOVRSZ, FCMPDelayCycle.rid, 1, 1 },
{ V9::FMOVRSLEZ,FCMPDelayCycle.rid, 1, 1 },
{ V9::FMOVRSLZ, FCMPDelayCycle.rid, 1, 1 },
{ V9::FMOVRSNZ, FCMPDelayCycle.rid, 1, 1 },
{ V9::FMOVRSGZ, FCMPDelayCycle.rid, 1, 1 },
{ V9::FMOVRSGEZ,FCMPDelayCycle.rid, 1, 1 },
//
// Some instructions are stalled in the GROUP stage if a CTI is in
// the E or C stage. We model that with a fake resource CTIDelayCycle.
//
{ V9::LDDFr, CTIDelayCycle.rid, 1, 1 },
{ V9::LDDFi, CTIDelayCycle.rid, 1, 1 },
//{ V9::LDDA, CTIDelayCycle.rid, 1, 1 },
//{ V9::LDDSTUB, CTIDelayCycle.rid, 1, 1 },
//{ V9::LDDSTUBA, CTIDelayCycle.rid, 1, 1 },
//{ V9::SWAP, CTIDelayCycle.rid, 1, 1 },
//{ V9::SWAPA, CTIDelayCycle.rid, 1, 1 },
//{ V9::CAS, CTIDelayCycle.rid, 1, 1 },
//{ V9::CASA, CTIDelayCycle.rid, 1, 1 },
//{ V9::CASX, CTIDelayCycle.rid, 1, 1 },
//{ V9::CASXA, CTIDelayCycle.rid, 1, 1 },
//
// Signed int loads of less than dword size return data in cycle N1 (not C)
// and put all loads in consecutive cycles into delayed load return mode.
//
{ V9::LDSBr, LdReturn.rid, 2, -1 },
{ V9::LDSBr, LdReturn.rid, 3, 1 },
{ V9::LDSBi, LdReturn.rid, 2, -1 },
{ V9::LDSBi, LdReturn.rid, 3, 1 },
{ V9::LDSHr, LdReturn.rid, 2, -1 },
{ V9::LDSHr, LdReturn.rid, 3, 1 },
{ V9::LDSHi, LdReturn.rid, 2, -1 },
{ V9::LDSHi, LdReturn.rid, 3, 1 },
{ V9::LDSWr, LdReturn.rid, 2, -1 },
{ V9::LDSWr, LdReturn.rid, 3, 1 },
{ V9::LDSWi, LdReturn.rid, 2, -1 },
{ V9::LDSWi, LdReturn.rid, 3, 1 },
//
// RDPR from certain registers and RD from any register are not dispatchable
// until four clocks after they reach the head of the instr. buffer.
// Together with their single-issue requirement, this means all four issue
// slots are effectively blocked for those cycles, plus the issue cycle.
// This does not increase the latency of the instruction itself.
//
{ V9::RDCCR, AllIssueSlots.rid, 0, 5 },
{ V9::RDCCR, AllIssueSlots.rid, 0, 5 },
{ V9::RDCCR, AllIssueSlots.rid, 0, 5 },
{ V9::RDCCR, AllIssueSlots.rid, 0, 5 },
#undef EXPLICIT_BUBBLES_NEEDED
#ifdef EXPLICIT_BUBBLES_NEEDED
//
// MULScc inserts one bubble.
// This means it breaks the current group (captured in UltraSparcSchedInfo)
// *and occupies all issue slots for the next cycle
//
//{ V9::MULScc, AllIssueSlots.rid, 2, 2-1 },
//{ V9::MULScc, AllIssueSlots.rid, 2, 2-1 },
//{ V9::MULScc, AllIssueSlots.rid, 2, 2-1 },
//{ V9::MULScc, AllIssueSlots.rid, 2, 2-1 },
//
// SMULcc inserts between 4 and 18 bubbles, depending on #leading 0s in rs1.
// We just model this with a simple average.
//
//{ V9::SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
//{ V9::SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
//{ V9::SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
//{ V9::SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 },
// SMULcc inserts between 4 and 19 bubbles, depending on #leading 0s in rs1.
//{ V9::UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
//{ V9::UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
//{ V9::UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
//{ V9::UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 },
//
// MULX inserts between 4 and 34 bubbles, depending on #leading 0s in rs1.
//
{ V9::MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
{ V9::MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
{ V9::MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
{ V9::MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 },
//
// SDIVcc inserts 36 bubbles.
//
//{ V9::SDIVcc, AllIssueSlots.rid, 2, 36-1 },
//{ V9::SDIVcc, AllIssueSlots.rid, 2, 36-1 },
//{ V9::SDIVcc, AllIssueSlots.rid, 2, 36-1 },
//{ V9::SDIVcc, AllIssueSlots.rid, 2, 36-1 },
// UDIVcc inserts 37 bubbles.
//{ V9::UDIVcc, AllIssueSlots.rid, 2, 37-1 },
//{ V9::UDIVcc, AllIssueSlots.rid, 2, 37-1 },
//{ V9::UDIVcc, AllIssueSlots.rid, 2, 37-1 },
//{ V9::UDIVcc, AllIssueSlots.rid, 2, 37-1 },
//
// SDIVX inserts 68 bubbles.
//
{ V9::SDIVX, AllIssueSlots.rid, 2, 68-1 },
{ V9::SDIVX, AllIssueSlots.rid, 2, 68-1 },
{ V9::SDIVX, AllIssueSlots.rid, 2, 68-1 },
{ V9::SDIVX, AllIssueSlots.rid, 2, 68-1 },
//
// UDIVX inserts 68 bubbles.
//
{ V9::UDIVX, AllIssueSlots.rid, 2, 68-1 },
{ V9::UDIVX, AllIssueSlots.rid, 2, 68-1 },
{ V9::UDIVX, AllIssueSlots.rid, 2, 68-1 },
{ V9::UDIVX, AllIssueSlots.rid, 2, 68-1 },
//
// WR inserts 4 bubbles.
//
//{ V9::WR, AllIssueSlots.rid, 2, 68-1 },
//{ V9::WR, AllIssueSlots.rid, 2, 68-1 },
//{ V9::WR, AllIssueSlots.rid, 2, 68-1 },
//{ V9::WR, AllIssueSlots.rid, 2, 68-1 },
//
// WRPR inserts 4 bubbles.
//
//{ V9::WRPR, AllIssueSlots.rid, 2, 68-1 },
//{ V9::WRPR, AllIssueSlots.rid, 2, 68-1 },
//{ V9::WRPR, AllIssueSlots.rid, 2, 68-1 },
//{ V9::WRPR, AllIssueSlots.rid, 2, 68-1 },
//
// DONE inserts 9 bubbles.
//
//{ V9::DONE, AllIssueSlots.rid, 2, 9-1 },
//{ V9::DONE, AllIssueSlots.rid, 2, 9-1 },
//{ V9::DONE, AllIssueSlots.rid, 2, 9-1 },
//{ V9::DONE, AllIssueSlots.rid, 2, 9-1 },
//
// RETRY inserts 9 bubbles.
//
//{ V9::RETRY, AllIssueSlots.rid, 2, 9-1 },
//{ V9::RETRY, AllIssueSlots.rid, 2, 9-1 },
//{ V9::RETRY, AllIssueSlots.rid, 2, 9-1 },
//{ V9::RETRY, AllIssueSlots.rid, 2, 9-1 },
#endif /*EXPLICIT_BUBBLES_NEEDED */
};
// Additional delays to be captured in code:
// 1. RDPR from several state registers (page 349)
// 2. RD from *any* register (page 349)
// 3. Writes to TICK, PSTATE, TL registers and FLUSH{W} instr (page 349)
// 4. Integer store can be in same group as instr producing value to store.
// 5. BICC and BPICC can be in the same group as instr producing CC (pg 350)
// 6. FMOVr cannot be in the same or next group as an IEU instr (pg 351).
// 7. The second instr. of a CTI group inserts 9 bubbles (pg 351)
// 8. WR{PR}, SVAE, SAVED, RESTORE, RESTORED, RETURN, RETRY, and DONE that
// follow an annulling branch cannot be issued in the same group or in
// the 3 groups following the branch.
// 9. A predicted annulled load does not stall dependent instructions.
// Other annulled delay slot instructions *do* stall dependents, so
// nothing special needs to be done for them during scheduling.
//10. Do not put a load use that may be annulled in the same group as the
// branch. The group will stall until the load returns.
//11. Single-prec. FP loads lock 2 registers, for dependency checking.
//
//
// Additional delays we cannot or will not capture:
// 1. If DCTI is last word of cache line, it is delayed until next line can be
// fetched. Also, other DCTI alignment-related delays (pg 352)
// 2. Load-after-store is delayed by 7 extra cycles if load hits in D-Cache.
// Also, several other store-load and load-store conflicts (pg 358)
// 3. MEMBAR, LD{X}FSR, LDD{A} and a bunch of other load stalls (pg 358)
// 4. There can be at most 8 outstanding buffered store instructions
// (including some others like MEMBAR, LDSTUB, CAS{AX}, and FLUSH)
//---------------------------------------------------------------------------
// class UltraSparcSchedInfo
//
// Purpose:
// Scheduling information for the UltraSPARC.
// Primarily just initializes machine-dependent parameters in
// class TargetSchedInfo.
//---------------------------------------------------------------------------
/*ctor*/
UltraSparcSchedInfo::UltraSparcSchedInfo(const TargetMachine& tgt)
: TargetSchedInfo(tgt,
(unsigned int) SPARC_NUM_SCHED_CLASSES,
SparcRUsageDesc,
SparcInstrUsageDeltas,
SparcInstrIssueDeltas,
sizeof(SparcInstrUsageDeltas)/sizeof(InstrRUsageDelta),
sizeof(SparcInstrIssueDeltas)/sizeof(InstrIssueDelta))
{
maxNumIssueTotal = 4;
longestIssueConflict = 0; // computed from issuesGaps[]
branchMispredictPenalty = 4; // 4 for SPARC IIi
branchTargetUnknownPenalty = 2; // 2 for SPARC IIi
l1DCacheMissPenalty = 8; // 7 or 9 for SPARC IIi
l1ICacheMissPenalty = 8; // ? for SPARC IIi
inOrderLoads = true; // true for SPARC IIi
inOrderIssue = true; // true for SPARC IIi
inOrderExec = false; // false for most architectures
inOrderRetire= true; // true for most architectures
// must be called after above parameters are initialized.
initializeResources();
}
void
UltraSparcSchedInfo::initializeResources()
{
// Compute TargetSchedInfo::instrRUsages and TargetSchedInfo::issueGaps
TargetSchedInfo::initializeResources();
// Machine-dependent fixups go here. None for now.
}