llvm/lib/Target/Mips/MipsFastISel.cpp
Reed Kotler 34ad085eec Add mips32 r1 to the list of supported targets for Mips fast-isel
Summary:
Expand list of supported targets for Mips to include mips32 r1.
Previously it only include r2. More patches are coming where there is 
a difference but in the current patches as pushed upstream, r1 and r2
are equivalent.

Test Plan:
simplestorefp1.ll

add new build bots at mips to test this flavor at both -O0 and -O2

Reviewers: dsanders

Reviewed By: dsanders

Differential Revision: http://reviews.llvm.org/D5306

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217821 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-15 20:30:25 +00:00

411 lines
12 KiB
C++

//===-- MipsastISel.cpp - Mips FastISel implementation
//---------------------===//
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "MipsRegisterInfo.h"
#include "MipsISelLowering.h"
#include "MipsMachineFunction.h"
#include "MipsSubtarget.h"
#include "MipsTargetMachine.h"
using namespace llvm;
namespace {
// All possible address modes.
typedef struct Address {
enum { RegBase, FrameIndexBase } BaseType;
union {
unsigned Reg;
int FI;
} Base;
int64_t Offset;
// Innocuous defaults for our address.
Address() : BaseType(RegBase), Offset(0) { Base.Reg = 0; }
} Address;
class MipsFastISel final : public FastISel {
/// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
/// make the right decision when generating code for different targets.
Module &M;
const TargetMachine &TM;
const TargetInstrInfo &TII;
const TargetLowering &TLI;
const MipsSubtarget *Subtarget;
MipsFunctionInfo *MFI;
// Convenience variables to avoid some queries.
LLVMContext *Context;
bool TargetSupported;
public:
explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo)
: FastISel(funcInfo, libInfo),
M(const_cast<Module &>(*funcInfo.Fn->getParent())),
TM(funcInfo.MF->getTarget()),
TII(*TM.getSubtargetImpl()->getInstrInfo()),
TLI(*TM.getSubtargetImpl()->getTargetLowering()),
Subtarget(&TM.getSubtarget<MipsSubtarget>()) {
MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
Context = &funcInfo.Fn->getContext();
TargetSupported = ((Subtarget->getRelocationModel() == Reloc::PIC_) &&
((Subtarget->hasMips32r2() || Subtarget->hasMips32()) &&
(Subtarget->isABI_O32())));
}
bool fastSelectInstruction(const Instruction *I) override;
unsigned fastMaterializeConstant(const Constant *C) override;
bool ComputeAddress(const Value *Obj, Address &Addr);
private:
bool EmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
unsigned Alignment = 0);
bool EmitStore(MVT VT, unsigned SrcReg, Address &Addr,
unsigned Alignment = 0);
bool SelectLoad(const Instruction *I);
bool SelectRet(const Instruction *I);
bool SelectStore(const Instruction *I);
bool isTypeLegal(Type *Ty, MVT &VT);
bool isLoadTypeLegal(Type *Ty, MVT &VT);
unsigned MaterializeFP(const ConstantFP *CFP, MVT VT);
unsigned MaterializeGV(const GlobalValue *GV, MVT VT);
unsigned MaterializeInt(const Constant *C, MVT VT);
unsigned Materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC);
// for some reason, this default is not generated by tablegen
// so we explicitly generate it here.
//
unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill, uint64_t imm1,
uint64_t imm2, unsigned Op3, bool Op3IsKill) {
return 0;
}
MachineInstrBuilder EmitInst(unsigned Opc) {
return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
}
MachineInstrBuilder EmitInst(unsigned Opc, unsigned DstReg) {
return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
DstReg);
}
MachineInstrBuilder EmitInstStore(unsigned Opc, unsigned SrcReg,
unsigned MemReg, int64_t MemOffset) {
return EmitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset);
}
MachineInstrBuilder EmitInstLoad(unsigned Opc, unsigned DstReg,
unsigned MemReg, int64_t MemOffset) {
return EmitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset);
}
#include "MipsGenFastISel.inc"
};
bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) {
EVT evt = TLI.getValueType(Ty, true);
// Only handle simple types.
if (evt == MVT::Other || !evt.isSimple())
return false;
VT = evt.getSimpleVT();
// Handle all legal types, i.e. a register that will directly hold this
// value.
return TLI.isTypeLegal(VT);
}
bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
if (isTypeLegal(Ty, VT))
return true;
// We will extend this in a later patch:
// If this is a type than can be sign or zero-extended to a basic operation
// go ahead and accept it now.
if (VT == MVT::i8 || VT == MVT::i16)
return true;
return false;
}
bool MipsFastISel::ComputeAddress(const Value *Obj, Address &Addr) {
// This construct looks a big awkward but it is how other ports handle this
// and as this function is more fully completed, these cases which
// return false will have additional code in them.
//
if (isa<Instruction>(Obj))
return false;
else if (isa<ConstantExpr>(Obj))
return false;
Addr.Base.Reg = getRegForValue(Obj);
return Addr.Base.Reg != 0;
}
bool MipsFastISel::EmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
unsigned Alignment) {
//
// more cases will be handled here in following patches.
//
unsigned Opc;
switch (VT.SimpleTy) {
case MVT::i32: {
ResultReg = createResultReg(&Mips::GPR32RegClass);
Opc = Mips::LW;
break;
}
case MVT::i16: {
ResultReg = createResultReg(&Mips::GPR32RegClass);
Opc = Mips::LHu;
break;
}
case MVT::i8: {
ResultReg = createResultReg(&Mips::GPR32RegClass);
Opc = Mips::LBu;
break;
}
case MVT::f32: {
ResultReg = createResultReg(&Mips::FGR32RegClass);
Opc = Mips::LWC1;
break;
}
case MVT::f64: {
ResultReg = createResultReg(&Mips::AFGR64RegClass);
Opc = Mips::LDC1;
break;
}
default:
return false;
}
EmitInstLoad(Opc, ResultReg, Addr.Base.Reg, Addr.Offset);
return true;
}
// Materialize a constant into a register, and return the register
// number (or zero if we failed to handle it).
unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) {
EVT CEVT = TLI.getValueType(C->getType(), true);
// Only handle simple types.
if (!CEVT.isSimple())
return 0;
MVT VT = CEVT.getSimpleVT();
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
return MaterializeFP(CFP, VT);
else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
return MaterializeGV(GV, VT);
else if (isa<ConstantInt>(C))
return MaterializeInt(C, VT);
return 0;
}
bool MipsFastISel::EmitStore(MVT VT, unsigned SrcReg, Address &Addr,
unsigned Alignment) {
//
// more cases will be handled here in following patches.
//
unsigned Opc;
switch (VT.SimpleTy) {
case MVT::i8:
Opc = Mips::SB;
break;
case MVT::i16:
Opc = Mips::SH;
break;
case MVT::i32:
Opc = Mips::SW;
break;
case MVT::f32:
Opc = Mips::SWC1;
break;
case MVT::f64:
Opc = Mips::SDC1;
break;
default:
return false;
}
EmitInstStore(Opc, SrcReg, Addr.Base.Reg, Addr.Offset);
return true;
}
bool MipsFastISel::SelectLoad(const Instruction *I) {
// Atomic loads need special handling.
if (cast<LoadInst>(I)->isAtomic())
return false;
// Verify we have a legal type before going any further.
MVT VT;
if (!isLoadTypeLegal(I->getType(), VT))
return false;
// See if we can handle this address.
Address Addr;
if (!ComputeAddress(I->getOperand(0), Addr))
return false;
unsigned ResultReg;
if (!EmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
return false;
updateValueMap(I, ResultReg);
return true;
}
bool MipsFastISel::SelectStore(const Instruction *I) {
Value *Op0 = I->getOperand(0);
unsigned SrcReg = 0;
// Atomic stores need special handling.
if (cast<StoreInst>(I)->isAtomic())
return false;
// Verify we have a legal type before going any further.
MVT VT;
if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
return false;
// Get the value to be stored into a register.
SrcReg = getRegForValue(Op0);
if (SrcReg == 0)
return false;
// See if we can handle this address.
Address Addr;
if (!ComputeAddress(I->getOperand(1), Addr))
return false;
if (!EmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
return false;
return true;
}
bool MipsFastISel::SelectRet(const Instruction *I) {
const ReturnInst *Ret = cast<ReturnInst>(I);
if (!FuncInfo.CanLowerReturn)
return false;
if (Ret->getNumOperands() > 0) {
return false;
}
EmitInst(Mips::RetRA);
return true;
}
bool MipsFastISel::fastSelectInstruction(const Instruction *I) {
if (!TargetSupported)
return false;
switch (I->getOpcode()) {
default:
break;
case Instruction::Load:
return SelectLoad(I);
case Instruction::Store:
return SelectStore(I);
case Instruction::Ret:
return SelectRet(I);
}
return false;
}
}
unsigned MipsFastISel::MaterializeFP(const ConstantFP *CFP, MVT VT) {
int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
if (VT == MVT::f32) {
const TargetRegisterClass *RC = &Mips::FGR32RegClass;
unsigned DestReg = createResultReg(RC);
unsigned TempReg = Materialize32BitInt(Imm, &Mips::GPR32RegClass);
EmitInst(Mips::MTC1, DestReg).addReg(TempReg);
return DestReg;
} else if (VT == MVT::f64) {
const TargetRegisterClass *RC = &Mips::AFGR64RegClass;
unsigned DestReg = createResultReg(RC);
unsigned TempReg1 = Materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass);
unsigned TempReg2 =
Materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass);
EmitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1);
return DestReg;
}
return 0;
}
unsigned MipsFastISel::MaterializeGV(const GlobalValue *GV, MVT VT) {
// For now 32-bit only.
if (VT != MVT::i32)
return 0;
const TargetRegisterClass *RC = &Mips::GPR32RegClass;
unsigned DestReg = createResultReg(RC);
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
bool IsThreadLocal = GVar && GVar->isThreadLocal();
// TLS not supported at this time.
if (IsThreadLocal)
return 0;
EmitInst(Mips::LW, DestReg).addReg(MFI->getGlobalBaseReg()).addGlobalAddress(
GV, 0, MipsII::MO_GOT);
if ((GV->hasInternalLinkage() ||
(GV->hasLocalLinkage() && !isa<Function>(GV)))) {
unsigned TempReg = createResultReg(RC);
EmitInst(Mips::ADDiu, TempReg).addReg(DestReg).addGlobalAddress(
GV, 0, MipsII::MO_ABS_LO);
DestReg = TempReg;
}
return DestReg;
}
unsigned MipsFastISel::MaterializeInt(const Constant *C, MVT VT) {
if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
return 0;
const TargetRegisterClass *RC = &Mips::GPR32RegClass;
const ConstantInt *CI = cast<ConstantInt>(C);
int64_t Imm;
if ((VT != MVT::i1) && CI->isNegative())
Imm = CI->getSExtValue();
else
Imm = CI->getZExtValue();
return Materialize32BitInt(Imm, RC);
}
unsigned MipsFastISel::Materialize32BitInt(int64_t Imm,
const TargetRegisterClass *RC) {
unsigned ResultReg = createResultReg(RC);
if (isInt<16>(Imm)) {
unsigned Opc = Mips::ADDiu;
EmitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm);
return ResultReg;
} else if (isUInt<16>(Imm)) {
EmitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm);
return ResultReg;
}
unsigned Lo = Imm & 0xFFFF;
unsigned Hi = (Imm >> 16) & 0xFFFF;
if (Lo) {
// Both Lo and Hi have nonzero bits.
unsigned TmpReg = createResultReg(RC);
EmitInst(Mips::LUi, TmpReg).addImm(Hi);
EmitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo);
} else {
EmitInst(Mips::LUi, ResultReg).addImm(Hi);
}
return ResultReg;
}
namespace llvm {
FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) {
return new MipsFastISel(funcInfo, libInfo);
}
}