llvm/lib/Target/Mips/MipsISelLowering.h
Benjamin Kramer 00e08fcaa0 Canonicalize header guards into a common format.
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)

Changes made by clang-tidy with minor tweaks.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215558 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-13 16:26:38 +00:00

629 lines
23 KiB
C++

//===-- MipsISelLowering.h - Mips DAG Lowering Interface --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that Mips uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_MIPS_MIPSISELLOWERING_H
#define LLVM_LIB_TARGET_MIPS_MIPSISELLOWERING_H
#include "MCTargetDesc/MipsBaseInfo.h"
#include "Mips.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/Function.h"
#include "llvm/Target/TargetLowering.h"
#include <deque>
#include <string>
namespace llvm {
namespace MipsISD {
enum NodeType {
// Start the numbering from where ISD NodeType finishes.
FIRST_NUMBER = ISD::BUILTIN_OP_END,
// Jump and link (call)
JmpLink,
// Tail call
TailCall,
// Get the Higher 16 bits from a 32-bit immediate
// No relation with Mips Hi register
Hi,
// Get the Lower 16 bits from a 32-bit immediate
// No relation with Mips Lo register
Lo,
// Handle gp_rel (small data/bss sections) relocation.
GPRel,
// Thread Pointer
ThreadPointer,
// Floating Point Branch Conditional
FPBrcond,
// Floating Point Compare
FPCmp,
// Floating Point Conditional Moves
CMovFP_T,
CMovFP_F,
// FP-to-int truncation node.
TruncIntFP,
// Return
Ret,
EH_RETURN,
// Node used to extract integer from accumulator.
MFHI,
MFLO,
// Node used to insert integers to accumulator.
MTLOHI,
// Mult nodes.
Mult,
Multu,
// MAdd/Sub nodes
MAdd,
MAddu,
MSub,
MSubu,
// DivRem(u)
DivRem,
DivRemU,
DivRem16,
DivRemU16,
BuildPairF64,
ExtractElementF64,
Wrapper,
DynAlloc,
Sync,
Ext,
Ins,
// EXTR.W instrinsic nodes.
EXTP,
EXTPDP,
EXTR_S_H,
EXTR_W,
EXTR_R_W,
EXTR_RS_W,
SHILO,
MTHLIP,
// DPA.W intrinsic nodes.
MULSAQ_S_W_PH,
MAQ_S_W_PHL,
MAQ_S_W_PHR,
MAQ_SA_W_PHL,
MAQ_SA_W_PHR,
DPAU_H_QBL,
DPAU_H_QBR,
DPSU_H_QBL,
DPSU_H_QBR,
DPAQ_S_W_PH,
DPSQ_S_W_PH,
DPAQ_SA_L_W,
DPSQ_SA_L_W,
DPA_W_PH,
DPS_W_PH,
DPAQX_S_W_PH,
DPAQX_SA_W_PH,
DPAX_W_PH,
DPSX_W_PH,
DPSQX_S_W_PH,
DPSQX_SA_W_PH,
MULSA_W_PH,
MULT,
MULTU,
MADD_DSP,
MADDU_DSP,
MSUB_DSP,
MSUBU_DSP,
// DSP shift nodes.
SHLL_DSP,
SHRA_DSP,
SHRL_DSP,
// DSP setcc and select_cc nodes.
SETCC_DSP,
SELECT_CC_DSP,
// Vector comparisons.
// These take a vector and return a boolean.
VALL_ZERO,
VANY_ZERO,
VALL_NONZERO,
VANY_NONZERO,
// These take a vector and return a vector bitmask.
VCEQ,
VCLE_S,
VCLE_U,
VCLT_S,
VCLT_U,
// Element-wise vector max/min.
VSMAX,
VSMIN,
VUMAX,
VUMIN,
// Vector Shuffle with mask as an operand
VSHF, // Generic shuffle
SHF, // 4-element set shuffle.
ILVEV, // Interleave even elements
ILVOD, // Interleave odd elements
ILVL, // Interleave left elements
ILVR, // Interleave right elements
PCKEV, // Pack even elements
PCKOD, // Pack odd elements
// Vector Lane Copy
INSVE, // Copy element from one vector to another
// Combined (XOR (OR $a, $b), -1)
VNOR,
// Extended vector element extraction
VEXTRACT_SEXT_ELT,
VEXTRACT_ZEXT_ELT,
// Load/Store Left/Right nodes.
LWL = ISD::FIRST_TARGET_MEMORY_OPCODE,
LWR,
SWL,
SWR,
LDL,
LDR,
SDL,
SDR
};
}
//===--------------------------------------------------------------------===//
// TargetLowering Implementation
//===--------------------------------------------------------------------===//
class MipsFunctionInfo;
class MipsSubtarget;
class MipsTargetLowering : public TargetLowering {
bool isMicroMips;
public:
explicit MipsTargetLowering(MipsTargetMachine &TM,
const MipsSubtarget &STI);
static const MipsTargetLowering *create(MipsTargetMachine &TM,
const MipsSubtarget &STI);
/// createFastISel - This method returns a target specific FastISel object,
/// or null if the target does not support "fast" ISel.
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) const override;
MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i32; }
void LowerOperationWrapper(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const override;
/// LowerOperation - Provide custom lowering hooks for some operations.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
/// ReplaceNodeResults - Replace the results of node with an illegal result
/// type with new values built out of custom code.
///
void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) const override;
/// getTargetNodeName - This method returns the name of a target specific
// DAG node.
const char *getTargetNodeName(unsigned Opcode) const override;
/// getSetCCResultType - get the ISD::SETCC result ValueType
EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *MBB) const override;
struct LTStr {
bool operator()(const char *S1, const char *S2) const {
return strcmp(S1, S2) < 0;
}
};
protected:
SDValue getGlobalReg(SelectionDAG &DAG, EVT Ty) const;
// This method creates the following nodes, which are necessary for
// computing a local symbol's address:
//
// (add (load (wrapper $gp, %got(sym)), %lo(sym))
template <class NodeTy>
SDValue getAddrLocal(NodeTy *N, EVT Ty, SelectionDAG &DAG,
bool IsN32OrN64) const {
SDLoc DL(N);
unsigned GOTFlag = IsN32OrN64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
getTargetNode(N, Ty, DAG, GOTFlag));
SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
MachinePointerInfo::getGOT(), false, false,
false, 0);
unsigned LoFlag = IsN32OrN64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty,
getTargetNode(N, Ty, DAG, LoFlag));
return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
}
// This method creates the following nodes, which are necessary for
// computing a global symbol's address:
//
// (load (wrapper $gp, %got(sym)))
template<class NodeTy>
SDValue getAddrGlobal(NodeTy *N, EVT Ty, SelectionDAG &DAG,
unsigned Flag, SDValue Chain,
const MachinePointerInfo &PtrInfo) const {
SDLoc DL(N);
SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, getGlobalReg(DAG, Ty),
getTargetNode(N, Ty, DAG, Flag));
return DAG.getLoad(Ty, DL, Chain, Tgt, PtrInfo, false, false, false, 0);
}
// This method creates the following nodes, which are necessary for
// computing a global symbol's address in large-GOT mode:
//
// (load (wrapper (add %hi(sym), $gp), %lo(sym)))
template<class NodeTy>
SDValue getAddrGlobalLargeGOT(NodeTy *N, EVT Ty, SelectionDAG &DAG,
unsigned HiFlag, unsigned LoFlag,
SDValue Chain,
const MachinePointerInfo &PtrInfo) const {
SDLoc DL(N);
SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty,
getTargetNode(N, Ty, DAG, HiFlag));
Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, getGlobalReg(DAG, Ty));
SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
getTargetNode(N, Ty, DAG, LoFlag));
return DAG.getLoad(Ty, DL, Chain, Wrapper, PtrInfo, false, false, false,
0);
}
// This method creates the following nodes, which are necessary for
// computing a symbol's address in non-PIC mode:
//
// (add %hi(sym), %lo(sym))
template<class NodeTy>
SDValue getAddrNonPIC(NodeTy *N, EVT Ty, SelectionDAG &DAG) const {
SDLoc DL(N);
SDValue Hi = getTargetNode(N, Ty, DAG, MipsII::MO_ABS_HI);
SDValue Lo = getTargetNode(N, Ty, DAG, MipsII::MO_ABS_LO);
return DAG.getNode(ISD::ADD, DL, Ty,
DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
}
/// This function fills Ops, which is the list of operands that will later
/// be used when a function call node is created. It also generates
/// copyToReg nodes to set up argument registers.
virtual void
getOpndList(SmallVectorImpl<SDValue> &Ops,
std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const;
/// ByValArgInfo - Byval argument information.
struct ByValArgInfo {
unsigned FirstIdx; // Index of the first register used.
unsigned NumRegs; // Number of registers used for this argument.
unsigned Address; // Offset of the stack area used to pass this argument.
ByValArgInfo() : FirstIdx(0), NumRegs(0), Address(0) {}
};
/// MipsCC - This class provides methods used to analyze formal and call
/// arguments and inquire about calling convention information.
class MipsCC {
public:
enum SpecialCallingConvType {
Mips16RetHelperConv, NoSpecialCallingConv
};
MipsCC(CallingConv::ID CallConv, bool IsO32, bool IsFP64, CCState &Info,
SpecialCallingConvType SpecialCallingConv = NoSpecialCallingConv);
void analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
bool IsVarArg, bool IsSoftFloat,
const SDNode *CallNode,
std::vector<ArgListEntry> &FuncArgs);
void analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
bool IsSoftFloat,
Function::const_arg_iterator FuncArg);
void analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
bool IsSoftFloat, const SDNode *CallNode,
const Type *RetTy) const;
void analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
bool IsSoftFloat, const Type *RetTy) const;
const CCState &getCCInfo() const { return CCInfo; }
/// hasByValArg - Returns true if function has byval arguments.
bool hasByValArg() const { return !ByValArgs.empty(); }
/// regSize - Size (in number of bits) of integer registers.
unsigned regSize() const { return IsO32 ? 4 : 8; }
/// numIntArgRegs - Number of integer registers available for calls.
unsigned numIntArgRegs() const;
/// reservedArgArea - The size of the area the caller reserves for
/// register arguments. This is 16-byte if ABI is O32.
unsigned reservedArgArea() const;
/// Return pointer to array of integer argument registers.
const MCPhysReg *intArgRegs() const;
typedef SmallVectorImpl<ByValArgInfo>::const_iterator byval_iterator;
byval_iterator byval_begin() const { return ByValArgs.begin(); }
byval_iterator byval_end() const { return ByValArgs.end(); }
private:
void handleByValArg(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags);
/// useRegsForByval - Returns true if the calling convention allows the
/// use of registers to pass byval arguments.
bool useRegsForByval() const { return CallConv != CallingConv::Fast; }
/// Return the function that analyzes fixed argument list functions.
llvm::CCAssignFn *fixedArgFn() const;
/// Return the function that analyzes variable argument list functions.
llvm::CCAssignFn *varArgFn() const;
const MCPhysReg *shadowRegs() const;
void allocateRegs(ByValArgInfo &ByVal, unsigned ByValSize,
unsigned Align);
/// Return the type of the register which is used to pass an argument or
/// return a value. This function returns f64 if the argument is an i64
/// value which has been generated as a result of softening an f128 value.
/// Otherwise, it just returns VT.
MVT getRegVT(MVT VT, const Type *OrigTy, const SDNode *CallNode,
bool IsSoftFloat) const;
template<typename Ty>
void analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
const SDNode *CallNode, const Type *RetTy) const;
CCState &CCInfo;
CallingConv::ID CallConv;
bool IsO32, IsFP64;
SpecialCallingConvType SpecialCallingConv;
SmallVector<ByValArgInfo, 2> ByValArgs;
};
protected:
SDValue lowerLOAD(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerSTORE(SDValue Op, SelectionDAG &DAG) const;
// Subtarget Info
const MipsSubtarget &Subtarget;
private:
// Create a TargetGlobalAddress node.
SDValue getTargetNode(GlobalAddressSDNode *N, EVT Ty, SelectionDAG &DAG,
unsigned Flag) const;
// Create a TargetExternalSymbol node.
SDValue getTargetNode(ExternalSymbolSDNode *N, EVT Ty, SelectionDAG &DAG,
unsigned Flag) const;
// Create a TargetBlockAddress node.
SDValue getTargetNode(BlockAddressSDNode *N, EVT Ty, SelectionDAG &DAG,
unsigned Flag) const;
// Create a TargetJumpTable node.
SDValue getTargetNode(JumpTableSDNode *N, EVT Ty, SelectionDAG &DAG,
unsigned Flag) const;
// Create a TargetConstantPool node.
SDValue getTargetNode(ConstantPoolSDNode *N, EVT Ty, SelectionDAG &DAG,
unsigned Flag) const;
MipsCC::SpecialCallingConvType getSpecialCallingConv(SDValue Callee) const;
// Lower Operand helpers
SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals,
const SDNode *CallNode, const Type *RetTy) const;
// Lower Operand specifics
SDValue lowerBR_JT(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerSELECT(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVAARG(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFABS(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const;
SDValue lowerShiftLeftParts(SDValue Op, SelectionDAG& DAG) const;
SDValue lowerShiftRightParts(SDValue Op, SelectionDAG& DAG,
bool IsSRA) const;
SDValue lowerADD(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
/// isEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization.
virtual bool
isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
unsigned NextStackOffset,
const MipsFunctionInfo& FI) const = 0;
/// copyByValArg - Copy argument registers which were used to pass a byval
/// argument to the stack. Create a stack frame object for the byval
/// argument.
void copyByValRegs(SDValue Chain, SDLoc DL,
std::vector<SDValue> &OutChains, SelectionDAG &DAG,
const ISD::ArgFlagsTy &Flags,
SmallVectorImpl<SDValue> &InVals,
const Argument *FuncArg,
const MipsCC &CC, const ByValArgInfo &ByVal) const;
/// passByValArg - Pass a byval argument in registers or on stack.
void passByValArg(SDValue Chain, SDLoc DL,
std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
const MipsCC &CC, const ByValArgInfo &ByVal,
const ISD::ArgFlagsTy &Flags, bool isLittle) const;
/// writeVarArgRegs - Write variable function arguments passed in registers
/// to the stack. Also create a stack frame object for the first variable
/// argument.
void writeVarArgRegs(std::vector<SDValue> &OutChains, const MipsCC &CC,
SDValue Chain, SDLoc DL, SelectionDAG &DAG) const;
SDValue
LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const override;
SDValue passArgOnStack(SDValue StackPtr, unsigned Offset, SDValue Chain,
SDValue Arg, SDLoc DL, bool IsTailCall,
SelectionDAG &DAG) const;
SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const override;
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const override;
SDValue LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
SDLoc dl, SelectionDAG &DAG) const override;
// Inline asm support
ConstraintType
getConstraintType(const std::string &Constraint) const override;
/// Examine constraint string and operand type and determine a weight value.
/// The operand object must already have been set up with the operand type.
ConstraintWeight getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const override;
/// This function parses registers that appear in inline-asm constraints.
/// It returns pair (0, 0) on failure.
std::pair<unsigned, const TargetRegisterClass *>
parseRegForInlineAsmConstraint(const StringRef &C, MVT VT) const;
std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const std::string &Constraint,
MVT VT) const override;
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops. If hasMemory is
/// true it means one of the asm constraint of the inline asm instruction
/// being processed is 'm'.
void LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const override;
bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
unsigned SrcAlign,
bool IsMemset, bool ZeroMemset,
bool MemcpyStrSrc,
MachineFunction &MF) const override;
/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
unsigned getJumpTableEncoding() const override;
/// Emit a sign-extension using sll/sra, seb, or seh appropriately.
MachineBasicBlock *emitSignExtendToI32InReg(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Size, unsigned DstReg,
unsigned SrcRec) const;
MachineBasicBlock *emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
unsigned Size, unsigned BinOpcode, bool Nand = false) const;
MachineBasicBlock *emitAtomicBinaryPartword(MachineInstr *MI,
MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode,
bool Nand = false) const;
MachineBasicBlock *emitAtomicCmpSwap(MachineInstr *MI,
MachineBasicBlock *BB, unsigned Size) const;
MachineBasicBlock *emitAtomicCmpSwapPartword(MachineInstr *MI,
MachineBasicBlock *BB, unsigned Size) const;
MachineBasicBlock *emitSEL_D(MachineInstr *MI, MachineBasicBlock *BB) const;
};
/// Create MipsTargetLowering objects.
const MipsTargetLowering *
createMips16TargetLowering(MipsTargetMachine &TM, const MipsSubtarget &STI);
const MipsTargetLowering *
createMipsSETargetLowering(MipsTargetMachine &TM, const MipsSubtarget &STI);
namespace Mips {
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo);
}
}
#endif