llvm/lib/Target/PowerPC/PPCBranchSelector.cpp
2006-05-04 17:21:20 +00:00

152 lines
5.3 KiB
C++

//===-- PPCBranchSelector.cpp - Emit long conditional branches-----*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Nate Baegeman and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that scans a machine function to determine which
// conditional branches need more than 16 bits of displacement to reach their
// target basic block. It does this in two passes; a calculation of basic block
// positions pass, and a branch psuedo op to machine branch opcode pass. This
// pass should be run last, just before the assembly printer.
//
//===----------------------------------------------------------------------===//
#include "PPC.h"
#include "PPCInstrBuilder.h"
#include "PPCInstrInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include <map>
using namespace llvm;
namespace {
struct PPCBSel : public MachineFunctionPass {
// OffsetMap - Mapping between BB and byte offset from start of function
std::map<MachineBasicBlock*, unsigned> OffsetMap;
virtual bool runOnMachineFunction(MachineFunction &Fn);
virtual const char *getPassName() const {
return "PowerPC Branch Selection";
}
};
}
/// createPPCBranchSelectionPass - returns an instance of the Branch Selection
/// Pass
///
FunctionPass *llvm::createPPCBranchSelectionPass() {
return new PPCBSel();
}
/// getNumBytesForInstruction - Return the number of bytes of code the specified
/// instruction may be. This returns the maximum number of bytes.
///
static unsigned getNumBytesForInstruction(MachineInstr *MI) {
switch (MI->getOpcode()) {
case PPC::COND_BRANCH:
// while this will be 4 most of the time, if we emit 8 it is just a
// minor pessimization that saves us from having to worry about
// keeping the offsets up to date later when we emit long branch glue.
return 8;
case PPC::IMPLICIT_DEF_GPR: // no asm emitted
case PPC::IMPLICIT_DEF_F4: // no asm emitted
case PPC::IMPLICIT_DEF_F8: // no asm emitted
return 0;
case PPC::INLINEASM: // Inline Asm: Variable size.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
if (MI->getOperand(i).isExternalSymbol()) {
const char *AsmStr = MI->getOperand(i).getSymbolName();
// Count the number of newline's in the asm string.
unsigned NumInstrs = 0;
for (; *AsmStr; ++AsmStr)
NumInstrs += *AsmStr == '\n';
return NumInstrs*4;
}
assert(0 && "INLINEASM didn't have format string??");
default:
return 4; // PowerPC instructions are all 4 bytes
}
}
bool PPCBSel::runOnMachineFunction(MachineFunction &Fn) {
// Running total of instructions encountered since beginning of function
unsigned ByteCount = 0;
// For each MBB, add its offset to the offset map, and count up its
// instructions
for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
++MFI) {
MachineBasicBlock *MBB = MFI;
OffsetMap[MBB] = ByteCount;
for (MachineBasicBlock::iterator MBBI = MBB->begin(), EE = MBB->end();
MBBI != EE; ++MBBI)
ByteCount += getNumBytesForInstruction(MBBI);
}
// We're about to run over the MBB's again, so reset the ByteCount
ByteCount = 0;
// For each MBB, find the conditional branch pseudo instructions, and
// calculate the difference between the target MBB and the current ICount
// to decide whether or not to emit a short or long branch.
//
// short branch:
// bCC .L_TARGET_MBB
//
// long branch:
// bInverseCC $PC+8
// b .L_TARGET_MBB
for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
++MFI) {
MachineBasicBlock *MBB = MFI;
for (MachineBasicBlock::iterator MBBI = MBB->begin(), EE = MBB->end();
MBBI != EE; ++MBBI) {
// We may end up deleting the MachineInstr that MBBI points to, so
// remember its opcode now so we can refer to it after calling erase()
unsigned ByteSize = getNumBytesForInstruction(MBBI);
if (MBBI->getOpcode() == PPC::COND_BRANCH) {
MachineBasicBlock::iterator MBBJ = MBBI;
++MBBJ;
// condbranch operands:
// 0. CR0 register
// 1. bc opcode
// 2. target MBB
// 3. fallthrough MBB
MachineBasicBlock *trueMBB =
MBBI->getOperand(2).getMachineBasicBlock();
int Displacement = OffsetMap[trueMBB] - ByteCount;
unsigned Opcode = MBBI->getOperand(1).getImmedValue();
unsigned CRReg = MBBI->getOperand(0).getReg();
unsigned Inverted = PPCInstrInfo::invertPPCBranchOpcode(Opcode);
if (Displacement >= -32768 && Displacement <= 32767) {
BuildMI(*MBB, MBBJ, Opcode, 2).addReg(CRReg).addMBB(trueMBB);
} else {
BuildMI(*MBB, MBBJ, Inverted, 2).addReg(CRReg).addImm(8);
BuildMI(*MBB, MBBJ, PPC::B, 1).addMBB(trueMBB);
}
// Erase the psuedo COND_BRANCH instruction, and then back up the
// iterator so that when the for loop increments it, we end up in
// the correct place rather than iterating off the end.
MBB->erase(MBBI);
MBBI = --MBBJ;
}
ByteCount += ByteSize;
}
}
OffsetMap.clear();
return true;
}