llvm/unittests/ADT/FunctionExtrasTest.cpp
Chandler Carruth 6b547686c5 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@351636 91177308-0d34-0410-b5e6-96231b3b80d8
2019-01-19 08:50:56 +00:00

228 lines
6.1 KiB
C++

//===- FunctionExtrasTest.cpp - Unit tests for function type erasure ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/FunctionExtras.h"
#include "gtest/gtest.h"
#include <memory>
using namespace llvm;
namespace {
TEST(UniqueFunctionTest, Basic) {
unique_function<int(int, int)> Sum = [](int A, int B) { return A + B; };
EXPECT_EQ(Sum(1, 2), 3);
unique_function<int(int, int)> Sum2 = std::move(Sum);
EXPECT_EQ(Sum2(1, 2), 3);
unique_function<int(int, int)> Sum3 = [](int A, int B) { return A + B; };
Sum2 = std::move(Sum3);
EXPECT_EQ(Sum2(1, 2), 3);
Sum2 = unique_function<int(int, int)>([](int A, int B) { return A + B; });
EXPECT_EQ(Sum2(1, 2), 3);
// Explicit self-move test.
*&Sum2 = std::move(Sum2);
EXPECT_EQ(Sum2(1, 2), 3);
Sum2 = unique_function<int(int, int)>();
EXPECT_FALSE(Sum2);
// Make sure we can forward through l-value reference parameters.
unique_function<void(int &)> Inc = [](int &X) { ++X; };
int X = 42;
Inc(X);
EXPECT_EQ(X, 43);
// Make sure we can forward through r-value reference parameters with
// move-only types.
unique_function<int(std::unique_ptr<int> &&)> ReadAndDeallocByRef =
[](std::unique_ptr<int> &&Ptr) {
int V = *Ptr;
Ptr.reset();
return V;
};
std::unique_ptr<int> Ptr{new int(13)};
EXPECT_EQ(ReadAndDeallocByRef(std::move(Ptr)), 13);
EXPECT_FALSE((bool)Ptr);
// Make sure we can pass a move-only temporary as opposed to a local variable.
EXPECT_EQ(ReadAndDeallocByRef(std::unique_ptr<int>(new int(42))), 42);
// Make sure we can pass a move-only type by-value.
unique_function<int(std::unique_ptr<int>)> ReadAndDeallocByVal =
[](std::unique_ptr<int> Ptr) {
int V = *Ptr;
Ptr.reset();
return V;
};
Ptr.reset(new int(13));
EXPECT_EQ(ReadAndDeallocByVal(std::move(Ptr)), 13);
EXPECT_FALSE((bool)Ptr);
EXPECT_EQ(ReadAndDeallocByVal(std::unique_ptr<int>(new int(42))), 42);
}
TEST(UniqueFunctionTest, Captures) {
long A = 1, B = 2, C = 3, D = 4, E = 5;
unique_function<long()> Tmp;
unique_function<long()> C1 = [A]() { return A; };
EXPECT_EQ(C1(), 1);
Tmp = std::move(C1);
EXPECT_EQ(Tmp(), 1);
unique_function<long()> C2 = [A, B]() { return A + B; };
EXPECT_EQ(C2(), 3);
Tmp = std::move(C2);
EXPECT_EQ(Tmp(), 3);
unique_function<long()> C3 = [A, B, C]() { return A + B + C; };
EXPECT_EQ(C3(), 6);
Tmp = std::move(C3);
EXPECT_EQ(Tmp(), 6);
unique_function<long()> C4 = [A, B, C, D]() { return A + B + C + D; };
EXPECT_EQ(C4(), 10);
Tmp = std::move(C4);
EXPECT_EQ(Tmp(), 10);
unique_function<long()> C5 = [A, B, C, D, E]() { return A + B + C + D + E; };
EXPECT_EQ(C5(), 15);
Tmp = std::move(C5);
EXPECT_EQ(Tmp(), 15);
}
TEST(UniqueFunctionTest, MoveOnly) {
struct SmallCallable {
std::unique_ptr<int> A{new int(1)};
int operator()(int B) { return *A + B; }
};
unique_function<int(int)> Small = SmallCallable();
EXPECT_EQ(Small(2), 3);
unique_function<int(int)> Small2 = std::move(Small);
EXPECT_EQ(Small2(2), 3);
struct LargeCallable {
std::unique_ptr<int> A{new int(1)};
std::unique_ptr<int> B{new int(2)};
std::unique_ptr<int> C{new int(3)};
std::unique_ptr<int> D{new int(4)};
std::unique_ptr<int> E{new int(5)};
int operator()() { return *A + *B + *C + *D + *E; }
};
unique_function<int()> Large = LargeCallable();
EXPECT_EQ(Large(), 15);
unique_function<int()> Large2 = std::move(Large);
EXPECT_EQ(Large2(), 15);
}
TEST(UniqueFunctionTest, CountForwardingCopies) {
struct CopyCounter {
int &CopyCount;
CopyCounter(int &CopyCount) : CopyCount(CopyCount) {}
CopyCounter(const CopyCounter &Arg) : CopyCount(Arg.CopyCount) {
++CopyCount;
}
};
unique_function<void(CopyCounter)> ByValF = [](CopyCounter) {};
int CopyCount = 0;
ByValF(CopyCounter(CopyCount));
EXPECT_EQ(1, CopyCount);
CopyCount = 0;
{
CopyCounter Counter{CopyCount};
ByValF(Counter);
}
EXPECT_EQ(2, CopyCount);
// Check that we don't generate a copy at all when we can bind a reference all
// the way down, even if that reference could *in theory* allow copies.
unique_function<void(const CopyCounter &)> ByRefF = [](const CopyCounter &) {
};
CopyCount = 0;
ByRefF(CopyCounter(CopyCount));
EXPECT_EQ(0, CopyCount);
CopyCount = 0;
{
CopyCounter Counter{CopyCount};
ByRefF(Counter);
}
EXPECT_EQ(0, CopyCount);
// If we use a reference, we can make a stronger guarantee that *no* copy
// occurs.
struct Uncopyable {
Uncopyable() = default;
Uncopyable(const Uncopyable &) = delete;
};
unique_function<void(const Uncopyable &)> UncopyableF =
[](const Uncopyable &) {};
UncopyableF(Uncopyable());
Uncopyable X;
UncopyableF(X);
}
TEST(UniqueFunctionTest, CountForwardingMoves) {
struct MoveCounter {
int &MoveCount;
MoveCounter(int &MoveCount) : MoveCount(MoveCount) {}
MoveCounter(MoveCounter &&Arg) : MoveCount(Arg.MoveCount) { ++MoveCount; }
};
unique_function<void(MoveCounter)> ByValF = [](MoveCounter) {};
int MoveCount = 0;
ByValF(MoveCounter(MoveCount));
EXPECT_EQ(1, MoveCount);
MoveCount = 0;
{
MoveCounter Counter{MoveCount};
ByValF(std::move(Counter));
}
EXPECT_EQ(2, MoveCount);
// Check that when we use an r-value reference we get no spurious copies.
unique_function<void(MoveCounter &&)> ByRefF = [](MoveCounter &&) {};
MoveCount = 0;
ByRefF(MoveCounter(MoveCount));
EXPECT_EQ(0, MoveCount);
MoveCount = 0;
{
MoveCounter Counter{MoveCount};
ByRefF(std::move(Counter));
}
EXPECT_EQ(0, MoveCount);
// If we use an r-value reference we can in fact make a stronger guarantee
// with an unmovable type.
struct Unmovable {
Unmovable() = default;
Unmovable(Unmovable &&) = delete;
};
unique_function<void(const Unmovable &)> UnmovableF = [](const Unmovable &) {
};
UnmovableF(Unmovable());
Unmovable X;
UnmovableF(X);
}
} // anonymous namespace