llvm/lib/Analysis/AliasAnalysisSummary.h
George Burgess IV 3772549656 Make some LLVM_CONSTEXPR variables const. NFC.
This patch changes LLVM_CONSTEXPR variable declarations to const
variable declarations, since LLVM_CONSTEXPR expands to nothing if the
current compiler doesn't support constexpr. In all of the changed
cases, it looks like the code intended the variable to be const instead
of sometimes-constexpr sometimes-not.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@279696 91177308-0d34-0410-b5e6-96231b3b80d8
2016-08-25 01:05:08 +00:00

266 lines
10 KiB
C++

//=====- CFLSummary.h - Abstract stratified sets implementation. --------=====//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file defines various utility types and functions useful to
/// summary-based alias analysis.
///
/// Summary-based analysis, also known as bottom-up analysis, is a style of
/// interprocedrual static analysis that tries to analyze the callees before the
/// callers get analyzed. The key idea of summary-based analysis is to first
/// process each function indepedently, outline its behavior in a condensed
/// summary, and then instantiate the summary at the callsite when the said
/// function is called elsewhere. This is often in contrast to another style
/// called top-down analysis, in which callers are always analyzed first before
/// the callees.
///
/// In a summary-based analysis, functions must be examined independently and
/// out-of-context. We have no information on the state of the memory, the
/// arguments, the global values, and anything else external to the function. To
/// carry out the analysis conservative assumptions have to be made about those
/// external states. In exchange for the potential loss of precision, the
/// summary we obtain this way is highly reusable, which makes the analysis
/// easier to scale to large programs even if carried out context-sensitively.
///
/// Currently, all CFL-based alias analyses adopt the summary-based approach
/// and therefore heavily rely on this header.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_ALIASANALYSISSUMMARY_H
#define LLVM_ANALYSIS_ALIASANALYSISSUMMARY_H
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/CallSite.h"
#include <bitset>
namespace llvm {
namespace cflaa {
//===----------------------------------------------------------------------===//
// AliasAttr related stuffs
//===----------------------------------------------------------------------===//
/// The number of attributes that AliasAttr should contain. Attributes are
/// described below, and 32 was an arbitrary choice because it fits nicely in 32
/// bits (because we use a bitset for AliasAttr).
static const unsigned NumAliasAttrs = 32;
/// These are attributes that an alias analysis can use to mark certain special
/// properties of a given pointer. Refer to the related functions below to see
/// what kinds of attributes are currently defined.
typedef std::bitset<NumAliasAttrs> AliasAttrs;
/// Attr represent whether the said pointer comes from an unknown source
/// (such as opaque memory or an integer cast).
AliasAttrs getAttrNone();
/// AttrUnknown represent whether the said pointer comes from a source not known
/// to alias analyses (such as opaque memory or an integer cast).
AliasAttrs getAttrUnknown();
bool hasUnknownAttr(AliasAttrs);
/// AttrCaller represent whether the said pointer comes from a source not known
/// to the current function but known to the caller. Values pointed to by the
/// arguments of the current function have this attribute set
AliasAttrs getAttrCaller();
bool hasCallerAttr(AliasAttrs);
bool hasUnknownOrCallerAttr(AliasAttrs);
/// AttrEscaped represent whether the said pointer comes from a known source but
/// escapes to the unknown world (e.g. casted to an integer, or passed as an
/// argument to opaque function). Unlike non-escaped pointers, escaped ones may
/// alias pointers coming from unknown sources.
AliasAttrs getAttrEscaped();
bool hasEscapedAttr(AliasAttrs);
/// AttrGlobal represent whether the said pointer is a global value.
/// AttrArg represent whether the said pointer is an argument, and if so, what
/// index the argument has.
AliasAttrs getGlobalOrArgAttrFromValue(const Value &);
bool isGlobalOrArgAttr(AliasAttrs);
/// Given an AliasAttrs, return a new AliasAttrs that only contains attributes
/// meaningful to the caller. This function is primarily used for
/// interprocedural analysis
/// Currently, externally visible AliasAttrs include AttrUnknown, AttrGlobal,
/// and AttrEscaped
AliasAttrs getExternallyVisibleAttrs(AliasAttrs);
//===----------------------------------------------------------------------===//
// Function summary related stuffs
//===----------------------------------------------------------------------===//
/// The maximum number of arguments we can put into a summary.
static const unsigned MaxSupportedArgsInSummary = 50;
/// We use InterfaceValue to describe parameters/return value, as well as
/// potential memory locations that are pointed to by parameters/return value,
/// of a function.
/// Index is an integer which represents a single parameter or a return value.
/// When the index is 0, it refers to the return value. Non-zero index i refers
/// to the i-th parameter.
/// DerefLevel indicates the number of dereferences one must perform on the
/// parameter/return value to get this InterfaceValue.
struct InterfaceValue {
unsigned Index;
unsigned DerefLevel;
};
inline bool operator==(InterfaceValue LHS, InterfaceValue RHS) {
return LHS.Index == RHS.Index && LHS.DerefLevel == RHS.DerefLevel;
}
inline bool operator!=(InterfaceValue LHS, InterfaceValue RHS) {
return !(LHS == RHS);
}
inline bool operator<(InterfaceValue LHS, InterfaceValue RHS) {
return LHS.Index < RHS.Index ||
(LHS.Index == RHS.Index && LHS.DerefLevel < RHS.DerefLevel);
}
inline bool operator>(InterfaceValue LHS, InterfaceValue RHS) {
return RHS < LHS;
}
inline bool operator<=(InterfaceValue LHS, InterfaceValue RHS) {
return !(RHS < LHS);
}
inline bool operator>=(InterfaceValue LHS, InterfaceValue RHS) {
return !(LHS < RHS);
}
// We use UnknownOffset to represent pointer offsets that cannot be determined
// at compile time. Note that MemoryLocation::UnknownSize cannot be used here
// because we require a signed value.
static const int64_t UnknownOffset = INT64_MAX;
inline int64_t addOffset(int64_t LHS, int64_t RHS) {
if (LHS == UnknownOffset || RHS == UnknownOffset)
return UnknownOffset;
// FIXME: Do we need to guard against integer overflow here?
return LHS + RHS;
}
/// We use ExternalRelation to describe an externally visible aliasing relations
/// between parameters/return value of a function.
struct ExternalRelation {
InterfaceValue From, To;
int64_t Offset;
};
inline bool operator==(ExternalRelation LHS, ExternalRelation RHS) {
return LHS.From == RHS.From && LHS.To == RHS.To && LHS.Offset == RHS.Offset;
}
inline bool operator!=(ExternalRelation LHS, ExternalRelation RHS) {
return !(LHS == RHS);
}
inline bool operator<(ExternalRelation LHS, ExternalRelation RHS) {
if (LHS.From < RHS.From)
return true;
if (LHS.From > RHS.From)
return false;
if (LHS.To < RHS.To)
return true;
if (LHS.To > RHS.To)
return false;
return LHS.Offset < RHS.Offset;
}
inline bool operator>(ExternalRelation LHS, ExternalRelation RHS) {
return RHS < LHS;
}
inline bool operator<=(ExternalRelation LHS, ExternalRelation RHS) {
return !(RHS < LHS);
}
inline bool operator>=(ExternalRelation LHS, ExternalRelation RHS) {
return !(LHS < RHS);
}
/// We use ExternalAttribute to describe an externally visible AliasAttrs
/// for parameters/return value.
struct ExternalAttribute {
InterfaceValue IValue;
AliasAttrs Attr;
};
/// AliasSummary is just a collection of ExternalRelation and ExternalAttribute
struct AliasSummary {
// RetParamRelations is a collection of ExternalRelations.
SmallVector<ExternalRelation, 8> RetParamRelations;
// RetParamAttributes is a collection of ExternalAttributes.
SmallVector<ExternalAttribute, 8> RetParamAttributes;
};
/// This is the result of instantiating InterfaceValue at a particular callsite
struct InstantiatedValue {
Value *Val;
unsigned DerefLevel;
};
Optional<InstantiatedValue> instantiateInterfaceValue(InterfaceValue, CallSite);
inline bool operator==(InstantiatedValue LHS, InstantiatedValue RHS) {
return LHS.Val == RHS.Val && LHS.DerefLevel == RHS.DerefLevel;
}
inline bool operator!=(InstantiatedValue LHS, InstantiatedValue RHS) {
return !(LHS == RHS);
}
inline bool operator<(InstantiatedValue LHS, InstantiatedValue RHS) {
return std::less<Value *>()(LHS.Val, RHS.Val) ||
(LHS.Val == RHS.Val && LHS.DerefLevel < RHS.DerefLevel);
}
inline bool operator>(InstantiatedValue LHS, InstantiatedValue RHS) {
return RHS < LHS;
}
inline bool operator<=(InstantiatedValue LHS, InstantiatedValue RHS) {
return !(RHS < LHS);
}
inline bool operator>=(InstantiatedValue LHS, InstantiatedValue RHS) {
return !(LHS < RHS);
}
/// This is the result of instantiating ExternalRelation at a particular
/// callsite
struct InstantiatedRelation {
InstantiatedValue From, To;
int64_t Offset;
};
Optional<InstantiatedRelation> instantiateExternalRelation(ExternalRelation,
CallSite);
/// This is the result of instantiating ExternalAttribute at a particular
/// callsite
struct InstantiatedAttr {
InstantiatedValue IValue;
AliasAttrs Attr;
};
Optional<InstantiatedAttr> instantiateExternalAttribute(ExternalAttribute,
CallSite);
}
template <> struct DenseMapInfo<cflaa::InstantiatedValue> {
static inline cflaa::InstantiatedValue getEmptyKey() {
return cflaa::InstantiatedValue{DenseMapInfo<Value *>::getEmptyKey(),
DenseMapInfo<unsigned>::getEmptyKey()};
}
static inline cflaa::InstantiatedValue getTombstoneKey() {
return cflaa::InstantiatedValue{DenseMapInfo<Value *>::getTombstoneKey(),
DenseMapInfo<unsigned>::getTombstoneKey()};
}
static unsigned getHashValue(const cflaa::InstantiatedValue &IV) {
return DenseMapInfo<std::pair<Value *, unsigned>>::getHashValue(
std::make_pair(IV.Val, IV.DerefLevel));
}
static bool isEqual(const cflaa::InstantiatedValue &LHS,
const cflaa::InstantiatedValue &RHS) {
return LHS.Val == RHS.Val && LHS.DerefLevel == RHS.DerefLevel;
}
};
}
#endif