llvm/lib/Target/X86/X86TargetMachine.cpp
John Criswell b576c94c15 Added LLVM project notice to the top of every C++ source file.
Header files will be on the way.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9298 91177308-0d34-0410-b5e6-96231b3b80d8
2003-10-20 19:43:21 +00:00

156 lines
5.0 KiB
C++

//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the X86 specific subclass of TargetMachine.
//
//===----------------------------------------------------------------------===//
#include "X86TargetMachine.h"
#include "X86.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/Target/TargetMachineImpls.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Transforms/Scalar.h"
#include "Support/CommandLine.h"
#include "Support/Statistic.h"
namespace {
cl::opt<bool> PrintCode("print-machineinstrs",
cl::desc("Print generated machine code"));
cl::opt<bool> NoPatternISel("disable-pattern-isel", cl::init(true),
cl::desc("Use the 'simple' X86 instruction selector"));
}
// allocateX86TargetMachine - Allocate and return a subclass of TargetMachine
// that implements the X86 backend.
//
TargetMachine *allocateX86TargetMachine(const Module &M) {
return new X86TargetMachine(M);
}
/// X86TargetMachine ctor - Create an ILP32 architecture model
///
X86TargetMachine::X86TargetMachine(const Module &M)
: TargetMachine("X86", true, 4, 4, 4, 4, 4),
FrameInfo(TargetFrameInfo::StackGrowsDown, 8/*16 for SSE*/, 4) {
}
// addPassesToEmitAssembly - We currently use all of the same passes as the JIT
// does to emit statically compiled machine code.
bool X86TargetMachine::addPassesToEmitAssembly(PassManager &PM,
std::ostream &Out) {
// FIXME: Implement the switch instruction in the instruction selector!
PM.add(createLowerSwitchPass());
// FIXME: Implement the invoke/unwind instructions!
PM.add(createLowerInvokePass());
// FIXME: The code generator does not properly handle functions with
// unreachable basic blocks.
PM.add(createCFGSimplificationPass());
if (NoPatternISel)
PM.add(createX86SimpleInstructionSelector(*this));
else
PM.add(createX86PatternInstructionSelector(*this));
// TODO: optional optimizations go here
// FIXME: Add SSA based peephole optimizer here.
// Print the instruction selected machine code...
if (PrintCode)
PM.add(createMachineFunctionPrinterPass());
// Perform register allocation to convert to a concrete x86 representation
PM.add(createRegisterAllocator());
if (PrintCode)
PM.add(createMachineFunctionPrinterPass());
PM.add(createX86FloatingPointStackifierPass());
if (PrintCode)
PM.add(createMachineFunctionPrinterPass());
// Insert prolog/epilog code. Eliminate abstract frame index references...
PM.add(createPrologEpilogCodeInserter());
PM.add(createX86PeepholeOptimizerPass());
if (PrintCode) // Print the register-allocated code
PM.add(createX86CodePrinterPass(std::cerr, *this));
PM.add(createX86CodePrinterPass(Out, *this));
return false; // success!
}
/// addPassesToJITCompile - Add passes to the specified pass manager to
/// implement a fast dynamic compiler for this target. Return true if this is
/// not supported for this target.
///
bool X86TargetMachine::addPassesToJITCompile(FunctionPassManager &PM) {
// FIXME: Implement the switch instruction in the instruction selector!
PM.add(createLowerSwitchPass());
// FIXME: Implement the invoke/unwind instructions!
PM.add(createLowerInvokePass());
// FIXME: The code generator does not properly handle functions with
// unreachable basic blocks.
PM.add(createCFGSimplificationPass());
if (NoPatternISel)
PM.add(createX86SimpleInstructionSelector(*this));
else
PM.add(createX86PatternInstructionSelector(*this));
// TODO: optional optimizations go here
// FIXME: Add SSA based peephole optimizer here.
// Print the instruction selected machine code...
if (PrintCode)
PM.add(createMachineFunctionPrinterPass());
// Perform register allocation to convert to a concrete x86 representation
PM.add(createRegisterAllocator());
if (PrintCode)
PM.add(createMachineFunctionPrinterPass());
PM.add(createX86FloatingPointStackifierPass());
if (PrintCode)
PM.add(createMachineFunctionPrinterPass());
// Insert prolog/epilog code. Eliminate abstract frame index references...
PM.add(createPrologEpilogCodeInserter());
PM.add(createX86PeepholeOptimizerPass());
if (PrintCode) // Print the register-allocated code
PM.add(createX86CodePrinterPass(std::cerr, *this));
return false; // success!
}
void X86TargetMachine::replaceMachineCodeForFunction (void *Old, void *New) {
// FIXME: This code could perhaps live in a more appropriate place.
char *OldByte = (char *) Old;
*OldByte++ = 0xE9; // Emit JMP opcode.
int32_t *OldWord = (int32_t *) OldByte;
int32_t NewAddr = (int32_t) New;
int32_t OldAddr = (int32_t) OldWord;
*OldWord = NewAddr - OldAddr - 4; // Emit PC-relative addr of New code.
}