llvm/lib/Support/APInt.cpp
Reid Spencer e81d2dad2c Review changes:
1. Function style changes.
2. 80-col violations.
3. Better names for things.
4. Arrange constructors so they all take bit width first.
5. Add named signed and unsigned comparison functions and remove the
   corresponding operators.
6. Remove operator&& and operator|| but provide a getBoolValue function which
   converts to bool as comparison against 0. This allows the normal && and
   || operators to be used as if (X.getBoolValue() && Y.getBoolValue())

Note: this still doesn't function 100% yet. I'm working on the bugs now.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34353 91177308-0d34-0410-b5e6-96231b3b80d8
2007-02-16 22:36:51 +00:00

1197 lines
38 KiB
C++

//===-- APInt.cpp - Implement APInt class ---------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Sheng Zhou and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a class to represent arbitrary precision integral
// constant values.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APInt.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Support/MathExtras.h"
#include <cstring>
#include <cstdlib>
using namespace llvm;
/// mul_1 - This function performs the multiplication operation on a
/// large integer (represented as an integer array) and a uint64_t integer.
/// @returns the carry of the multiplication.
static uint64_t mul_1(uint64_t dest[], uint64_t x[],
unsigned len, uint64_t y) {
// Split y into high 32-bit part and low 32-bit part.
uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
uint64_t carry = 0, lx, hx;
for (unsigned i = 0; i < len; ++i) {
lx = x[i] & 0xffffffffULL;
hx = x[i] >> 32;
// hasCarry - A flag to indicate if has carry.
// hasCarry == 0, no carry
// hasCarry == 1, has carry
// hasCarry == 2, no carry and the calculation result == 0.
uint8_t hasCarry = 0;
dest[i] = carry + lx * ly;
// Determine if the add above introduces carry.
hasCarry = (dest[i] < carry) ? 1 : 0;
carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
// The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
// (2^32 - 1) + 2^32 = 2^64.
hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
carry += (lx * hy) & 0xffffffffULL;
dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
(carry >> 32) + ((lx * hy) >> 32) + hx * hy;
}
return carry;
}
/// mul - This function multiplies integer array x[] by integer array y[] and
/// stores the result into integer array dest[].
/// Note the array dest[]'s size should no less than xlen + ylen.
static void mul(uint64_t dest[], uint64_t x[], unsigned xlen,
uint64_t y[], unsigned ylen) {
dest[xlen] = mul_1(dest, x, xlen, y[0]);
for (unsigned i = 1; i < ylen; ++i) {
uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
uint64_t carry = 0, lx, hx;
for (unsigned j = 0; j < xlen; ++j) {
lx = x[j] & 0xffffffffULL;
hx = x[j] >> 32;
// hasCarry - A flag to indicate if has carry.
// hasCarry == 0, no carry
// hasCarry == 1, has carry
// hasCarry == 2, no carry and the calculation result == 0.
uint8_t hasCarry = 0;
uint64_t resul = carry + lx * ly;
hasCarry = (resul < carry) ? 1 : 0;
carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
carry += (lx * hy) & 0xffffffffULL;
resul = (carry << 32) | (resul & 0xffffffffULL);
dest[i+j] += resul;
carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
(carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
((lx * hy) >> 32) + hx * hy;
}
dest[i+xlen] = carry;
}
}
/// add_1 - This function adds the integer array x[] by integer y and
/// returns the carry.
/// @returns the carry of the addition.
static uint64_t add_1(uint64_t dest[], uint64_t x[],
unsigned len, uint64_t y) {
uint64_t carry = y;
for (unsigned i = 0; i < len; ++i) {
dest[i] = carry + x[i];
carry = (dest[i] < carry) ? 1 : 0;
}
return carry;
}
/// add - This function adds the integer array x[] by integer array
/// y[] and returns the carry.
static uint64_t add(uint64_t dest[], uint64_t x[],
uint64_t y[], unsigned len) {
unsigned carry = 0;
for (unsigned i = 0; i< len; ++i) {
carry += x[i];
dest[i] = carry + y[i];
carry = carry < x[i] ? 1 : (dest[i] < carry ? 1 : 0);
}
return carry;
}
/// sub_1 - This function subtracts the integer array x[] by
/// integer y and returns the borrow-out carry.
static uint64_t sub_1(uint64_t x[], unsigned len, uint64_t y) {
uint64_t cy = y;
for (unsigned i = 0; i < len; ++i) {
uint64_t X = x[i];
x[i] -= cy;
if (cy > X)
cy = 1;
else {
cy = 0;
break;
}
}
return cy;
}
/// sub - This function subtracts the integer array x[] by
/// integer array y[], and returns the borrow-out carry.
static uint64_t sub(uint64_t dest[], uint64_t x[],
uint64_t y[], unsigned len) {
// Carry indicator.
uint64_t cy = 0;
for (unsigned i = 0; i < len; ++i) {
uint64_t Y = y[i], X = x[i];
Y += cy;
cy = Y < cy ? 1 : 0;
Y = X - Y;
cy += Y > X ? 1 : 0;
dest[i] = Y;
}
return cy;
}
/// UnitDiv - This function divides N by D,
/// and returns (remainder << 32) | quotient.
/// Assumes (N >> 32) < D.
static uint64_t unitDiv(uint64_t N, unsigned D) {
uint64_t q, r; // q: quotient, r: remainder.
uint64_t a1 = N >> 32; // a1: high 32-bit part of N.
uint64_t a0 = N & 0xffffffffL; // a0: low 32-bit part of N
if (a1 < ((D - a1 - (a0 >> 31)) & 0xffffffffL)) {
q = N / D;
r = N % D;
}
else {
// Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d
uint64_t c = N - ((uint64_t) D << 31);
// Divide (c1*2^32 + c0) by d
q = c / D;
r = c % D;
// Add 2^31 to quotient
q += 1 << 31;
}
return (r << 32) | (q & 0xFFFFFFFFl);
}
/// subMul - This function substracts x[len-1:0] * y from
/// dest[offset+len-1:offset], and returns the most significant
/// word of the product, minus the borrow-out from the subtraction.
static unsigned subMul(unsigned dest[], unsigned offset,
unsigned x[], unsigned len, unsigned y) {
uint64_t yl = (uint64_t) y & 0xffffffffL;
unsigned carry = 0;
unsigned j = 0;
do {
uint64_t prod = ((uint64_t) x[j] & 0xffffffffL) * yl;
unsigned prod_low = (unsigned) prod;
unsigned prod_high = (unsigned) (prod >> 32);
prod_low += carry;
carry = (prod_low < carry ? 1 : 0) + prod_high;
unsigned x_j = dest[offset+j];
prod_low = x_j - prod_low;
if (prod_low > x_j) ++carry;
dest[offset+j] = prod_low;
} while (++j < len);
return carry;
}
/// div - This is basically Knuth's formulation of the classical algorithm.
/// Correspondance with Knuth's notation:
/// Knuth's u[0:m+n] == zds[nx:0].
/// Knuth's v[1:n] == y[ny-1:0]
/// Knuth's n == ny.
/// Knuth's m == nx-ny.
/// Our nx == Knuth's m+n.
/// Could be re-implemented using gmp's mpn_divrem:
/// zds[nx] = mpn_divrem (&zds[ny], 0, zds, nx, y, ny).
static void div(unsigned zds[], unsigned nx, unsigned y[], unsigned ny) {
unsigned j = nx;
do { // loop over digits of quotient
// Knuth's j == our nx-j.
// Knuth's u[j:j+n] == our zds[j:j-ny].
unsigned qhat; // treated as unsigned
if (zds[j] == y[ny-1]) qhat = -1U; // 0xffffffff
else {
uint64_t w = (((uint64_t)(zds[j])) << 32) +
((uint64_t)zds[j-1] & 0xffffffffL);
qhat = (unsigned) unitDiv(w, y[ny-1]);
}
if (qhat) {
unsigned borrow = subMul(zds, j - ny, y, ny, qhat);
unsigned save = zds[j];
uint64_t num = ((uint64_t)save&0xffffffffL) -
((uint64_t)borrow&0xffffffffL);
while (num) {
qhat--;
uint64_t carry = 0;
for (unsigned i = 0; i < ny; i++) {
carry += ((uint64_t) zds[j-ny+i] & 0xffffffffL)
+ ((uint64_t) y[i] & 0xffffffffL);
zds[j-ny+i] = (unsigned) carry;
carry >>= 32;
}
zds[j] += carry;
num = carry - 1;
}
}
zds[j] = qhat;
} while (--j >= ny);
}
#if 0
/// lshift - This function shift x[0:len-1] left by shiftAmt bits, and
/// store the len least significant words of the result in
/// dest[d_offset:d_offset+len-1]. It returns the bits shifted out from
/// the most significant digit.
static uint64_t lshift(uint64_t dest[], unsigned d_offset,
uint64_t x[], unsigned len, unsigned shiftAmt) {
unsigned count = 64 - shiftAmt;
int i = len - 1;
uint64_t high_word = x[i], retVal = high_word >> count;
++d_offset;
while (--i >= 0) {
uint64_t low_word = x[i];
dest[d_offset+i] = (high_word << shiftAmt) | (low_word >> count);
high_word = low_word;
}
dest[d_offset+i] = high_word << shiftAmt;
return retVal;
}
#endif
APInt::APInt(unsigned numBits, uint64_t val)
: BitWidth(numBits) {
assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
if (isSingleWord())
VAL = val & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth));
else {
// Memory allocation and check if successful.
assert((pVal = new uint64_t[getNumWords()]) &&
"APInt memory allocation fails!");
memset(pVal, 0, getNumWords() * 8);
pVal[0] = val;
}
}
APInt::APInt(unsigned numBits, unsigned numWords, uint64_t bigVal[])
: BitWidth(numBits) {
assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
assert(bigVal && "Null pointer detected!");
if (isSingleWord())
VAL = bigVal[0] & (~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - BitWidth));
else {
// Memory allocation and check if successful.
assert((pVal = new uint64_t[getNumWords()]) &&
"APInt memory allocation fails!");
// Calculate the actual length of bigVal[].
unsigned maxN = std::max<unsigned>(numWords, getNumWords());
unsigned minN = std::min<unsigned>(numWords, getNumWords());
memcpy(pVal, bigVal, (minN - 1) * 8);
pVal[minN-1] = bigVal[minN-1] & (~uint64_t(0ULL) >> (64 - BitWidth % 64));
if (maxN == getNumWords())
memset(pVal+numWords, 0, (getNumWords() - numWords) * 8);
}
}
/// @brief Create a new APInt by translating the char array represented
/// integer value.
APInt::APInt(unsigned numbits, const char StrStart[], unsigned slen,
uint8_t radix) {
fromString(numbits, StrStart, slen, radix);
}
/// @brief Create a new APInt by translating the string represented
/// integer value.
APInt::APInt(unsigned numbits, const std::string& Val, uint8_t radix) {
assert(!Val.empty() && "String empty?");
fromString(numbits, Val.c_str(), Val.size(), radix);
}
/// @brief Converts a char array into an integer.
void APInt::fromString(unsigned numbits, const char *StrStart, unsigned slen,
uint8_t radix) {
assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
"Radix should be 2, 8, 10, or 16!");
assert(StrStart && "String is null?");
unsigned size = 0;
// If the radix is a power of 2, read the input
// from most significant to least significant.
if ((radix & (radix - 1)) == 0) {
unsigned nextBitPos = 0, bits_per_digit = radix / 8 + 2;
uint64_t resDigit = 0;
BitWidth = slen * bits_per_digit;
if (getNumWords() > 1)
assert((pVal = new uint64_t[getNumWords()]) &&
"APInt memory allocation fails!");
for (int i = slen - 1; i >= 0; --i) {
uint64_t digit = StrStart[i] - 48; // '0' == 48.
resDigit |= digit << nextBitPos;
nextBitPos += bits_per_digit;
if (nextBitPos >= 64) {
if (isSingleWord()) {
VAL = resDigit;
break;
}
pVal[size++] = resDigit;
nextBitPos -= 64;
resDigit = digit >> (bits_per_digit - nextBitPos);
}
}
if (!isSingleWord() && size <= getNumWords())
pVal[size] = resDigit;
} else { // General case. The radix is not a power of 2.
// For 10-radix, the max value of 64-bit integer is 18446744073709551615,
// and its digits number is 20.
const unsigned chars_per_word = 20;
if (slen < chars_per_word ||
(slen == chars_per_word && // In case the value <= 2^64 - 1
strcmp(StrStart, "18446744073709551615") <= 0)) {
BitWidth = 64;
VAL = strtoull(StrStart, 0, 10);
} else { // In case the value > 2^64 - 1
BitWidth = (slen / chars_per_word + 1) * 64;
assert((pVal = new uint64_t[getNumWords()]) &&
"APInt memory allocation fails!");
memset(pVal, 0, getNumWords() * 8);
unsigned str_pos = 0;
while (str_pos < slen) {
unsigned chunk = slen - str_pos;
if (chunk > chars_per_word - 1)
chunk = chars_per_word - 1;
uint64_t resDigit = StrStart[str_pos++] - 48; // 48 == '0'.
uint64_t big_base = radix;
while (--chunk > 0) {
resDigit = resDigit * radix + StrStart[str_pos++] - 48;
big_base *= radix;
}
uint64_t carry;
if (!size)
carry = resDigit;
else {
carry = mul_1(pVal, pVal, size, big_base);
carry += add_1(pVal, pVal, size, resDigit);
}
if (carry) pVal[size++] = carry;
}
}
}
}
APInt::APInt(const APInt& APIVal)
: BitWidth(APIVal.BitWidth) {
if (isSingleWord()) VAL = APIVal.VAL;
else {
// Memory allocation and check if successful.
assert((pVal = new uint64_t[getNumWords()]) &&
"APInt memory allocation fails!");
memcpy(pVal, APIVal.pVal, getNumWords() * 8);
}
}
APInt::~APInt() {
if (!isSingleWord() && pVal) delete[] pVal;
}
/// @brief Copy assignment operator. Create a new object from the given
/// APInt one by initialization.
APInt& APInt::operator=(const APInt& RHS) {
assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
if (isSingleWord())
VAL = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
else {
unsigned minN = std::min(getNumWords(), RHS.getNumWords());
memcpy(pVal, RHS.isSingleWord() ? &RHS.VAL : RHS.pVal, minN * 8);
if (getNumWords() != minN)
memset(pVal + minN, 0, (getNumWords() - minN) * 8);
}
return *this;
}
/// @brief Assignment operator. Assigns a common case integer value to
/// the APInt.
APInt& APInt::operator=(uint64_t RHS) {
if (isSingleWord())
VAL = RHS;
else {
pVal[0] = RHS;
memset(pVal, 0, (getNumWords() - 1) * 8);
}
clearUnusedBits();
return *this;
}
/// @brief Prefix increment operator. Increments the APInt by one.
APInt& APInt::operator++() {
if (isSingleWord())
++VAL;
else
add_1(pVal, pVal, getNumWords(), 1);
clearUnusedBits();
return *this;
}
/// @brief Prefix decrement operator. Decrements the APInt by one.
APInt& APInt::operator--() {
if (isSingleWord()) --VAL;
else
sub_1(pVal, getNumWords(), 1);
clearUnusedBits();
return *this;
}
/// @brief Addition assignment operator. Adds this APInt by the given APInt&
/// RHS and assigns the result to this APInt.
APInt& APInt::operator+=(const APInt& RHS) {
if (isSingleWord()) VAL += RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
else {
if (RHS.isSingleWord()) add_1(pVal, pVal, getNumWords(), RHS.VAL);
else {
if (getNumWords() <= RHS.getNumWords())
add(pVal, pVal, RHS.pVal, getNumWords());
else {
uint64_t carry = add(pVal, pVal, RHS.pVal, RHS.getNumWords());
add_1(pVal + RHS.getNumWords(), pVal + RHS.getNumWords(),
getNumWords() - RHS.getNumWords(), carry);
}
}
}
clearUnusedBits();
return *this;
}
/// @brief Subtraction assignment operator. Subtracts this APInt by the given
/// APInt &RHS and assigns the result to this APInt.
APInt& APInt::operator-=(const APInt& RHS) {
if (isSingleWord())
VAL -= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
else {
if (RHS.isSingleWord())
sub_1(pVal, getNumWords(), RHS.VAL);
else {
if (RHS.getNumWords() < getNumWords()) {
uint64_t carry = sub(pVal, pVal, RHS.pVal, RHS.getNumWords());
sub_1(pVal + RHS.getNumWords(), getNumWords() - RHS.getNumWords(), carry);
}
else
sub(pVal, pVal, RHS.pVal, getNumWords());
}
}
clearUnusedBits();
return *this;
}
/// @brief Multiplication assignment operator. Multiplies this APInt by the
/// given APInt& RHS and assigns the result to this APInt.
APInt& APInt::operator*=(const APInt& RHS) {
if (isSingleWord()) VAL *= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
else {
// one-based first non-zero bit position.
unsigned first = getActiveBits();
unsigned xlen = !first ? 0 : whichWord(first - 1) + 1;
if (!xlen)
return *this;
else if (RHS.isSingleWord())
mul_1(pVal, pVal, xlen, RHS.VAL);
else {
first = RHS.getActiveBits();
unsigned ylen = !first ? 0 : whichWord(first - 1) + 1;
if (!ylen) {
memset(pVal, 0, getNumWords() * 8);
return *this;
}
uint64_t *dest = new uint64_t[xlen+ylen];
assert(dest && "Memory Allocation Failed!");
mul(dest, pVal, xlen, RHS.pVal, ylen);
memcpy(pVal, dest, ((xlen + ylen >= getNumWords()) ?
getNumWords() : xlen + ylen) * 8);
delete[] dest;
}
}
clearUnusedBits();
return *this;
}
/// @brief Bitwise AND assignment operator. Performs bitwise AND operation on
/// this APInt and the given APInt& RHS, assigns the result to this APInt.
APInt& APInt::operator&=(const APInt& RHS) {
if (isSingleWord()) {
if (RHS.isSingleWord()) VAL &= RHS.VAL;
else VAL &= RHS.pVal[0];
} else {
if (RHS.isSingleWord()) {
memset(pVal, 0, (getNumWords() - 1) * 8);
pVal[0] &= RHS.VAL;
} else {
unsigned minwords = getNumWords() < RHS.getNumWords() ?
getNumWords() : RHS.getNumWords();
for (unsigned i = 0; i < minwords; ++i)
pVal[i] &= RHS.pVal[i];
if (getNumWords() > minwords)
memset(pVal+minwords, 0, (getNumWords() - minwords) * 8);
}
}
return *this;
}
/// @brief Bitwise OR assignment operator. Performs bitwise OR operation on
/// this APInt and the given APInt& RHS, assigns the result to this APInt.
APInt& APInt::operator|=(const APInt& RHS) {
if (isSingleWord()) {
if (RHS.isSingleWord()) VAL |= RHS.VAL;
else VAL |= RHS.pVal[0];
} else {
if (RHS.isSingleWord()) {
pVal[0] |= RHS.VAL;
} else {
unsigned minwords = getNumWords() < RHS.getNumWords() ?
getNumWords() : RHS.getNumWords();
for (unsigned i = 0; i < minwords; ++i)
pVal[i] |= RHS.pVal[i];
}
}
clearUnusedBits();
return *this;
}
/// @brief Bitwise XOR assignment operator. Performs bitwise XOR operation on
/// this APInt and the given APInt& RHS, assigns the result to this APInt.
APInt& APInt::operator^=(const APInt& RHS) {
if (isSingleWord()) {
if (RHS.isSingleWord()) VAL ^= RHS.VAL;
else VAL ^= RHS.pVal[0];
} else {
if (RHS.isSingleWord()) {
for (unsigned i = 0; i < getNumWords(); ++i)
pVal[i] ^= RHS.VAL;
} else {
unsigned minwords = getNumWords() < RHS.getNumWords() ?
getNumWords() : RHS.getNumWords();
for (unsigned i = 0; i < minwords; ++i)
pVal[i] ^= RHS.pVal[i];
if (getNumWords() > minwords)
for (unsigned i = minwords; i < getNumWords(); ++i)
pVal[i] ^= 0;
}
}
clearUnusedBits();
return *this;
}
/// @brief Bitwise AND operator. Performs bitwise AND operation on this APInt
/// and the given APInt& RHS.
APInt APInt::operator&(const APInt& RHS) const {
APInt API(RHS);
return API &= *this;
}
/// @brief Bitwise OR operator. Performs bitwise OR operation on this APInt
/// and the given APInt& RHS.
APInt APInt::operator|(const APInt& RHS) const {
APInt API(RHS);
API |= *this;
API.clearUnusedBits();
return API;
}
/// @brief Bitwise XOR operator. Performs bitwise XOR operation on this APInt
/// and the given APInt& RHS.
APInt APInt::operator^(const APInt& RHS) const {
APInt API(RHS);
API ^= *this;
API.clearUnusedBits();
return API;
}
/// @brief Logical negation operator. Performs logical negation operation on
/// this APInt.
bool APInt::operator !() const {
if (isSingleWord())
return !VAL;
else
for (unsigned i = 0; i < getNumWords(); ++i)
if (pVal[i])
return false;
return true;
}
/// @brief Multiplication operator. Multiplies this APInt by the given APInt&
/// RHS.
APInt APInt::operator*(const APInt& RHS) const {
APInt API(RHS);
API *= *this;
API.clearUnusedBits();
return API;
}
/// @brief Addition operator. Adds this APInt by the given APInt& RHS.
APInt APInt::operator+(const APInt& RHS) const {
APInt API(*this);
API += RHS;
API.clearUnusedBits();
return API;
}
/// @brief Subtraction operator. Subtracts this APInt by the given APInt& RHS
APInt APInt::operator-(const APInt& RHS) const {
APInt API(*this);
API -= RHS;
return API;
}
/// @brief Array-indexing support.
bool APInt::operator[](unsigned bitPosition) const {
return (maskBit(bitPosition) & (isSingleWord() ?
VAL : pVal[whichWord(bitPosition)])) != 0;
}
/// @brief Equality operator. Compare this APInt with the given APInt& RHS
/// for the validity of the equality relationship.
bool APInt::operator==(const APInt& RHS) const {
unsigned n1 = getActiveBits();
unsigned n2 = RHS.getActiveBits();
if (n1 != n2) return false;
else if (isSingleWord())
return VAL == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
else {
if (n1 <= 64)
return pVal[0] == (RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]);
for (int i = whichWord(n1 - 1); i >= 0; --i)
if (pVal[i] != RHS.pVal[i]) return false;
}
return true;
}
/// @brief Equality operator. Compare this APInt with the given uint64_t value
/// for the validity of the equality relationship.
bool APInt::operator==(uint64_t Val) const {
if (isSingleWord())
return VAL == Val;
else {
unsigned n = getActiveBits();
if (n <= 64)
return pVal[0] == Val;
else
return false;
}
}
/// @brief Unsigned less than comparison
bool APInt::ult(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
if (isSingleWord())
return VAL < RHS.VAL;
else {
unsigned n1 = getActiveBits();
unsigned n2 = RHS.getActiveBits();
if (n1 < n2)
return true;
else if (n2 < n1)
return false;
else if (n1 <= 64 && n2 <= 64)
return pVal[0] < RHS.pVal[0];
for (int i = whichWord(n1 - 1); i >= 0; --i) {
if (pVal[i] > RHS.pVal[i]) return false;
else if (pVal[i] < RHS.pVal[i]) return true;
}
}
return false;
}
/// @brief Signed less than comparison
bool APInt::slt(const APInt& RHS) const {
assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
if (isSingleWord())
return VAL < RHS.VAL;
else {
unsigned n1 = getActiveBits();
unsigned n2 = RHS.getActiveBits();
if (n1 < n2)
return true;
else if (n2 < n1)
return false;
else if (n1 <= 64 && n2 <= 64)
return pVal[0] < RHS.pVal[0];
for (int i = whichWord(n1 - 1); i >= 0; --i) {
if (pVal[i] > RHS.pVal[i]) return false;
else if (pVal[i] < RHS.pVal[i]) return true;
}
}
return false;
}
/// Set the given bit to 1 whose poition is given as "bitPosition".
/// @brief Set a given bit to 1.
APInt& APInt::set(unsigned bitPosition) {
if (isSingleWord()) VAL |= maskBit(bitPosition);
else pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
return *this;
}
/// @brief Set every bit to 1.
APInt& APInt::set() {
if (isSingleWord()) VAL = ~0ULL >> (64 - BitWidth);
else {
for (unsigned i = 0; i < getNumWords() - 1; ++i)
pVal[i] = -1ULL;
pVal[getNumWords() - 1] = ~0ULL >> (64 - BitWidth % 64);
}
return *this;
}
/// Set the given bit to 0 whose position is given as "bitPosition".
/// @brief Set a given bit to 0.
APInt& APInt::clear(unsigned bitPosition) {
if (isSingleWord()) VAL &= ~maskBit(bitPosition);
else pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
return *this;
}
/// @brief Set every bit to 0.
APInt& APInt::clear() {
if (isSingleWord()) VAL = 0;
else
memset(pVal, 0, getNumWords() * 8);
return *this;
}
/// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
/// this APInt.
APInt APInt::operator~() const {
APInt API(*this);
API.flip();
return API;
}
/// @brief Toggle every bit to its opposite value.
APInt& APInt::flip() {
if (isSingleWord()) VAL = (~(VAL << (64 - BitWidth))) >> (64 - BitWidth);
else {
unsigned i = 0;
for (; i < getNumWords() - 1; ++i)
pVal[i] = ~pVal[i];
unsigned offset = 64 - (BitWidth - 64 * (i - 1));
pVal[i] = (~(pVal[i] << offset)) >> offset;
}
return *this;
}
/// Toggle a given bit to its opposite value whose position is given
/// as "bitPosition".
/// @brief Toggles a given bit to its opposite value.
APInt& APInt::flip(unsigned bitPosition) {
assert(bitPosition < BitWidth && "Out of the bit-width range!");
if ((*this)[bitPosition]) clear(bitPosition);
else set(bitPosition);
return *this;
}
/// to_string - This function translates the APInt into a string.
std::string APInt::toString(uint8_t radix) const {
assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
"Radix should be 2, 8, 10, or 16!");
static const char *digits[] = {
"0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"
};
std::string result;
unsigned bits_used = getActiveBits();
if (isSingleWord()) {
char buf[65];
const char *format = (radix == 10 ? "%llu" :
(radix == 16 ? "%llX" : (radix == 8 ? "%llo" : 0)));
if (format) {
sprintf(buf, format, VAL);
} else {
memset(buf, 0, 65);
uint64_t v = VAL;
while (bits_used) {
unsigned bit = v & 1;
bits_used--;
buf[bits_used] = digits[bit][0];
v >>=1;
}
}
result = buf;
return result;
}
APInt tmp(*this);
APInt divisor(radix,64);
if (tmp == 0)
result = "0";
else while (tmp != 0) {
APInt APdigit = APIntOps::urem(tmp,divisor);
unsigned digit = APdigit.getValue();
assert(digit < radix && "urem failed");
result.insert(0,digits[digit]);
tmp = APIntOps::udiv(tmp, divisor);
}
return result;
}
/// getMaxValue - This function returns the largest value
/// for an APInt of the specified bit-width and if isSign == true,
/// it should be largest signed value, otherwise unsigned value.
APInt APInt::getMaxValue(unsigned numBits, bool isSign) {
APInt APIVal(0, numBits);
APIVal.set();
if (isSign) APIVal.clear(numBits - 1);
return APIVal;
}
/// getMinValue - This function returns the smallest value for
/// an APInt of the given bit-width and if isSign == true,
/// it should be smallest signed value, otherwise zero.
APInt APInt::getMinValue(unsigned numBits, bool isSign) {
APInt APIVal(0, numBits);
if (isSign) APIVal.set(numBits - 1);
return APIVal;
}
/// getAllOnesValue - This function returns an all-ones value for
/// an APInt of the specified bit-width.
APInt APInt::getAllOnesValue(unsigned numBits) {
return getMaxValue(numBits, false);
}
/// getNullValue - This function creates an '0' value for an
/// APInt of the specified bit-width.
APInt APInt::getNullValue(unsigned numBits) {
return getMinValue(numBits, false);
}
/// HiBits - This function returns the high "numBits" bits of this APInt.
APInt APInt::getHiBits(unsigned numBits) const {
return APIntOps::lshr(*this, BitWidth - numBits);
}
/// LoBits - This function returns the low "numBits" bits of this APInt.
APInt APInt::getLoBits(unsigned numBits) const {
return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
BitWidth - numBits);
}
bool APInt::isPowerOf2() const {
return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
}
/// countLeadingZeros - This function is a APInt version corresponding to
/// llvm/include/llvm/Support/MathExtras.h's function
/// countLeadingZeros_{32, 64}. It performs platform optimal form of counting
/// the number of zeros from the most significant bit to the first one bit.
/// @returns numWord() * 64 if the value is zero.
unsigned APInt::countLeadingZeros() const {
if (isSingleWord())
return CountLeadingZeros_64(VAL);
unsigned Count = 0;
for (int i = getNumWords() - 1; i >= 0; --i) {
unsigned tmp = CountLeadingZeros_64(pVal[i]);
Count += tmp;
if (tmp != 64)
break;
}
return Count;
}
/// countTrailingZeros - This function is a APInt version corresponding to
/// llvm/include/llvm/Support/MathExtras.h's function
/// countTrailingZeros_{32, 64}. It performs platform optimal form of counting
/// the number of zeros from the least significant bit to the first one bit.
/// @returns numWord() * 64 if the value is zero.
unsigned APInt::countTrailingZeros() const {
if (isSingleWord())
return CountTrailingZeros_64(~VAL & (VAL - 1));
APInt Tmp = ~(*this) & ((*this) - APInt(BitWidth,1));
return getNumWords() * APINT_BITS_PER_WORD - Tmp.countLeadingZeros();
}
/// countPopulation - This function is a APInt version corresponding to
/// llvm/include/llvm/Support/MathExtras.h's function
/// countPopulation_{32, 64}. It counts the number of set bits in a value.
/// @returns 0 if the value is zero.
unsigned APInt::countPopulation() const {
if (isSingleWord())
return CountPopulation_64(VAL);
unsigned Count = 0;
for (unsigned i = 0; i < getNumWords(); ++i)
Count += CountPopulation_64(pVal[i]);
return Count;
}
/// byteSwap - This function returns a byte-swapped representation of the
/// this APInt.
APInt APInt::byteSwap() const {
assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
if (BitWidth == 16)
return APInt(ByteSwap_16(VAL), BitWidth);
else if (BitWidth == 32)
return APInt(ByteSwap_32(VAL), BitWidth);
else if (BitWidth == 48) {
uint64_t Tmp1 = ((VAL >> 32) << 16) | (VAL & 0xFFFF);
Tmp1 = ByteSwap_32(Tmp1);
uint64_t Tmp2 = (VAL >> 16) & 0xFFFF;
Tmp2 = ByteSwap_16(Tmp2);
return
APInt((Tmp1 & 0xff) | ((Tmp1<<16) & 0xffff00000000ULL) | (Tmp2 << 16),
BitWidth);
} else if (BitWidth == 64)
return APInt(ByteSwap_64(VAL), BitWidth);
else {
APInt Result(0, BitWidth);
char *pByte = (char*)Result.pVal;
for (unsigned i = 0; i < BitWidth / 8 / 2; ++i) {
char Tmp = pByte[i];
pByte[i] = pByte[BitWidth / 8 - 1 - i];
pByte[BitWidth / 8 - i - 1] = Tmp;
}
return Result;
}
}
/// GreatestCommonDivisor - This function returns the greatest common
/// divisor of the two APInt values using Enclid's algorithm.
APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
const APInt& API2) {
APInt A = API1, B = API2;
while (!!B) {
APInt T = B;
B = APIntOps::urem(A, B);
A = T;
}
return A;
}
/// DoubleRoundToAPInt - This function convert a double value to
/// a APInt value.
APInt llvm::APIntOps::RoundDoubleToAPInt(double Double) {
union {
double D;
uint64_t I;
} T;
T.D = Double;
bool isNeg = T.I >> 63;
int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
if (exp < 0)
return APInt(64ull, 0u);
uint64_t mantissa = ((T.I << 12) >> 12) | (1ULL << 52);
if (exp < 52)
return isNeg ? -APInt(64u, mantissa >> (52 - exp)) :
APInt(64u, mantissa >> (52 - exp));
APInt Tmp(exp + 1, mantissa);
Tmp = Tmp.shl(exp - 52);
return isNeg ? -Tmp : Tmp;
}
/// RoundToDouble - This function convert this APInt to a double.
/// The layout for double is as following (IEEE Standard 754):
/// --------------------------------------
/// | Sign Exponent Fraction Bias |
/// |-------------------------------------- |
/// | 1[63] 11[62-52] 52[51-00] 1023 |
/// --------------------------------------
double APInt::roundToDouble(bool isSigned) const {
bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
APInt Tmp(isNeg ? -(*this) : (*this));
if (Tmp.isSingleWord())
return isSigned ? double(int64_t(Tmp.VAL)) : double(Tmp.VAL);
unsigned n = Tmp.getActiveBits();
if (n <= 64)
return isSigned ? double(int64_t(Tmp.pVal[0])) : double(Tmp.pVal[0]);
// Exponent when normalized to have decimal point directly after
// leading one. This is stored excess 1023 in the exponent bit field.
uint64_t exp = n - 1;
// Gross overflow.
assert(exp <= 1023 && "Infinity value!");
// Number of bits in mantissa including the leading one
// equals to 53.
uint64_t mantissa;
if (n % 64 >= 53)
mantissa = Tmp.pVal[whichWord(n - 1)] >> (n % 64 - 53);
else
mantissa = (Tmp.pVal[whichWord(n - 1)] << (53 - n % 64)) |
(Tmp.pVal[whichWord(n - 1) - 1] >> (11 + n % 64));
// The leading bit of mantissa is implicit, so get rid of it.
mantissa &= ~(1ULL << 52);
uint64_t sign = isNeg ? (1ULL << 63) : 0;
exp += 1023;
union {
double D;
uint64_t I;
} T;
T.I = sign | (exp << 52) | mantissa;
return T.D;
}
// Truncate to new width.
void APInt::trunc(unsigned width) {
assert(width < BitWidth && "Invalid APInt Truncate request");
}
// Sign extend to a new width.
void APInt::sext(unsigned width) {
assert(width > BitWidth && "Invalid APInt SignExtend request");
}
// Zero extend to a new width.
void APInt::zext(unsigned width) {
assert(width > BitWidth && "Invalid APInt ZeroExtend request");
}
/// Arithmetic right-shift this APInt by shiftAmt.
/// @brief Arithmetic right-shift function.
APInt APInt::ashr(unsigned shiftAmt) const {
APInt API(*this);
if (API.isSingleWord())
API.VAL = (((int64_t(API.VAL) << (64 - API.BitWidth)) >> (64 - API.BitWidth))
>> shiftAmt) & (~uint64_t(0UL) >> (64 - API.BitWidth));
else {
if (shiftAmt >= API.BitWidth) {
memset(API.pVal, API[API.BitWidth-1] ? 1 : 0, (API.getNumWords()-1) * 8);
API.pVal[API.getNumWords() - 1] = ~uint64_t(0UL) >>
(64 - API.BitWidth % 64);
} else {
unsigned i = 0;
for (; i < API.BitWidth - shiftAmt; ++i)
if (API[i+shiftAmt])
API.set(i);
else
API.clear(i);
for (; i < API.BitWidth; ++i)
if (API[API.BitWidth-1])
API.set(i);
else API.clear(i);
}
}
return API;
}
/// Logical right-shift this APInt by shiftAmt.
/// @brief Logical right-shift function.
APInt APInt::lshr(unsigned shiftAmt) const {
APInt API(*this);
if (API.isSingleWord())
API.VAL >>= shiftAmt;
else {
if (shiftAmt >= API.BitWidth)
memset(API.pVal, 0, API.getNumWords() * 8);
unsigned i = 0;
for (i = 0; i < API.BitWidth - shiftAmt; ++i)
if (API[i+shiftAmt]) API.set(i);
else API.clear(i);
for (; i < API.BitWidth; ++i)
API.clear(i);
}
return API;
}
/// Left-shift this APInt by shiftAmt.
/// @brief Left-shift function.
APInt APInt::shl(unsigned shiftAmt) const {
APInt API(*this);
if (API.isSingleWord())
API.VAL <<= shiftAmt;
else if (shiftAmt >= API.BitWidth)
memset(API.pVal, 0, API.getNumWords() * 8);
else {
if (unsigned offset = shiftAmt / 64) {
for (unsigned i = API.getNumWords() - 1; i > offset - 1; --i)
API.pVal[i] = API.pVal[i-offset];
memset(API.pVal, 0, offset * 8);
}
shiftAmt %= 64;
unsigned i;
for (i = API.getNumWords() - 1; i > 0; --i)
API.pVal[i] = (API.pVal[i] << shiftAmt) |
(API.pVal[i-1] >> (64-shiftAmt));
API.pVal[i] <<= shiftAmt;
}
API.clearUnusedBits();
return API;
}
/// Unsigned divide this APInt by APInt RHS.
/// @brief Unsigned division function for APInt.
APInt APInt::udiv(const APInt& RHS) const {
APInt API(*this);
unsigned first = RHS.getActiveBits();
unsigned ylen = !first ? 0 : APInt::whichWord(first - 1) + 1;
assert(ylen && "Divided by zero???");
if (API.isSingleWord()) {
API.VAL = RHS.isSingleWord() ? (API.VAL / RHS.VAL) :
(ylen > 1 ? 0 : API.VAL / RHS.pVal[0]);
} else {
unsigned first2 = API.getActiveBits();
unsigned xlen = !first2 ? 0 : APInt::whichWord(first2 - 1) + 1;
if (!xlen)
return API;
else if (xlen < ylen || API.ult(RHS))
memset(API.pVal, 0, API.getNumWords() * 8);
else if (API == RHS) {
memset(API.pVal, 0, API.getNumWords() * 8);
API.pVal[0] = 1;
} else if (xlen == 1)
API.pVal[0] /= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
else {
APInt X(0, (xlen+1)*64), Y(0, ylen*64);
if (unsigned nshift = 63 - (first - 1) % 64) {
Y = APIntOps::shl(RHS, nshift);
X = APIntOps::shl(API, nshift);
++xlen;
}
div((unsigned*)X.pVal, xlen*2-1,
(unsigned*)(Y.isSingleWord() ? &Y.VAL : Y.pVal), ylen*2);
memset(API.pVal, 0, API.getNumWords() * 8);
memcpy(API.pVal, X.pVal + ylen, (xlen - ylen) * 8);
}
}
return API;
}
/// Unsigned remainder operation on APInt.
/// @brief Function for unsigned remainder operation.
APInt APInt::urem(const APInt& RHS) const {
APInt API(*this);
unsigned first = RHS.getActiveBits();
unsigned ylen = !first ? 0 : APInt::whichWord(first - 1) + 1;
assert(ylen && "Performing remainder operation by zero ???");
if (API.isSingleWord()) {
API.VAL = RHS.isSingleWord() ? (API.VAL % RHS.VAL) :
(ylen > 1 ? API.VAL : API.VAL % RHS.pVal[0]);
} else {
unsigned first2 = API.getActiveBits();
unsigned xlen = !first2 ? 0 : API.whichWord(first2 - 1) + 1;
if (!xlen || xlen < ylen || API.ult(RHS))
return API;
else if (API == RHS)
memset(API.pVal, 0, API.getNumWords() * 8);
else if (xlen == 1)
API.pVal[0] %= RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
else {
APInt X(0, (xlen+1)*64), Y(0, ylen*64);
unsigned nshift = 63 - (first - 1) % 64;
if (nshift) {
APIntOps::shl(Y, nshift);
APIntOps::shl(X, nshift);
}
div((unsigned*)X.pVal, xlen*2-1,
(unsigned*)(Y.isSingleWord() ? &Y.VAL : Y.pVal), ylen*2);
memset(API.pVal, 0, API.getNumWords() * 8);
for (unsigned i = 0; i < ylen-1; ++i)
API.pVal[i] = (X.pVal[i] >> nshift) | (X.pVal[i+1] << (64 - nshift));
API.pVal[ylen-1] = X.pVal[ylen-1] >> nshift;
}
}
return API;
}