llvm/lib/Target/Sparc/SparcISelLowering.cpp
Eric Christopher 41612a9b85 Remove the target machine from CCState. Previously it was only used
to get the subtarget and that's accessible from the MachineFunction
now. This helps clear the way for smaller changes where we getting
a subtarget will require passing in a MachineFunction/Function as
well.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214988 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-06 18:45:26 +00:00

3222 lines
126 KiB
C++

//===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the interfaces that Sparc uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "SparcISelLowering.h"
#include "MCTargetDesc/SparcMCExpr.h"
#include "SparcMachineFunctionInfo.h"
#include "SparcRegisterInfo.h"
#include "SparcTargetMachine.h"
#include "SparcTargetObjectFile.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT,
MVT &LocVT, CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State)
{
assert (ArgFlags.isSRet());
// Assign SRet argument.
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
0,
LocVT, LocInfo));
return true;
}
static bool CC_Sparc_Assign_f64(unsigned &ValNo, MVT &ValVT,
MVT &LocVT, CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State)
{
static const MCPhysReg RegList[] = {
SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
};
// Try to get first reg.
if (unsigned Reg = State.AllocateReg(RegList, 6)) {
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
} else {
// Assign whole thing in stack.
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
State.AllocateStack(8,4),
LocVT, LocInfo));
return true;
}
// Try to get second reg.
if (unsigned Reg = State.AllocateReg(RegList, 6))
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
else
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
State.AllocateStack(4,4),
LocVT, LocInfo));
return true;
}
// Allocate a full-sized argument for the 64-bit ABI.
static bool CC_Sparc64_Full(unsigned &ValNo, MVT &ValVT,
MVT &LocVT, CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State) {
assert((LocVT == MVT::f32 || LocVT == MVT::f128
|| LocVT.getSizeInBits() == 64) &&
"Can't handle non-64 bits locations");
// Stack space is allocated for all arguments starting from [%fp+BIAS+128].
unsigned size = (LocVT == MVT::f128) ? 16 : 8;
unsigned alignment = (LocVT == MVT::f128) ? 16 : 8;
unsigned Offset = State.AllocateStack(size, alignment);
unsigned Reg = 0;
if (LocVT == MVT::i64 && Offset < 6*8)
// Promote integers to %i0-%i5.
Reg = SP::I0 + Offset/8;
else if (LocVT == MVT::f64 && Offset < 16*8)
// Promote doubles to %d0-%d30. (Which LLVM calls D0-D15).
Reg = SP::D0 + Offset/8;
else if (LocVT == MVT::f32 && Offset < 16*8)
// Promote floats to %f1, %f3, ...
Reg = SP::F1 + Offset/4;
else if (LocVT == MVT::f128 && Offset < 16*8)
// Promote long doubles to %q0-%q28. (Which LLVM calls Q0-Q7).
Reg = SP::Q0 + Offset/16;
// Promote to register when possible, otherwise use the stack slot.
if (Reg) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return true;
}
// This argument goes on the stack in an 8-byte slot.
// When passing floats, LocVT is smaller than 8 bytes. Adjust the offset to
// the right-aligned float. The first 4 bytes of the stack slot are undefined.
if (LocVT == MVT::f32)
Offset += 4;
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return true;
}
// Allocate a half-sized argument for the 64-bit ABI.
//
// This is used when passing { float, int } structs by value in registers.
static bool CC_Sparc64_Half(unsigned &ValNo, MVT &ValVT,
MVT &LocVT, CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State) {
assert(LocVT.getSizeInBits() == 32 && "Can't handle non-32 bits locations");
unsigned Offset = State.AllocateStack(4, 4);
if (LocVT == MVT::f32 && Offset < 16*8) {
// Promote floats to %f0-%f31.
State.addLoc(CCValAssign::getReg(ValNo, ValVT, SP::F0 + Offset/4,
LocVT, LocInfo));
return true;
}
if (LocVT == MVT::i32 && Offset < 6*8) {
// Promote integers to %i0-%i5, using half the register.
unsigned Reg = SP::I0 + Offset/8;
LocVT = MVT::i64;
LocInfo = CCValAssign::AExt;
// Set the Custom bit if this i32 goes in the high bits of a register.
if (Offset % 8 == 0)
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg,
LocVT, LocInfo));
else
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return true;
}
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return true;
}
#include "SparcGenCallingConv.inc"
// The calling conventions in SparcCallingConv.td are described in terms of the
// callee's register window. This function translates registers to the
// corresponding caller window %o register.
static unsigned toCallerWindow(unsigned Reg) {
assert(SP::I0 + 7 == SP::I7 && SP::O0 + 7 == SP::O7 && "Unexpected enum");
if (Reg >= SP::I0 && Reg <= SP::I7)
return Reg - SP::I0 + SP::O0;
return Reg;
}
SDValue
SparcTargetLowering::LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
SDLoc DL, SelectionDAG &DAG) const {
if (Subtarget->is64Bit())
return LowerReturn_64(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
return LowerReturn_32(Chain, CallConv, IsVarArg, Outs, OutVals, DL, DAG);
}
SDValue
SparcTargetLowering::LowerReturn_32(SDValue Chain,
CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
SDLoc DL, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
// CCValAssign - represent the assignment of the return value to locations.
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Analyze return values.
CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32);
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
// Make room for the return address offset.
RetOps.push_back(SDValue());
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(),
OutVals[i], Flag);
// Guarantee that all emitted copies are stuck together with flags.
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
unsigned RetAddrOffset = 8; // Call Inst + Delay Slot
// If the function returns a struct, copy the SRetReturnReg to I0
if (MF.getFunction()->hasStructRetAttr()) {
SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
unsigned Reg = SFI->getSRetReturnReg();
if (!Reg)
llvm_unreachable("sret virtual register not created in the entry block");
SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
Chain = DAG.getCopyToReg(Chain, DL, SP::I0, Val, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(SP::I0, getPointerTy()));
RetAddrOffset = 12; // CallInst + Delay Slot + Unimp
}
RetOps[0] = Chain; // Update chain.
RetOps[1] = DAG.getConstant(RetAddrOffset, MVT::i32);
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps);
}
// Lower return values for the 64-bit ABI.
// Return values are passed the exactly the same way as function arguments.
SDValue
SparcTargetLowering::LowerReturn_64(SDValue Chain,
CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
SDLoc DL, SelectionDAG &DAG) const {
// CCValAssign - represent the assignment of the return value to locations.
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Analyze return values.
CCInfo.AnalyzeReturn(Outs, RetCC_Sparc64);
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
// The second operand on the return instruction is the return address offset.
// The return address is always %i7+8 with the 64-bit ABI.
RetOps.push_back(DAG.getConstant(8, MVT::i32));
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue OutVal = OutVals[i];
// Integer return values must be sign or zero extended by the callee.
switch (VA.getLocInfo()) {
case CCValAssign::Full: break;
case CCValAssign::SExt:
OutVal = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), OutVal);
break;
case CCValAssign::ZExt:
OutVal = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), OutVal);
break;
case CCValAssign::AExt:
OutVal = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), OutVal);
break;
default:
llvm_unreachable("Unknown loc info!");
}
// The custom bit on an i32 return value indicates that it should be passed
// in the high bits of the register.
if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
OutVal = DAG.getNode(ISD::SHL, DL, MVT::i64, OutVal,
DAG.getConstant(32, MVT::i32));
// The next value may go in the low bits of the same register.
// Handle both at once.
if (i+1 < RVLocs.size() && RVLocs[i+1].getLocReg() == VA.getLocReg()) {
SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, OutVals[i+1]);
OutVal = DAG.getNode(ISD::OR, DL, MVT::i64, OutVal, NV);
// Skip the next value, it's already done.
++i;
}
}
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVal, Flag);
// Guarantee that all emitted copies are stuck together with flags.
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(SPISD::RET_FLAG, DL, MVT::Other, RetOps);
}
SDValue SparcTargetLowering::
LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv,
bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc DL,
SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
if (Subtarget->is64Bit())
return LowerFormalArguments_64(Chain, CallConv, IsVarArg, Ins,
DL, DAG, InVals);
return LowerFormalArguments_32(Chain, CallConv, IsVarArg, Ins,
DL, DAG, InVals);
}
/// LowerFormalArguments32 - V8 uses a very simple ABI, where all values are
/// passed in either one or two GPRs, including FP values. TODO: we should
/// pass FP values in FP registers for fastcc functions.
SDValue SparcTargetLowering::
LowerFormalArguments_32(SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc dl,
SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32);
const unsigned StackOffset = 92;
unsigned InIdx = 0;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++InIdx) {
CCValAssign &VA = ArgLocs[i];
if (Ins[InIdx].Flags.isSRet()) {
if (InIdx != 0)
report_fatal_error("sparc only supports sret on the first parameter");
// Get SRet from [%fp+64].
int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, 64, true);
SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
SDValue Arg = DAG.getLoad(MVT::i32, dl, Chain, FIPtr,
MachinePointerInfo(),
false, false, false, 0);
InVals.push_back(Arg);
continue;
}
if (VA.isRegLoc()) {
if (VA.needsCustom()) {
assert(VA.getLocVT() == MVT::f64);
unsigned VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi);
SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32);
assert(i+1 < e);
CCValAssign &NextVA = ArgLocs[++i];
SDValue LoVal;
if (NextVA.isMemLoc()) {
int FrameIdx = MF.getFrameInfo()->
CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true);
SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr,
MachinePointerInfo(),
false, false, false, 0);
} else {
unsigned loReg = MF.addLiveIn(NextVA.getLocReg(),
&SP::IntRegsRegClass);
LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32);
}
SDValue WholeValue =
DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
WholeValue = DAG.getNode(ISD::BITCAST, dl, MVT::f64, WholeValue);
InVals.push_back(WholeValue);
continue;
}
unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg);
SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
if (VA.getLocVT() == MVT::f32)
Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg);
else if (VA.getLocVT() != MVT::i32) {
Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg,
DAG.getValueType(VA.getLocVT()));
Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg);
}
InVals.push_back(Arg);
continue;
}
assert(VA.isMemLoc());
unsigned Offset = VA.getLocMemOffset()+StackOffset;
if (VA.needsCustom()) {
assert(VA.getValVT() == MVT::f64);
// If it is double-word aligned, just load.
if (Offset % 8 == 0) {
int FI = MF.getFrameInfo()->CreateFixedObject(8,
Offset,
true);
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
SDValue Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr,
MachinePointerInfo(),
false,false, false, 0);
InVals.push_back(Load);
continue;
}
int FI = MF.getFrameInfo()->CreateFixedObject(4,
Offset,
true);
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
SDValue HiVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr,
MachinePointerInfo(),
false, false, false, 0);
int FI2 = MF.getFrameInfo()->CreateFixedObject(4,
Offset+4,
true);
SDValue FIPtr2 = DAG.getFrameIndex(FI2, getPointerTy());
SDValue LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr2,
MachinePointerInfo(),
false, false, false, 0);
SDValue WholeValue =
DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
WholeValue = DAG.getNode(ISD::BITCAST, dl, MVT::f64, WholeValue);
InVals.push_back(WholeValue);
continue;
}
int FI = MF.getFrameInfo()->CreateFixedObject(4,
Offset,
true);
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
SDValue Load ;
if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) {
Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr,
MachinePointerInfo(),
false, false, false, 0);
} else {
ISD::LoadExtType LoadOp = ISD::SEXTLOAD;
// Sparc is big endian, so add an offset based on the ObjectVT.
unsigned Offset = 4-std::max(1U, VA.getValVT().getSizeInBits()/8);
FIPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIPtr,
DAG.getConstant(Offset, MVT::i32));
Load = DAG.getExtLoad(LoadOp, dl, MVT::i32, Chain, FIPtr,
MachinePointerInfo(),
VA.getValVT(), false, false, false,0);
Load = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Load);
}
InVals.push_back(Load);
}
if (MF.getFunction()->hasStructRetAttr()) {
// Copy the SRet Argument to SRetReturnReg.
SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
unsigned Reg = SFI->getSRetReturnReg();
if (!Reg) {
Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass);
SFI->setSRetReturnReg(Reg);
}
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
}
// Store remaining ArgRegs to the stack if this is a varargs function.
if (isVarArg) {
static const MCPhysReg ArgRegs[] = {
SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
};
unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs, 6);
const MCPhysReg *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6;
unsigned ArgOffset = CCInfo.getNextStackOffset();
if (NumAllocated == 6)
ArgOffset += StackOffset;
else {
assert(!ArgOffset);
ArgOffset = 68+4*NumAllocated;
}
// Remember the vararg offset for the va_start implementation.
FuncInfo->setVarArgsFrameOffset(ArgOffset);
std::vector<SDValue> OutChains;
for (; CurArgReg != ArgRegEnd; ++CurArgReg) {
unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(*CurArgReg, VReg);
SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32);
int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset,
true);
SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
OutChains.push_back(DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr,
MachinePointerInfo(),
false, false, 0));
ArgOffset += 4;
}
if (!OutChains.empty()) {
OutChains.push_back(Chain);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
}
}
return Chain;
}
// Lower formal arguments for the 64 bit ABI.
SDValue SparcTargetLowering::
LowerFormalArguments_64(SDValue Chain,
CallingConv::ID CallConv,
bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc DL,
SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
// Analyze arguments according to CC_Sparc64.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc64);
// The argument array begins at %fp+BIAS+128, after the register save area.
const unsigned ArgArea = 128;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (VA.isRegLoc()) {
// This argument is passed in a register.
// All integer register arguments are promoted by the caller to i64.
// Create a virtual register for the promoted live-in value.
unsigned VReg = MF.addLiveIn(VA.getLocReg(),
getRegClassFor(VA.getLocVT()));
SDValue Arg = DAG.getCopyFromReg(Chain, DL, VReg, VA.getLocVT());
// Get the high bits for i32 struct elements.
if (VA.getValVT() == MVT::i32 && VA.needsCustom())
Arg = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Arg,
DAG.getConstant(32, MVT::i32));
// The caller promoted the argument, so insert an Assert?ext SDNode so we
// won't promote the value again in this function.
switch (VA.getLocInfo()) {
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Arg,
DAG.getValueType(VA.getValVT()));
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Arg,
DAG.getValueType(VA.getValVT()));
break;
default:
break;
}
// Truncate the register down to the argument type.
if (VA.isExtInLoc())
Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
InVals.push_back(Arg);
continue;
}
// The registers are exhausted. This argument was passed on the stack.
assert(VA.isMemLoc());
// The CC_Sparc64_Full/Half functions compute stack offsets relative to the
// beginning of the arguments area at %fp+BIAS+128.
unsigned Offset = VA.getLocMemOffset() + ArgArea;
unsigned ValSize = VA.getValVT().getSizeInBits() / 8;
// Adjust offset for extended arguments, SPARC is big-endian.
// The caller will have written the full slot with extended bytes, but we
// prefer our own extending loads.
if (VA.isExtInLoc())
Offset += 8 - ValSize;
int FI = MF.getFrameInfo()->CreateFixedObject(ValSize, Offset, true);
InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain,
DAG.getFrameIndex(FI, getPointerTy()),
MachinePointerInfo::getFixedStack(FI),
false, false, false, 0));
}
if (!IsVarArg)
return Chain;
// This function takes variable arguments, some of which may have been passed
// in registers %i0-%i5. Variable floating point arguments are never passed
// in floating point registers. They go on %i0-%i5 or on the stack like
// integer arguments.
//
// The va_start intrinsic needs to know the offset to the first variable
// argument.
unsigned ArgOffset = CCInfo.getNextStackOffset();
SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
// Skip the 128 bytes of register save area.
FuncInfo->setVarArgsFrameOffset(ArgOffset + ArgArea +
Subtarget->getStackPointerBias());
// Save the variable arguments that were passed in registers.
// The caller is required to reserve stack space for 6 arguments regardless
// of how many arguments were actually passed.
SmallVector<SDValue, 8> OutChains;
for (; ArgOffset < 6*8; ArgOffset += 8) {
unsigned VReg = MF.addLiveIn(SP::I0 + ArgOffset/8, &SP::I64RegsRegClass);
SDValue VArg = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
int FI = MF.getFrameInfo()->CreateFixedObject(8, ArgOffset + ArgArea, true);
OutChains.push_back(DAG.getStore(Chain, DL, VArg,
DAG.getFrameIndex(FI, getPointerTy()),
MachinePointerInfo::getFixedStack(FI),
false, false, 0));
}
if (!OutChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
return Chain;
}
SDValue
SparcTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
if (Subtarget->is64Bit())
return LowerCall_64(CLI, InVals);
return LowerCall_32(CLI, InVals);
}
static bool hasReturnsTwiceAttr(SelectionDAG &DAG, SDValue Callee,
ImmutableCallSite *CS) {
if (CS)
return CS->hasFnAttr(Attribute::ReturnsTwice);
const Function *CalleeFn = nullptr;
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
CalleeFn = dyn_cast<Function>(G->getGlobal());
} else if (ExternalSymbolSDNode *E =
dyn_cast<ExternalSymbolSDNode>(Callee)) {
const Function *Fn = DAG.getMachineFunction().getFunction();
const Module *M = Fn->getParent();
const char *CalleeName = E->getSymbol();
CalleeFn = M->getFunction(CalleeName);
}
if (!CalleeFn)
return false;
return CalleeFn->hasFnAttribute(Attribute::ReturnsTwice);
}
// Lower a call for the 32-bit ABI.
SDValue
SparcTargetLowering::LowerCall_32(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &isTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool isVarArg = CLI.IsVarArg;
// Sparc target does not yet support tail call optimization.
isTailCall = false;
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32);
// Get the size of the outgoing arguments stack space requirement.
unsigned ArgsSize = CCInfo.getNextStackOffset();
// Keep stack frames 8-byte aligned.
ArgsSize = (ArgsSize+7) & ~7;
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
// Create local copies for byval args.
SmallVector<SDValue, 8> ByValArgs;
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
ISD::ArgFlagsTy Flags = Outs[i].Flags;
if (!Flags.isByVal())
continue;
SDValue Arg = OutVals[i];
unsigned Size = Flags.getByValSize();
unsigned Align = Flags.getByValAlign();
int FI = MFI->CreateStackObject(Size, Align, false);
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
SDValue SizeNode = DAG.getConstant(Size, MVT::i32);
Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Align,
false, // isVolatile,
(Size <= 32), // AlwaysInline if size <= 32
MachinePointerInfo(), MachinePointerInfo());
ByValArgs.push_back(FIPtr);
}
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(ArgsSize, true),
dl);
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
const unsigned StackOffset = 92;
bool hasStructRetAttr = false;
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size();
i != e;
++i, ++realArgIdx) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[realArgIdx];
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
// Use local copy if it is a byval arg.
if (Flags.isByVal())
Arg = ByValArgs[byvalArgIdx++];
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
break;
}
if (Flags.isSRet()) {
assert(VA.needsCustom());
// store SRet argument in %sp+64
SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
SDValue PtrOff = DAG.getIntPtrConstant(64);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(),
false, false, 0));
hasStructRetAttr = true;
continue;
}
if (VA.needsCustom()) {
assert(VA.getLocVT() == MVT::f64);
if (VA.isMemLoc()) {
unsigned Offset = VA.getLocMemOffset() + StackOffset;
// if it is double-word aligned, just store.
if (Offset % 8 == 0) {
SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
SDValue PtrOff = DAG.getIntPtrConstant(Offset);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(),
false, false, 0));
continue;
}
}
SDValue StackPtr = DAG.CreateStackTemporary(MVT::f64, MVT::i32);
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
Arg, StackPtr, MachinePointerInfo(),
false, false, 0);
// Sparc is big-endian, so the high part comes first.
SDValue Hi = DAG.getLoad(MVT::i32, dl, Store, StackPtr,
MachinePointerInfo(), false, false, false, 0);
// Increment the pointer to the other half.
StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
DAG.getIntPtrConstant(4));
// Load the low part.
SDValue Lo = DAG.getLoad(MVT::i32, dl, Store, StackPtr,
MachinePointerInfo(), false, false, false, 0);
if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Hi));
assert(i+1 != e);
CCValAssign &NextVA = ArgLocs[++i];
if (NextVA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Lo));
} else {
// Store the low part in stack.
unsigned Offset = NextVA.getLocMemOffset() + StackOffset;
SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
SDValue PtrOff = DAG.getIntPtrConstant(Offset);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, dl, Lo, PtrOff,
MachinePointerInfo(),
false, false, 0));
}
} else {
unsigned Offset = VA.getLocMemOffset() + StackOffset;
// Store the high part.
SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
SDValue PtrOff = DAG.getIntPtrConstant(Offset);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, dl, Hi, PtrOff,
MachinePointerInfo(),
false, false, 0));
// Store the low part.
PtrOff = DAG.getIntPtrConstant(Offset+4);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, dl, Lo, PtrOff,
MachinePointerInfo(),
false, false, 0));
}
continue;
}
// Arguments that can be passed on register must be kept at
// RegsToPass vector
if (VA.isRegLoc()) {
if (VA.getLocVT() != MVT::f32) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
continue;
}
Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
continue;
}
assert(VA.isMemLoc());
// Create a store off the stack pointer for this argument.
SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset()+StackOffset);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(),
false, false, 0));
}
// Emit all stores, make sure the occur before any copies into physregs.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
// Build a sequence of copy-to-reg nodes chained together with token
// chain and flag operands which copy the outgoing args into registers.
// The InFlag in necessary since all emitted instructions must be
// stuck together.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
unsigned Reg = toCallerWindow(RegsToPass[i].first);
Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
unsigned SRetArgSize = (hasStructRetAttr)? getSRetArgSize(DAG, Callee):0;
bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CS);
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
// Likewise ExternalSymbol -> TargetExternalSymbol.
unsigned TF = ((getTargetMachine().getRelocationModel() == Reloc::PIC_)
? SparcMCExpr::VK_Sparc_WPLT30 : 0);
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32, 0, TF);
else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32, TF);
// Returns a chain & a flag for retval copy to use
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
if (hasStructRetAttr)
Ops.push_back(DAG.getTargetConstant(SRetArgSize, MVT::i32));
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(toCallerWindow(RegsToPass[i].first),
RegsToPass[i].second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
const SparcRegisterInfo *TRI =
getTargetMachine().getSubtarget<SparcSubtarget>().getRegisterInfo();
const uint32_t *Mask = ((hasReturnsTwice)
? TRI->getRTCallPreservedMask(CallConv)
: TRI->getCallPreservedMask(CallConv));
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
if (InFlag.getNode())
Ops.push_back(InFlag);
Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, Ops);
InFlag = Chain.getValue(1);
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, true),
DAG.getIntPtrConstant(0, true), InFlag, dl);
InFlag = Chain.getValue(1);
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
Chain = DAG.getCopyFromReg(Chain, dl, toCallerWindow(RVLocs[i].getLocReg()),
RVLocs[i].getValVT(), InFlag).getValue(1);
InFlag = Chain.getValue(2);
InVals.push_back(Chain.getValue(0));
}
return Chain;
}
// This functions returns true if CalleeName is a ABI function that returns
// a long double (fp128).
static bool isFP128ABICall(const char *CalleeName)
{
static const char *const ABICalls[] =
{ "_Q_add", "_Q_sub", "_Q_mul", "_Q_div",
"_Q_sqrt", "_Q_neg",
"_Q_itoq", "_Q_stoq", "_Q_dtoq", "_Q_utoq",
"_Q_lltoq", "_Q_ulltoq",
nullptr
};
for (const char * const *I = ABICalls; *I != nullptr; ++I)
if (strcmp(CalleeName, *I) == 0)
return true;
return false;
}
unsigned
SparcTargetLowering::getSRetArgSize(SelectionDAG &DAG, SDValue Callee) const
{
const Function *CalleeFn = nullptr;
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
CalleeFn = dyn_cast<Function>(G->getGlobal());
} else if (ExternalSymbolSDNode *E =
dyn_cast<ExternalSymbolSDNode>(Callee)) {
const Function *Fn = DAG.getMachineFunction().getFunction();
const Module *M = Fn->getParent();
const char *CalleeName = E->getSymbol();
CalleeFn = M->getFunction(CalleeName);
if (!CalleeFn && isFP128ABICall(CalleeName))
return 16; // Return sizeof(fp128)
}
if (!CalleeFn)
return 0;
assert(CalleeFn->hasStructRetAttr() &&
"Callee does not have the StructRet attribute.");
PointerType *Ty = cast<PointerType>(CalleeFn->arg_begin()->getType());
Type *ElementTy = Ty->getElementType();
return getDataLayout()->getTypeAllocSize(ElementTy);
}
// Fixup floating point arguments in the ... part of a varargs call.
//
// The SPARC v9 ABI requires that floating point arguments are treated the same
// as integers when calling a varargs function. This does not apply to the
// fixed arguments that are part of the function's prototype.
//
// This function post-processes a CCValAssign array created by
// AnalyzeCallOperands().
static void fixupVariableFloatArgs(SmallVectorImpl<CCValAssign> &ArgLocs,
ArrayRef<ISD::OutputArg> Outs) {
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
const CCValAssign &VA = ArgLocs[i];
MVT ValTy = VA.getLocVT();
// FIXME: What about f32 arguments? C promotes them to f64 when calling
// varargs functions.
if (!VA.isRegLoc() || (ValTy != MVT::f64 && ValTy != MVT::f128))
continue;
// The fixed arguments to a varargs function still go in FP registers.
if (Outs[VA.getValNo()].IsFixed)
continue;
// This floating point argument should be reassigned.
CCValAssign NewVA;
// Determine the offset into the argument array.
unsigned firstReg = (ValTy == MVT::f64) ? SP::D0 : SP::Q0;
unsigned argSize = (ValTy == MVT::f64) ? 8 : 16;
unsigned Offset = argSize * (VA.getLocReg() - firstReg);
assert(Offset < 16*8 && "Offset out of range, bad register enum?");
if (Offset < 6*8) {
// This argument should go in %i0-%i5.
unsigned IReg = SP::I0 + Offset/8;
if (ValTy == MVT::f64)
// Full register, just bitconvert into i64.
NewVA = CCValAssign::getReg(VA.getValNo(), VA.getValVT(),
IReg, MVT::i64, CCValAssign::BCvt);
else {
assert(ValTy == MVT::f128 && "Unexpected type!");
// Full register, just bitconvert into i128 -- We will lower this into
// two i64s in LowerCall_64.
NewVA = CCValAssign::getCustomReg(VA.getValNo(), VA.getValVT(),
IReg, MVT::i128, CCValAssign::BCvt);
}
} else {
// This needs to go to memory, we're out of integer registers.
NewVA = CCValAssign::getMem(VA.getValNo(), VA.getValVT(),
Offset, VA.getLocVT(), VA.getLocInfo());
}
ArgLocs[i] = NewVA;
}
}
// Lower a call for the 64-bit ABI.
SDValue
SparcTargetLowering::LowerCall_64(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc DL = CLI.DL;
SDValue Chain = CLI.Chain;
// Sparc target does not yet support tail call optimization.
CLI.IsTailCall = false;
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
CCInfo.AnalyzeCallOperands(CLI.Outs, CC_Sparc64);
// Get the size of the outgoing arguments stack space requirement.
// The stack offset computed by CC_Sparc64 includes all arguments.
// Called functions expect 6 argument words to exist in the stack frame, used
// or not.
unsigned ArgsSize = std::max(6*8u, CCInfo.getNextStackOffset());
// Keep stack frames 16-byte aligned.
ArgsSize = RoundUpToAlignment(ArgsSize, 16);
// Varargs calls require special treatment.
if (CLI.IsVarArg)
fixupVariableFloatArgs(ArgLocs, CLI.Outs);
// Adjust the stack pointer to make room for the arguments.
// FIXME: Use hasReservedCallFrame to avoid %sp adjustments around all calls
// with more than 6 arguments.
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(ArgsSize, true),
DL);
// Collect the set of registers to pass to the function and their values.
// This will be emitted as a sequence of CopyToReg nodes glued to the call
// instruction.
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
// Collect chains from all the memory opeations that copy arguments to the
// stack. They must follow the stack pointer adjustment above and precede the
// call instruction itself.
SmallVector<SDValue, 8> MemOpChains;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
const CCValAssign &VA = ArgLocs[i];
SDValue Arg = CLI.OutVals[i];
// Promote the value if needed.
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unknown location info!");
case CCValAssign::Full:
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
break;
case CCValAssign::BCvt:
// fixupVariableFloatArgs() may create bitcasts from f128 to i128. But
// SPARC does not support i128 natively. Lower it into two i64, see below.
if (!VA.needsCustom() || VA.getValVT() != MVT::f128
|| VA.getLocVT() != MVT::i128)
Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
break;
}
if (VA.isRegLoc()) {
if (VA.needsCustom() && VA.getValVT() == MVT::f128
&& VA.getLocVT() == MVT::i128) {
// Store and reload into the interger register reg and reg+1.
unsigned Offset = 8 * (VA.getLocReg() - SP::I0);
unsigned StackOffset = Offset + Subtarget->getStackPointerBias() + 128;
SDValue StackPtr = DAG.getRegister(SP::O6, getPointerTy());
SDValue HiPtrOff = DAG.getIntPtrConstant(StackOffset);
HiPtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
HiPtrOff);
SDValue LoPtrOff = DAG.getIntPtrConstant(StackOffset + 8);
LoPtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
LoPtrOff);
// Store to %sp+BIAS+128+Offset
SDValue Store = DAG.getStore(Chain, DL, Arg, HiPtrOff,
MachinePointerInfo(),
false, false, 0);
// Load into Reg and Reg+1
SDValue Hi64 = DAG.getLoad(MVT::i64, DL, Store, HiPtrOff,
MachinePointerInfo(),
false, false, false, 0);
SDValue Lo64 = DAG.getLoad(MVT::i64, DL, Store, LoPtrOff,
MachinePointerInfo(),
false, false, false, 0);
RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()),
Hi64));
RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()+1),
Lo64));
continue;
}
// The custom bit on an i32 return value indicates that it should be
// passed in the high bits of the register.
if (VA.getValVT() == MVT::i32 && VA.needsCustom()) {
Arg = DAG.getNode(ISD::SHL, DL, MVT::i64, Arg,
DAG.getConstant(32, MVT::i32));
// The next value may go in the low bits of the same register.
// Handle both at once.
if (i+1 < ArgLocs.size() && ArgLocs[i+1].isRegLoc() &&
ArgLocs[i+1].getLocReg() == VA.getLocReg()) {
SDValue NV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64,
CLI.OutVals[i+1]);
Arg = DAG.getNode(ISD::OR, DL, MVT::i64, Arg, NV);
// Skip the next value, it's already done.
++i;
}
}
RegsToPass.push_back(std::make_pair(toCallerWindow(VA.getLocReg()), Arg));
continue;
}
assert(VA.isMemLoc());
// Create a store off the stack pointer for this argument.
SDValue StackPtr = DAG.getRegister(SP::O6, getPointerTy());
// The argument area starts at %fp+BIAS+128 in the callee frame,
// %sp+BIAS+128 in ours.
SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset() +
Subtarget->getStackPointerBias() +
128);
PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, DL, Arg, PtrOff,
MachinePointerInfo(),
false, false, 0));
}
// Emit all stores, make sure they occur before the call.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
// Build a sequence of CopyToReg nodes glued together with token chain and
// glue operands which copy the outgoing args into registers. The InGlue is
// necessary since all emitted instructions must be stuck together in order
// to pass the live physical registers.
SDValue InGlue;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, DL,
RegsToPass[i].first, RegsToPass[i].second, InGlue);
InGlue = Chain.getValue(1);
}
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
// Likewise ExternalSymbol -> TargetExternalSymbol.
SDValue Callee = CLI.Callee;
bool hasReturnsTwice = hasReturnsTwiceAttr(DAG, Callee, CLI.CS);
unsigned TF = ((getTargetMachine().getRelocationModel() == Reloc::PIC_)
? SparcMCExpr::VK_Sparc_WPLT30 : 0);
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
TF);
else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), getPointerTy(), TF);
// Build the operands for the call instruction itself.
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
const SparcRegisterInfo *TRI =
getTargetMachine().getSubtarget<SparcSubtarget>().getRegisterInfo();
const uint32_t *Mask =
((hasReturnsTwice) ? TRI->getRTCallPreservedMask(CLI.CallConv)
: TRI->getCallPreservedMask(CLI.CallConv));
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
// Make sure the CopyToReg nodes are glued to the call instruction which
// consumes the registers.
if (InGlue.getNode())
Ops.push_back(InGlue);
// Now the call itself.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(SPISD::CALL, DL, NodeTys, Ops);
InGlue = Chain.getValue(1);
// Revert the stack pointer immediately after the call.
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, true),
DAG.getIntPtrConstant(0, true), InGlue, DL);
InGlue = Chain.getValue(1);
// Now extract the return values. This is more or less the same as
// LowerFormalArguments_64.
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState RVInfo(CLI.CallConv, CLI.IsVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Set inreg flag manually for codegen generated library calls that
// return float.
if (CLI.Ins.size() == 1 && CLI.Ins[0].VT == MVT::f32 && CLI.CS == nullptr)
CLI.Ins[0].Flags.setInReg();
RVInfo.AnalyzeCallResult(CLI.Ins, RetCC_Sparc64);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
unsigned Reg = toCallerWindow(VA.getLocReg());
// When returning 'inreg {i32, i32 }', two consecutive i32 arguments can
// reside in the same register in the high and low bits. Reuse the
// CopyFromReg previous node to avoid duplicate copies.
SDValue RV;
if (RegisterSDNode *SrcReg = dyn_cast<RegisterSDNode>(Chain.getOperand(1)))
if (SrcReg->getReg() == Reg && Chain->getOpcode() == ISD::CopyFromReg)
RV = Chain.getValue(0);
// But usually we'll create a new CopyFromReg for a different register.
if (!RV.getNode()) {
RV = DAG.getCopyFromReg(Chain, DL, Reg, RVLocs[i].getLocVT(), InGlue);
Chain = RV.getValue(1);
InGlue = Chain.getValue(2);
}
// Get the high bits for i32 struct elements.
if (VA.getValVT() == MVT::i32 && VA.needsCustom())
RV = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), RV,
DAG.getConstant(32, MVT::i32));
// The callee promoted the return value, so insert an Assert?ext SDNode so
// we won't promote the value again in this function.
switch (VA.getLocInfo()) {
case CCValAssign::SExt:
RV = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), RV,
DAG.getValueType(VA.getValVT()));
break;
case CCValAssign::ZExt:
RV = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), RV,
DAG.getValueType(VA.getValVT()));
break;
default:
break;
}
// Truncate the register down to the return value type.
if (VA.isExtInLoc())
RV = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), RV);
InVals.push_back(RV);
}
return Chain;
}
//===----------------------------------------------------------------------===//
// TargetLowering Implementation
//===----------------------------------------------------------------------===//
/// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC
/// condition.
static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Unknown integer condition code!");
case ISD::SETEQ: return SPCC::ICC_E;
case ISD::SETNE: return SPCC::ICC_NE;
case ISD::SETLT: return SPCC::ICC_L;
case ISD::SETGT: return SPCC::ICC_G;
case ISD::SETLE: return SPCC::ICC_LE;
case ISD::SETGE: return SPCC::ICC_GE;
case ISD::SETULT: return SPCC::ICC_CS;
case ISD::SETULE: return SPCC::ICC_LEU;
case ISD::SETUGT: return SPCC::ICC_GU;
case ISD::SETUGE: return SPCC::ICC_CC;
}
}
/// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC
/// FCC condition.
static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Unknown fp condition code!");
case ISD::SETEQ:
case ISD::SETOEQ: return SPCC::FCC_E;
case ISD::SETNE:
case ISD::SETUNE: return SPCC::FCC_NE;
case ISD::SETLT:
case ISD::SETOLT: return SPCC::FCC_L;
case ISD::SETGT:
case ISD::SETOGT: return SPCC::FCC_G;
case ISD::SETLE:
case ISD::SETOLE: return SPCC::FCC_LE;
case ISD::SETGE:
case ISD::SETOGE: return SPCC::FCC_GE;
case ISD::SETULT: return SPCC::FCC_UL;
case ISD::SETULE: return SPCC::FCC_ULE;
case ISD::SETUGT: return SPCC::FCC_UG;
case ISD::SETUGE: return SPCC::FCC_UGE;
case ISD::SETUO: return SPCC::FCC_U;
case ISD::SETO: return SPCC::FCC_O;
case ISD::SETONE: return SPCC::FCC_LG;
case ISD::SETUEQ: return SPCC::FCC_UE;
}
}
SparcTargetLowering::SparcTargetLowering(TargetMachine &TM)
: TargetLowering(TM, new SparcELFTargetObjectFile()) {
Subtarget = &TM.getSubtarget<SparcSubtarget>();
// Set up the register classes.
addRegisterClass(MVT::i32, &SP::IntRegsRegClass);
addRegisterClass(MVT::f32, &SP::FPRegsRegClass);
addRegisterClass(MVT::f64, &SP::DFPRegsRegClass);
addRegisterClass(MVT::f128, &SP::QFPRegsRegClass);
if (Subtarget->is64Bit())
addRegisterClass(MVT::i64, &SP::I64RegsRegClass);
// Turn FP extload into load/fextend
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
// Sparc doesn't have i1 sign extending load
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
// Turn FP truncstore into trunc + store.
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::f128, MVT::f32, Expand);
setTruncStoreAction(MVT::f128, MVT::f64, Expand);
// Custom legalize GlobalAddress nodes into LO/HI parts.
setOperationAction(ISD::GlobalAddress, getPointerTy(), Custom);
setOperationAction(ISD::GlobalTLSAddress, getPointerTy(), Custom);
setOperationAction(ISD::ConstantPool, getPointerTy(), Custom);
setOperationAction(ISD::BlockAddress, getPointerTy(), Custom);
// Sparc doesn't have sext_inreg, replace them with shl/sra
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
// Sparc has no REM or DIVREM operations.
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
// ... nor does SparcV9.
if (Subtarget->is64Bit()) {
setOperationAction(ISD::UREM, MVT::i64, Expand);
setOperationAction(ISD::SREM, MVT::i64, Expand);
setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
}
// Custom expand fp<->sint
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
// Custom Expand fp<->uint
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::BITCAST, MVT::f32, Expand);
setOperationAction(ISD::BITCAST, MVT::i32, Expand);
// Sparc has no select or setcc: expand to SELECT_CC.
setOperationAction(ISD::SELECT, MVT::i32, Expand);
setOperationAction(ISD::SELECT, MVT::f32, Expand);
setOperationAction(ISD::SELECT, MVT::f64, Expand);
setOperationAction(ISD::SELECT, MVT::f128, Expand);
setOperationAction(ISD::SETCC, MVT::i32, Expand);
setOperationAction(ISD::SETCC, MVT::f32, Expand);
setOperationAction(ISD::SETCC, MVT::f64, Expand);
setOperationAction(ISD::SETCC, MVT::f128, Expand);
// Sparc doesn't have BRCOND either, it has BR_CC.
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
setOperationAction(ISD::BRIND, MVT::Other, Expand);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
setOperationAction(ISD::BR_CC, MVT::f128, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::ADDC, MVT::i64, Custom);
setOperationAction(ISD::ADDE, MVT::i64, Custom);
setOperationAction(ISD::SUBC, MVT::i64, Custom);
setOperationAction(ISD::SUBE, MVT::i64, Custom);
setOperationAction(ISD::BITCAST, MVT::f64, Expand);
setOperationAction(ISD::BITCAST, MVT::i64, Expand);
setOperationAction(ISD::SELECT, MVT::i64, Expand);
setOperationAction(ISD::SETCC, MVT::i64, Expand);
setOperationAction(ISD::BR_CC, MVT::i64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
setOperationAction(ISD::CTPOP, MVT::i64,
Subtarget->usePopc() ? Legal : Expand);
setOperationAction(ISD::CTTZ , MVT::i64, Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
setOperationAction(ISD::CTLZ , MVT::i64, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
setOperationAction(ISD::BSWAP, MVT::i64, Expand);
setOperationAction(ISD::ROTL , MVT::i64, Expand);
setOperationAction(ISD::ROTR , MVT::i64, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
}
// ATOMICs.
// FIXME: We insert fences for each atomics and generate sub-optimal code
// for PSO/TSO. Also, implement other atomicrmw operations.
setInsertFencesForAtomic(true);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Legal);
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32,
(Subtarget->isV9() ? Legal: Expand));
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Legal);
// Custom Lower Atomic LOAD/STORE
setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Legal);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Legal);
setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Custom);
}
if (!Subtarget->isV9()) {
// SparcV8 does not have FNEGD and FABSD.
setOperationAction(ISD::FNEG, MVT::f64, Custom);
setOperationAction(ISD::FABS, MVT::f64, Custom);
}
setOperationAction(ISD::FSIN , MVT::f128, Expand);
setOperationAction(ISD::FCOS , MVT::f128, Expand);
setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
setOperationAction(ISD::FREM , MVT::f128, Expand);
setOperationAction(ISD::FMA , MVT::f128, Expand);
setOperationAction(ISD::FSIN , MVT::f64, Expand);
setOperationAction(ISD::FCOS , MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
setOperationAction(ISD::FREM , MVT::f64, Expand);
setOperationAction(ISD::FMA , MVT::f64, Expand);
setOperationAction(ISD::FSIN , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f32, Expand);
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
setOperationAction(ISD::FREM , MVT::f32, Expand);
setOperationAction(ISD::FMA , MVT::f32, Expand);
setOperationAction(ISD::CTTZ , MVT::i32, Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
setOperationAction(ISD::CTLZ , MVT::i32, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
setOperationAction(ISD::ROTL , MVT::i32, Expand);
setOperationAction(ISD::ROTR , MVT::i32, Expand);
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
setOperationAction(ISD::FPOW , MVT::f128, Expand);
setOperationAction(ISD::FPOW , MVT::f64, Expand);
setOperationAction(ISD::FPOW , MVT::f32, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
// FIXME: Sparc provides these multiplies, but we don't have them yet.
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
if (Subtarget->is64Bit()) {
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::MULHU, MVT::i64, Expand);
setOperationAction(ISD::MULHS, MVT::i64, Expand);
setOperationAction(ISD::UMULO, MVT::i64, Custom);
setOperationAction(ISD::SMULO, MVT::i64, Custom);
setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
}
// VASTART needs to be custom lowered to use the VarArgsFrameIndex.
setOperationAction(ISD::VASTART , MVT::Other, Custom);
// VAARG needs to be lowered to not do unaligned accesses for doubles.
setOperationAction(ISD::VAARG , MVT::Other, Custom);
setOperationAction(ISD::TRAP , MVT::Other, Legal);
// Use the default implementation.
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
setOperationAction(ISD::VAEND , MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
setExceptionPointerRegister(SP::I0);
setExceptionSelectorRegister(SP::I1);
setStackPointerRegisterToSaveRestore(SP::O6);
setOperationAction(ISD::CTPOP, MVT::i32,
Subtarget->usePopc() ? Legal : Expand);
if (Subtarget->isV9() && Subtarget->hasHardQuad()) {
setOperationAction(ISD::LOAD, MVT::f128, Legal);
setOperationAction(ISD::STORE, MVT::f128, Legal);
} else {
setOperationAction(ISD::LOAD, MVT::f128, Custom);
setOperationAction(ISD::STORE, MVT::f128, Custom);
}
if (Subtarget->hasHardQuad()) {
setOperationAction(ISD::FADD, MVT::f128, Legal);
setOperationAction(ISD::FSUB, MVT::f128, Legal);
setOperationAction(ISD::FMUL, MVT::f128, Legal);
setOperationAction(ISD::FDIV, MVT::f128, Legal);
setOperationAction(ISD::FSQRT, MVT::f128, Legal);
setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
if (Subtarget->isV9()) {
setOperationAction(ISD::FNEG, MVT::f128, Legal);
setOperationAction(ISD::FABS, MVT::f128, Legal);
} else {
setOperationAction(ISD::FNEG, MVT::f128, Custom);
setOperationAction(ISD::FABS, MVT::f128, Custom);
}
if (!Subtarget->is64Bit()) {
setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll");
setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull");
setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq");
setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq");
}
} else {
// Custom legalize f128 operations.
setOperationAction(ISD::FADD, MVT::f128, Custom);
setOperationAction(ISD::FSUB, MVT::f128, Custom);
setOperationAction(ISD::FMUL, MVT::f128, Custom);
setOperationAction(ISD::FDIV, MVT::f128, Custom);
setOperationAction(ISD::FSQRT, MVT::f128, Custom);
setOperationAction(ISD::FNEG, MVT::f128, Custom);
setOperationAction(ISD::FABS, MVT::f128, Custom);
setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
// Setup Runtime library names.
if (Subtarget->is64Bit()) {
setLibcallName(RTLIB::ADD_F128, "_Qp_add");
setLibcallName(RTLIB::SUB_F128, "_Qp_sub");
setLibcallName(RTLIB::MUL_F128, "_Qp_mul");
setLibcallName(RTLIB::DIV_F128, "_Qp_div");
setLibcallName(RTLIB::SQRT_F128, "_Qp_sqrt");
setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Qp_qtoi");
setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Qp_qtoui");
setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Qp_itoq");
setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Qp_uitoq");
setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Qp_qtox");
setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Qp_qtoux");
setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Qp_xtoq");
setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Qp_uxtoq");
setLibcallName(RTLIB::FPEXT_F32_F128, "_Qp_stoq");
setLibcallName(RTLIB::FPEXT_F64_F128, "_Qp_dtoq");
setLibcallName(RTLIB::FPROUND_F128_F32, "_Qp_qtos");
setLibcallName(RTLIB::FPROUND_F128_F64, "_Qp_qtod");
} else {
setLibcallName(RTLIB::ADD_F128, "_Q_add");
setLibcallName(RTLIB::SUB_F128, "_Q_sub");
setLibcallName(RTLIB::MUL_F128, "_Q_mul");
setLibcallName(RTLIB::DIV_F128, "_Q_div");
setLibcallName(RTLIB::SQRT_F128, "_Q_sqrt");
setLibcallName(RTLIB::FPTOSINT_F128_I32, "_Q_qtoi");
setLibcallName(RTLIB::FPTOUINT_F128_I32, "_Q_qtou");
setLibcallName(RTLIB::SINTTOFP_I32_F128, "_Q_itoq");
setLibcallName(RTLIB::UINTTOFP_I32_F128, "_Q_utoq");
setLibcallName(RTLIB::FPTOSINT_F128_I64, "_Q_qtoll");
setLibcallName(RTLIB::FPTOUINT_F128_I64, "_Q_qtoull");
setLibcallName(RTLIB::SINTTOFP_I64_F128, "_Q_lltoq");
setLibcallName(RTLIB::UINTTOFP_I64_F128, "_Q_ulltoq");
setLibcallName(RTLIB::FPEXT_F32_F128, "_Q_stoq");
setLibcallName(RTLIB::FPEXT_F64_F128, "_Q_dtoq");
setLibcallName(RTLIB::FPROUND_F128_F32, "_Q_qtos");
setLibcallName(RTLIB::FPROUND_F128_F64, "_Q_qtod");
}
}
setMinFunctionAlignment(2);
computeRegisterProperties();
}
const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default: return nullptr;
case SPISD::CMPICC: return "SPISD::CMPICC";
case SPISD::CMPFCC: return "SPISD::CMPFCC";
case SPISD::BRICC: return "SPISD::BRICC";
case SPISD::BRXCC: return "SPISD::BRXCC";
case SPISD::BRFCC: return "SPISD::BRFCC";
case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC";
case SPISD::SELECT_XCC: return "SPISD::SELECT_XCC";
case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC";
case SPISD::Hi: return "SPISD::Hi";
case SPISD::Lo: return "SPISD::Lo";
case SPISD::FTOI: return "SPISD::FTOI";
case SPISD::ITOF: return "SPISD::ITOF";
case SPISD::FTOX: return "SPISD::FTOX";
case SPISD::XTOF: return "SPISD::XTOF";
case SPISD::CALL: return "SPISD::CALL";
case SPISD::RET_FLAG: return "SPISD::RET_FLAG";
case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG";
case SPISD::FLUSHW: return "SPISD::FLUSHW";
case SPISD::TLS_ADD: return "SPISD::TLS_ADD";
case SPISD::TLS_LD: return "SPISD::TLS_LD";
case SPISD::TLS_CALL: return "SPISD::TLS_CALL";
}
}
EVT SparcTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
if (!VT.isVector())
return MVT::i32;
return VT.changeVectorElementTypeToInteger();
}
/// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
/// be zero. Op is expected to be a target specific node. Used by DAG
/// combiner.
void SparcTargetLowering::computeKnownBitsForTargetNode
(const SDValue Op,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const {
APInt KnownZero2, KnownOne2;
KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
switch (Op.getOpcode()) {
default: break;
case SPISD::SELECT_ICC:
case SPISD::SELECT_XCC:
case SPISD::SELECT_FCC:
DAG.computeKnownBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
DAG.computeKnownBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
break;
}
}
// Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so
// set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition.
static void LookThroughSetCC(SDValue &LHS, SDValue &RHS,
ISD::CondCode CC, unsigned &SPCC) {
if (isa<ConstantSDNode>(RHS) &&
cast<ConstantSDNode>(RHS)->isNullValue() &&
CC == ISD::SETNE &&
(((LHS.getOpcode() == SPISD::SELECT_ICC ||
LHS.getOpcode() == SPISD::SELECT_XCC) &&
LHS.getOperand(3).getOpcode() == SPISD::CMPICC) ||
(LHS.getOpcode() == SPISD::SELECT_FCC &&
LHS.getOperand(3).getOpcode() == SPISD::CMPFCC)) &&
isa<ConstantSDNode>(LHS.getOperand(0)) &&
isa<ConstantSDNode>(LHS.getOperand(1)) &&
cast<ConstantSDNode>(LHS.getOperand(0))->isOne() &&
cast<ConstantSDNode>(LHS.getOperand(1))->isNullValue()) {
SDValue CMPCC = LHS.getOperand(3);
SPCC = cast<ConstantSDNode>(LHS.getOperand(2))->getZExtValue();
LHS = CMPCC.getOperand(0);
RHS = CMPCC.getOperand(1);
}
}
// Convert to a target node and set target flags.
SDValue SparcTargetLowering::withTargetFlags(SDValue Op, unsigned TF,
SelectionDAG &DAG) const {
if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
return DAG.getTargetGlobalAddress(GA->getGlobal(),
SDLoc(GA),
GA->getValueType(0),
GA->getOffset(), TF);
if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op))
return DAG.getTargetConstantPool(CP->getConstVal(),
CP->getValueType(0),
CP->getAlignment(),
CP->getOffset(), TF);
if (const BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op))
return DAG.getTargetBlockAddress(BA->getBlockAddress(),
Op.getValueType(),
0,
TF);
if (const ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op))
return DAG.getTargetExternalSymbol(ES->getSymbol(),
ES->getValueType(0), TF);
llvm_unreachable("Unhandled address SDNode");
}
// Split Op into high and low parts according to HiTF and LoTF.
// Return an ADD node combining the parts.
SDValue SparcTargetLowering::makeHiLoPair(SDValue Op,
unsigned HiTF, unsigned LoTF,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue Hi = DAG.getNode(SPISD::Hi, DL, VT, withTargetFlags(Op, HiTF, DAG));
SDValue Lo = DAG.getNode(SPISD::Lo, DL, VT, withTargetFlags(Op, LoTF, DAG));
return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
}
// Build SDNodes for producing an address from a GlobalAddress, ConstantPool,
// or ExternalSymbol SDNode.
SDValue SparcTargetLowering::makeAddress(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = getPointerTy();
// Handle PIC mode first.
if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
// This is the pic32 code model, the GOT is known to be smaller than 4GB.
SDValue HiLo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_GOT22,
SparcMCExpr::VK_Sparc_GOT10, DAG);
SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, VT);
SDValue AbsAddr = DAG.getNode(ISD::ADD, DL, VT, GlobalBase, HiLo);
// GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
// function has calls.
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MFI->setHasCalls(true);
return DAG.getLoad(VT, DL, DAG.getEntryNode(), AbsAddr,
MachinePointerInfo::getGOT(), false, false, false, 0);
}
// This is one of the absolute code models.
switch(getTargetMachine().getCodeModel()) {
default:
llvm_unreachable("Unsupported absolute code model");
case CodeModel::Small:
// abs32.
return makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI,
SparcMCExpr::VK_Sparc_LO, DAG);
case CodeModel::Medium: {
// abs44.
SDValue H44 = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_H44,
SparcMCExpr::VK_Sparc_M44, DAG);
H44 = DAG.getNode(ISD::SHL, DL, VT, H44, DAG.getConstant(12, MVT::i32));
SDValue L44 = withTargetFlags(Op, SparcMCExpr::VK_Sparc_L44, DAG);
L44 = DAG.getNode(SPISD::Lo, DL, VT, L44);
return DAG.getNode(ISD::ADD, DL, VT, H44, L44);
}
case CodeModel::Large: {
// abs64.
SDValue Hi = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HH,
SparcMCExpr::VK_Sparc_HM, DAG);
Hi = DAG.getNode(ISD::SHL, DL, VT, Hi, DAG.getConstant(32, MVT::i32));
SDValue Lo = makeHiLoPair(Op, SparcMCExpr::VK_Sparc_HI,
SparcMCExpr::VK_Sparc_LO, DAG);
return DAG.getNode(ISD::ADD, DL, VT, Hi, Lo);
}
}
}
SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
return makeAddress(Op, DAG);
}
SDValue SparcTargetLowering::LowerConstantPool(SDValue Op,
SelectionDAG &DAG) const {
return makeAddress(Op, DAG);
}
SDValue SparcTargetLowering::LowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
return makeAddress(Op, DAG);
}
SDValue SparcTargetLowering::LowerGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
SDLoc DL(GA);
const GlobalValue *GV = GA->getGlobal();
EVT PtrVT = getPointerTy();
TLSModel::Model model = getTargetMachine().getTLSModel(GV);
if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
unsigned HiTF = ((model == TLSModel::GeneralDynamic)
? SparcMCExpr::VK_Sparc_TLS_GD_HI22
: SparcMCExpr::VK_Sparc_TLS_LDM_HI22);
unsigned LoTF = ((model == TLSModel::GeneralDynamic)
? SparcMCExpr::VK_Sparc_TLS_GD_LO10
: SparcMCExpr::VK_Sparc_TLS_LDM_LO10);
unsigned addTF = ((model == TLSModel::GeneralDynamic)
? SparcMCExpr::VK_Sparc_TLS_GD_ADD
: SparcMCExpr::VK_Sparc_TLS_LDM_ADD);
unsigned callTF = ((model == TLSModel::GeneralDynamic)
? SparcMCExpr::VK_Sparc_TLS_GD_CALL
: SparcMCExpr::VK_Sparc_TLS_LDM_CALL);
SDValue HiLo = makeHiLoPair(Op, HiTF, LoTF, DAG);
SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT);
SDValue Argument = DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Base, HiLo,
withTargetFlags(Op, addTF, DAG));
SDValue Chain = DAG.getEntryNode();
SDValue InFlag;
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(1, true), DL);
Chain = DAG.getCopyToReg(Chain, DL, SP::O0, Argument, InFlag);
InFlag = Chain.getValue(1);
SDValue Callee = DAG.getTargetExternalSymbol("__tls_get_addr", PtrVT);
SDValue Symbol = withTargetFlags(Op, callTF, DAG);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SmallVector<SDValue, 4> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
Ops.push_back(Symbol);
Ops.push_back(DAG.getRegister(SP::O0, PtrVT));
const uint32_t *Mask = getTargetMachine()
.getSubtargetImpl()
->getRegisterInfo()
->getCallPreservedMask(CallingConv::C);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
Ops.push_back(InFlag);
Chain = DAG.getNode(SPISD::TLS_CALL, DL, NodeTys, Ops);
InFlag = Chain.getValue(1);
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(1, true),
DAG.getIntPtrConstant(0, true), InFlag, DL);
InFlag = Chain.getValue(1);
SDValue Ret = DAG.getCopyFromReg(Chain, DL, SP::O0, PtrVT, InFlag);
if (model != TLSModel::LocalDynamic)
return Ret;
SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT,
withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_HIX22, DAG));
SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT,
withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_LOX10, DAG));
HiLo = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo);
return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT, Ret, HiLo,
withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LDO_ADD, DAG));
}
if (model == TLSModel::InitialExec) {
unsigned ldTF = ((PtrVT == MVT::i64)? SparcMCExpr::VK_Sparc_TLS_IE_LDX
: SparcMCExpr::VK_Sparc_TLS_IE_LD);
SDValue Base = DAG.getNode(SPISD::GLOBAL_BASE_REG, DL, PtrVT);
// GLOBAL_BASE_REG codegen'ed with call. Inform MFI that this
// function has calls.
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MFI->setHasCalls(true);
SDValue TGA = makeHiLoPair(Op,
SparcMCExpr::VK_Sparc_TLS_IE_HI22,
SparcMCExpr::VK_Sparc_TLS_IE_LO10, DAG);
SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, TGA);
SDValue Offset = DAG.getNode(SPISD::TLS_LD,
DL, PtrVT, Ptr,
withTargetFlags(Op, ldTF, DAG));
return DAG.getNode(SPISD::TLS_ADD, DL, PtrVT,
DAG.getRegister(SP::G7, PtrVT), Offset,
withTargetFlags(Op,
SparcMCExpr::VK_Sparc_TLS_IE_ADD, DAG));
}
assert(model == TLSModel::LocalExec);
SDValue Hi = DAG.getNode(SPISD::Hi, DL, PtrVT,
withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_HIX22, DAG));
SDValue Lo = DAG.getNode(SPISD::Lo, DL, PtrVT,
withTargetFlags(Op, SparcMCExpr::VK_Sparc_TLS_LE_LOX10, DAG));
SDValue Offset = DAG.getNode(ISD::XOR, DL, PtrVT, Hi, Lo);
return DAG.getNode(ISD::ADD, DL, PtrVT,
DAG.getRegister(SP::G7, PtrVT), Offset);
}
SDValue
SparcTargetLowering::LowerF128_LibCallArg(SDValue Chain, ArgListTy &Args,
SDValue Arg, SDLoc DL,
SelectionDAG &DAG) const {
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
EVT ArgVT = Arg.getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
ArgListEntry Entry;
Entry.Node = Arg;
Entry.Ty = ArgTy;
if (ArgTy->isFP128Ty()) {
// Create a stack object and pass the pointer to the library function.
int FI = MFI->CreateStackObject(16, 8, false);
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
Chain = DAG.getStore(Chain,
DL,
Entry.Node,
FIPtr,
MachinePointerInfo(),
false,
false,
8);
Entry.Node = FIPtr;
Entry.Ty = PointerType::getUnqual(ArgTy);
}
Args.push_back(Entry);
return Chain;
}
SDValue
SparcTargetLowering::LowerF128Op(SDValue Op, SelectionDAG &DAG,
const char *LibFuncName,
unsigned numArgs) const {
ArgListTy Args;
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
SDValue Callee = DAG.getExternalSymbol(LibFuncName, getPointerTy());
Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
Type *RetTyABI = RetTy;
SDValue Chain = DAG.getEntryNode();
SDValue RetPtr;
if (RetTy->isFP128Ty()) {
// Create a Stack Object to receive the return value of type f128.
ArgListEntry Entry;
int RetFI = MFI->CreateStackObject(16, 8, false);
RetPtr = DAG.getFrameIndex(RetFI, getPointerTy());
Entry.Node = RetPtr;
Entry.Ty = PointerType::getUnqual(RetTy);
if (!Subtarget->is64Bit())
Entry.isSRet = true;
Entry.isReturned = false;
Args.push_back(Entry);
RetTyABI = Type::getVoidTy(*DAG.getContext());
}
assert(Op->getNumOperands() >= numArgs && "Not enough operands!");
for (unsigned i = 0, e = numArgs; i != e; ++i) {
Chain = LowerF128_LibCallArg(Chain, Args, Op.getOperand(i), SDLoc(Op), DAG);
}
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(SDLoc(Op)).setChain(Chain)
.setCallee(CallingConv::C, RetTyABI, Callee, std::move(Args), 0);
std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
// chain is in second result.
if (RetTyABI == RetTy)
return CallInfo.first;
assert (RetTy->isFP128Ty() && "Unexpected return type!");
Chain = CallInfo.second;
// Load RetPtr to get the return value.
return DAG.getLoad(Op.getValueType(),
SDLoc(Op),
Chain,
RetPtr,
MachinePointerInfo(),
false, false, false, 8);
}
SDValue
SparcTargetLowering::LowerF128Compare(SDValue LHS, SDValue RHS,
unsigned &SPCC,
SDLoc DL,
SelectionDAG &DAG) const {
const char *LibCall = nullptr;
bool is64Bit = Subtarget->is64Bit();
switch(SPCC) {
default: llvm_unreachable("Unhandled conditional code!");
case SPCC::FCC_E : LibCall = is64Bit? "_Qp_feq" : "_Q_feq"; break;
case SPCC::FCC_NE : LibCall = is64Bit? "_Qp_fne" : "_Q_fne"; break;
case SPCC::FCC_L : LibCall = is64Bit? "_Qp_flt" : "_Q_flt"; break;
case SPCC::FCC_G : LibCall = is64Bit? "_Qp_fgt" : "_Q_fgt"; break;
case SPCC::FCC_LE : LibCall = is64Bit? "_Qp_fle" : "_Q_fle"; break;
case SPCC::FCC_GE : LibCall = is64Bit? "_Qp_fge" : "_Q_fge"; break;
case SPCC::FCC_UL :
case SPCC::FCC_ULE:
case SPCC::FCC_UG :
case SPCC::FCC_UGE:
case SPCC::FCC_U :
case SPCC::FCC_O :
case SPCC::FCC_LG :
case SPCC::FCC_UE : LibCall = is64Bit? "_Qp_cmp" : "_Q_cmp"; break;
}
SDValue Callee = DAG.getExternalSymbol(LibCall, getPointerTy());
Type *RetTy = Type::getInt32Ty(*DAG.getContext());
ArgListTy Args;
SDValue Chain = DAG.getEntryNode();
Chain = LowerF128_LibCallArg(Chain, Args, LHS, DL, DAG);
Chain = LowerF128_LibCallArg(Chain, Args, RHS, DL, DAG);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(DL).setChain(Chain)
.setCallee(CallingConv::C, RetTy, Callee, std::move(Args), 0);
std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
// result is in first, and chain is in second result.
SDValue Result = CallInfo.first;
switch(SPCC) {
default: {
SDValue RHS = DAG.getTargetConstant(0, Result.getValueType());
SPCC = SPCC::ICC_NE;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_UL : {
SDValue Mask = DAG.getTargetConstant(1, Result.getValueType());
Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
SDValue RHS = DAG.getTargetConstant(0, Result.getValueType());
SPCC = SPCC::ICC_NE;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_ULE: {
SDValue RHS = DAG.getTargetConstant(2, Result.getValueType());
SPCC = SPCC::ICC_NE;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_UG : {
SDValue RHS = DAG.getTargetConstant(1, Result.getValueType());
SPCC = SPCC::ICC_G;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_UGE: {
SDValue RHS = DAG.getTargetConstant(1, Result.getValueType());
SPCC = SPCC::ICC_NE;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_U : {
SDValue RHS = DAG.getTargetConstant(3, Result.getValueType());
SPCC = SPCC::ICC_E;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_O : {
SDValue RHS = DAG.getTargetConstant(3, Result.getValueType());
SPCC = SPCC::ICC_NE;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_LG : {
SDValue Mask = DAG.getTargetConstant(3, Result.getValueType());
Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
SDValue RHS = DAG.getTargetConstant(0, Result.getValueType());
SPCC = SPCC::ICC_NE;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
case SPCC::FCC_UE : {
SDValue Mask = DAG.getTargetConstant(3, Result.getValueType());
Result = DAG.getNode(ISD::AND, DL, Result.getValueType(), Result, Mask);
SDValue RHS = DAG.getTargetConstant(0, Result.getValueType());
SPCC = SPCC::ICC_E;
return DAG.getNode(SPISD::CMPICC, DL, MVT::Glue, Result, RHS);
}
}
}
static SDValue
LowerF128_FPEXTEND(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI) {
if (Op.getOperand(0).getValueType() == MVT::f64)
return TLI.LowerF128Op(Op, DAG,
TLI.getLibcallName(RTLIB::FPEXT_F64_F128), 1);
if (Op.getOperand(0).getValueType() == MVT::f32)
return TLI.LowerF128Op(Op, DAG,
TLI.getLibcallName(RTLIB::FPEXT_F32_F128), 1);
llvm_unreachable("fpextend with non-float operand!");
return SDValue();
}
static SDValue
LowerF128_FPROUND(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI) {
// FP_ROUND on f64 and f32 are legal.
if (Op.getOperand(0).getValueType() != MVT::f128)
return Op;
if (Op.getValueType() == MVT::f64)
return TLI.LowerF128Op(Op, DAG,
TLI.getLibcallName(RTLIB::FPROUND_F128_F64), 1);
if (Op.getValueType() == MVT::f32)
return TLI.LowerF128Op(Op, DAG,
TLI.getLibcallName(RTLIB::FPROUND_F128_F32), 1);
llvm_unreachable("fpround to non-float!");
return SDValue();
}
static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI,
bool hasHardQuad) {
SDLoc dl(Op);
EVT VT = Op.getValueType();
assert(VT == MVT::i32 || VT == MVT::i64);
// Expand f128 operations to fp128 abi calls.
if (Op.getOperand(0).getValueType() == MVT::f128
&& (!hasHardQuad || !TLI.isTypeLegal(VT))) {
const char *libName = TLI.getLibcallName(VT == MVT::i32
? RTLIB::FPTOSINT_F128_I32
: RTLIB::FPTOSINT_F128_I64);
return TLI.LowerF128Op(Op, DAG, libName, 1);
}
// Expand if the resulting type is illegal.
if (!TLI.isTypeLegal(VT))
return SDValue();
// Otherwise, Convert the fp value to integer in an FP register.
if (VT == MVT::i32)
Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0));
else
Op = DAG.getNode(SPISD::FTOX, dl, MVT::f64, Op.getOperand(0));
return DAG.getNode(ISD::BITCAST, dl, VT, Op);
}
static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI,
bool hasHardQuad) {
SDLoc dl(Op);
EVT OpVT = Op.getOperand(0).getValueType();
assert(OpVT == MVT::i32 || (OpVT == MVT::i64));
EVT floatVT = (OpVT == MVT::i32) ? MVT::f32 : MVT::f64;
// Expand f128 operations to fp128 ABI calls.
if (Op.getValueType() == MVT::f128
&& (!hasHardQuad || !TLI.isTypeLegal(OpVT))) {
const char *libName = TLI.getLibcallName(OpVT == MVT::i32
? RTLIB::SINTTOFP_I32_F128
: RTLIB::SINTTOFP_I64_F128);
return TLI.LowerF128Op(Op, DAG, libName, 1);
}
// Expand if the operand type is illegal.
if (!TLI.isTypeLegal(OpVT))
return SDValue();
// Otherwise, Convert the int value to FP in an FP register.
SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, floatVT, Op.getOperand(0));
unsigned opcode = (OpVT == MVT::i32)? SPISD::ITOF : SPISD::XTOF;
return DAG.getNode(opcode, dl, Op.getValueType(), Tmp);
}
static SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI,
bool hasHardQuad) {
SDLoc dl(Op);
EVT VT = Op.getValueType();
// Expand if it does not involve f128 or the target has support for
// quad floating point instructions and the resulting type is legal.
if (Op.getOperand(0).getValueType() != MVT::f128 ||
(hasHardQuad && TLI.isTypeLegal(VT)))
return SDValue();
assert(VT == MVT::i32 || VT == MVT::i64);
return TLI.LowerF128Op(Op, DAG,
TLI.getLibcallName(VT == MVT::i32
? RTLIB::FPTOUINT_F128_I32
: RTLIB::FPTOUINT_F128_I64),
1);
}
static SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI,
bool hasHardQuad) {
SDLoc dl(Op);
EVT OpVT = Op.getOperand(0).getValueType();
assert(OpVT == MVT::i32 || OpVT == MVT::i64);
// Expand if it does not involve f128 or the target has support for
// quad floating point instructions and the operand type is legal.
if (Op.getValueType() != MVT::f128 || (hasHardQuad && TLI.isTypeLegal(OpVT)))
return SDValue();
return TLI.LowerF128Op(Op, DAG,
TLI.getLibcallName(OpVT == MVT::i32
? RTLIB::UINTTOFP_I32_F128
: RTLIB::UINTTOFP_I64_F128),
1);
}
static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI,
bool hasHardQuad) {
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue LHS = Op.getOperand(2);
SDValue RHS = Op.getOperand(3);
SDValue Dest = Op.getOperand(4);
SDLoc dl(Op);
unsigned Opc, SPCC = ~0U;
// If this is a br_cc of a "setcc", and if the setcc got lowered into
// an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
LookThroughSetCC(LHS, RHS, CC, SPCC);
// Get the condition flag.
SDValue CompareFlag;
if (LHS.getValueType().isInteger()) {
CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
// 32-bit compares use the icc flags, 64-bit uses the xcc flags.
Opc = LHS.getValueType() == MVT::i32 ? SPISD::BRICC : SPISD::BRXCC;
} else {
if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
Opc = SPISD::BRICC;
} else {
CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS);
if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
Opc = SPISD::BRFCC;
}
}
return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest,
DAG.getConstant(SPCC, MVT::i32), CompareFlag);
}
static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI,
bool hasHardQuad) {
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDValue TrueVal = Op.getOperand(2);
SDValue FalseVal = Op.getOperand(3);
SDLoc dl(Op);
unsigned Opc, SPCC = ~0U;
// If this is a select_cc of a "setcc", and if the setcc got lowered into
// an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
LookThroughSetCC(LHS, RHS, CC, SPCC);
SDValue CompareFlag;
if (LHS.getValueType().isInteger()) {
CompareFlag = DAG.getNode(SPISD::CMPICC, dl, MVT::Glue, LHS, RHS);
Opc = LHS.getValueType() == MVT::i32 ?
SPISD::SELECT_ICC : SPISD::SELECT_XCC;
if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
} else {
if (!hasHardQuad && LHS.getValueType() == MVT::f128) {
if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
CompareFlag = TLI.LowerF128Compare(LHS, RHS, SPCC, dl, DAG);
Opc = SPISD::SELECT_ICC;
} else {
CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS);
Opc = SPISD::SELECT_FCC;
if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
}
}
return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal,
DAG.getConstant(SPCC, MVT::i32), CompareFlag);
}
static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI) {
MachineFunction &MF = DAG.getMachineFunction();
SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
// Need frame address to find the address of VarArgsFrameIndex.
MF.getFrameInfo()->setFrameAddressIsTaken(true);
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
SDLoc DL(Op);
SDValue Offset =
DAG.getNode(ISD::ADD, DL, TLI.getPointerTy(),
DAG.getRegister(SP::I6, TLI.getPointerTy()),
DAG.getIntPtrConstant(FuncInfo->getVarArgsFrameOffset()));
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), DL, Offset, Op.getOperand(1),
MachinePointerInfo(SV), false, false, 0);
}
static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) {
SDNode *Node = Op.getNode();
EVT VT = Node->getValueType(0);
SDValue InChain = Node->getOperand(0);
SDValue VAListPtr = Node->getOperand(1);
EVT PtrVT = VAListPtr.getValueType();
const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
SDLoc DL(Node);
SDValue VAList = DAG.getLoad(PtrVT, DL, InChain, VAListPtr,
MachinePointerInfo(SV), false, false, false, 0);
// Increment the pointer, VAList, to the next vaarg.
SDValue NextPtr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
DAG.getIntPtrConstant(VT.getSizeInBits()/8));
// Store the incremented VAList to the legalized pointer.
InChain = DAG.getStore(VAList.getValue(1), DL, NextPtr,
VAListPtr, MachinePointerInfo(SV), false, false, 0);
// Load the actual argument out of the pointer VAList.
// We can't count on greater alignment than the word size.
return DAG.getLoad(VT, DL, InChain, VAList, MachinePointerInfo(),
false, false, false,
std::min(PtrVT.getSizeInBits(), VT.getSizeInBits())/8);
}
static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
const SparcSubtarget *Subtarget) {
SDValue Chain = Op.getOperand(0); // Legalize the chain.
SDValue Size = Op.getOperand(1); // Legalize the size.
EVT VT = Size->getValueType(0);
SDLoc dl(Op);
unsigned SPReg = SP::O6;
SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
SDValue NewSP = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain
// The resultant pointer is actually 16 words from the bottom of the stack,
// to provide a register spill area.
unsigned regSpillArea = Subtarget->is64Bit() ? 128 : 96;
regSpillArea += Subtarget->getStackPointerBias();
SDValue NewVal = DAG.getNode(ISD::ADD, dl, VT, NewSP,
DAG.getConstant(regSpillArea, VT));
SDValue Ops[2] = { NewVal, Chain };
return DAG.getMergeValues(Ops, dl);
}
static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) {
SDLoc dl(Op);
SDValue Chain = DAG.getNode(SPISD::FLUSHW,
dl, MVT::Other, DAG.getEntryNode());
return Chain;
}
static SDValue getFRAMEADDR(uint64_t depth, SDValue Op, SelectionDAG &DAG,
const SparcSubtarget *Subtarget) {
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MFI->setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc dl(Op);
unsigned FrameReg = SP::I6;
unsigned stackBias = Subtarget->getStackPointerBias();
SDValue FrameAddr;
if (depth == 0) {
FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
if (Subtarget->is64Bit())
FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
DAG.getIntPtrConstant(stackBias));
return FrameAddr;
}
// flush first to make sure the windowed registers' values are in stack
SDValue Chain = getFLUSHW(Op, DAG);
FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT);
unsigned Offset = (Subtarget->is64Bit()) ? (stackBias + 112) : 56;
while (depth--) {
SDValue Ptr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
DAG.getIntPtrConstant(Offset));
FrameAddr = DAG.getLoad(VT, dl, Chain, Ptr, MachinePointerInfo(),
false, false, false, 0);
}
if (Subtarget->is64Bit())
FrameAddr = DAG.getNode(ISD::ADD, dl, VT, FrameAddr,
DAG.getIntPtrConstant(stackBias));
return FrameAddr;
}
static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG,
const SparcSubtarget *Subtarget) {
uint64_t depth = Op.getConstantOperandVal(0);
return getFRAMEADDR(depth, Op, DAG, Subtarget);
}
static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI,
const SparcSubtarget *Subtarget) {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MFI->setReturnAddressIsTaken(true);
if (TLI.verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
EVT VT = Op.getValueType();
SDLoc dl(Op);
uint64_t depth = Op.getConstantOperandVal(0);
SDValue RetAddr;
if (depth == 0) {
unsigned RetReg = MF.addLiveIn(SP::I7,
TLI.getRegClassFor(TLI.getPointerTy()));
RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT);
return RetAddr;
}
// Need frame address to find return address of the caller.
SDValue FrameAddr = getFRAMEADDR(depth - 1, Op, DAG, Subtarget);
unsigned Offset = (Subtarget->is64Bit()) ? 120 : 60;
SDValue Ptr = DAG.getNode(ISD::ADD,
dl, VT,
FrameAddr,
DAG.getIntPtrConstant(Offset));
RetAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), Ptr,
MachinePointerInfo(), false, false, false, 0);
return RetAddr;
}
static SDValue LowerF64Op(SDValue Op, SelectionDAG &DAG, unsigned opcode)
{
SDLoc dl(Op);
assert(Op.getValueType() == MVT::f64 && "LowerF64Op called on non-double!");
assert(opcode == ISD::FNEG || opcode == ISD::FABS);
// Lower fneg/fabs on f64 to fneg/fabs on f32.
// fneg f64 => fneg f32:sub_even, fmov f32:sub_odd.
// fabs f64 => fabs f32:sub_even, fmov f32:sub_odd.
SDValue SrcReg64 = Op.getOperand(0);
SDValue Hi32 = DAG.getTargetExtractSubreg(SP::sub_even, dl, MVT::f32,
SrcReg64);
SDValue Lo32 = DAG.getTargetExtractSubreg(SP::sub_odd, dl, MVT::f32,
SrcReg64);
Hi32 = DAG.getNode(opcode, dl, MVT::f32, Hi32);
SDValue DstReg64 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
dl, MVT::f64), 0);
DstReg64 = DAG.getTargetInsertSubreg(SP::sub_even, dl, MVT::f64,
DstReg64, Hi32);
DstReg64 = DAG.getTargetInsertSubreg(SP::sub_odd, dl, MVT::f64,
DstReg64, Lo32);
return DstReg64;
}
// Lower a f128 load into two f64 loads.
static SDValue LowerF128Load(SDValue Op, SelectionDAG &DAG)
{
SDLoc dl(Op);
LoadSDNode *LdNode = dyn_cast<LoadSDNode>(Op.getNode());
assert(LdNode && LdNode->getOffset().getOpcode() == ISD::UNDEF
&& "Unexpected node type");
unsigned alignment = LdNode->getAlignment();
if (alignment > 8)
alignment = 8;
SDValue Hi64 = DAG.getLoad(MVT::f64,
dl,
LdNode->getChain(),
LdNode->getBasePtr(),
LdNode->getPointerInfo(),
false, false, false, alignment);
EVT addrVT = LdNode->getBasePtr().getValueType();
SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
LdNode->getBasePtr(),
DAG.getConstant(8, addrVT));
SDValue Lo64 = DAG.getLoad(MVT::f64,
dl,
LdNode->getChain(),
LoPtr,
LdNode->getPointerInfo(),
false, false, false, alignment);
SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, MVT::i32);
SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, MVT::i32);
SDNode *InFP128 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
dl, MVT::f128);
InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
MVT::f128,
SDValue(InFP128, 0),
Hi64,
SubRegEven);
InFP128 = DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
MVT::f128,
SDValue(InFP128, 0),
Lo64,
SubRegOdd);
SDValue OutChains[2] = { SDValue(Hi64.getNode(), 1),
SDValue(Lo64.getNode(), 1) };
SDValue OutChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
SDValue Ops[2] = {SDValue(InFP128,0), OutChain};
return DAG.getMergeValues(Ops, dl);
}
// Lower a f128 store into two f64 stores.
static SDValue LowerF128Store(SDValue Op, SelectionDAG &DAG) {
SDLoc dl(Op);
StoreSDNode *StNode = dyn_cast<StoreSDNode>(Op.getNode());
assert(StNode && StNode->getOffset().getOpcode() == ISD::UNDEF
&& "Unexpected node type");
SDValue SubRegEven = DAG.getTargetConstant(SP::sub_even64, MVT::i32);
SDValue SubRegOdd = DAG.getTargetConstant(SP::sub_odd64, MVT::i32);
SDNode *Hi64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
dl,
MVT::f64,
StNode->getValue(),
SubRegEven);
SDNode *Lo64 = DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG,
dl,
MVT::f64,
StNode->getValue(),
SubRegOdd);
unsigned alignment = StNode->getAlignment();
if (alignment > 8)
alignment = 8;
SDValue OutChains[2];
OutChains[0] = DAG.getStore(StNode->getChain(),
dl,
SDValue(Hi64, 0),
StNode->getBasePtr(),
MachinePointerInfo(),
false, false, alignment);
EVT addrVT = StNode->getBasePtr().getValueType();
SDValue LoPtr = DAG.getNode(ISD::ADD, dl, addrVT,
StNode->getBasePtr(),
DAG.getConstant(8, addrVT));
OutChains[1] = DAG.getStore(StNode->getChain(),
dl,
SDValue(Lo64, 0),
LoPtr,
MachinePointerInfo(),
false, false, alignment);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
}
static SDValue LowerFNEGorFABS(SDValue Op, SelectionDAG &DAG, bool isV9) {
assert((Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::FABS)
&& "invalid opcode");
if (Op.getValueType() == MVT::f64)
return LowerF64Op(Op, DAG, Op.getOpcode());
if (Op.getValueType() != MVT::f128)
return Op;
// Lower fabs/fneg on f128 to fabs/fneg on f64
// fabs/fneg f128 => fabs/fneg f64:sub_even64, fmov f64:sub_odd64
SDLoc dl(Op);
SDValue SrcReg128 = Op.getOperand(0);
SDValue Hi64 = DAG.getTargetExtractSubreg(SP::sub_even64, dl, MVT::f64,
SrcReg128);
SDValue Lo64 = DAG.getTargetExtractSubreg(SP::sub_odd64, dl, MVT::f64,
SrcReg128);
if (isV9)
Hi64 = DAG.getNode(Op.getOpcode(), dl, MVT::f64, Hi64);
else
Hi64 = LowerF64Op(Hi64, DAG, Op.getOpcode());
SDValue DstReg128 = SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF,
dl, MVT::f128), 0);
DstReg128 = DAG.getTargetInsertSubreg(SP::sub_even64, dl, MVT::f128,
DstReg128, Hi64);
DstReg128 = DAG.getTargetInsertSubreg(SP::sub_odd64, dl, MVT::f128,
DstReg128, Lo64);
return DstReg128;
}
static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
if (Op.getValueType() != MVT::i64)
return Op;
SDLoc dl(Op);
SDValue Src1 = Op.getOperand(0);
SDValue Src1Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1);
SDValue Src1Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src1,
DAG.getConstant(32, MVT::i64));
Src1Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src1Hi);
SDValue Src2 = Op.getOperand(1);
SDValue Src2Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2);
SDValue Src2Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Src2,
DAG.getConstant(32, MVT::i64));
Src2Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src2Hi);
bool hasChain = false;
unsigned hiOpc = Op.getOpcode();
switch (Op.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case ISD::ADDC: hiOpc = ISD::ADDE; break;
case ISD::ADDE: hasChain = true; break;
case ISD::SUBC: hiOpc = ISD::SUBE; break;
case ISD::SUBE: hasChain = true; break;
}
SDValue Lo;
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Glue);
if (hasChain) {
Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo,
Op.getOperand(2));
} else {
Lo = DAG.getNode(Op.getOpcode(), dl, VTs, Src1Lo, Src2Lo);
}
SDValue Hi = DAG.getNode(hiOpc, dl, VTs, Src1Hi, Src2Hi, Lo.getValue(1));
SDValue Carry = Hi.getValue(1);
Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Lo);
Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Hi);
Hi = DAG.getNode(ISD::SHL, dl, MVT::i64, Hi,
DAG.getConstant(32, MVT::i64));
SDValue Dst = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, Lo);
SDValue Ops[2] = { Dst, Carry };
return DAG.getMergeValues(Ops, dl);
}
// Custom lower UMULO/SMULO for SPARC. This code is similar to ExpandNode()
// in LegalizeDAG.cpp except the order of arguments to the library function.
static SDValue LowerUMULO_SMULO(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI)
{
unsigned opcode = Op.getOpcode();
assert((opcode == ISD::UMULO || opcode == ISD::SMULO) && "Invalid Opcode.");
bool isSigned = (opcode == ISD::SMULO);
EVT VT = MVT::i64;
EVT WideVT = MVT::i128;
SDLoc dl(Op);
SDValue LHS = Op.getOperand(0);
if (LHS.getValueType() != VT)
return Op;
SDValue ShiftAmt = DAG.getConstant(63, VT);
SDValue RHS = Op.getOperand(1);
SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, LHS, ShiftAmt);
SDValue HiRHS = DAG.getNode(ISD::SRA, dl, MVT::i64, RHS, ShiftAmt);
SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
SDValue MulResult = TLI.makeLibCall(DAG,
RTLIB::MUL_I128, WideVT,
Args, 4, isSigned, dl).first;
SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT,
MulResult, DAG.getIntPtrConstant(0));
SDValue TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT,
MulResult, DAG.getIntPtrConstant(1));
if (isSigned) {
SDValue Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, Tmp1, ISD::SETNE);
} else {
TopHalf = DAG.getSetCC(dl, MVT::i32, TopHalf, DAG.getConstant(0, VT),
ISD::SETNE);
}
// MulResult is a node with an illegal type. Because such things are not
// generally permitted during this phase of legalization, ensure that
// nothing is left using the node. The above EXTRACT_ELEMENT nodes should have
// been folded.
assert(MulResult->use_empty() && "Illegally typed node still in use!");
SDValue Ops[2] = { BottomHalf, TopHalf } ;
return DAG.getMergeValues(Ops, dl);
}
static SDValue LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) {
// Monotonic load/stores are legal.
if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
return Op;
// Otherwise, expand with a fence.
return SDValue();
}
SDValue SparcTargetLowering::
LowerOperation(SDValue Op, SelectionDAG &DAG) const {
bool hasHardQuad = Subtarget->hasHardQuad();
bool isV9 = Subtarget->isV9();
switch (Op.getOpcode()) {
default: llvm_unreachable("Should not custom lower this!");
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG, *this,
Subtarget);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG,
Subtarget);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG, *this,
hasHardQuad);
case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG, *this,
hasHardQuad);
case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG, *this,
hasHardQuad);
case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG, *this,
hasHardQuad);
case ISD::BR_CC: return LowerBR_CC(Op, DAG, *this,
hasHardQuad);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, *this,
hasHardQuad);
case ISD::VASTART: return LowerVASTART(Op, DAG, *this);
case ISD::VAARG: return LowerVAARG(Op, DAG);
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG,
Subtarget);
case ISD::LOAD: return LowerF128Load(Op, DAG);
case ISD::STORE: return LowerF128Store(Op, DAG);
case ISD::FADD: return LowerF128Op(Op, DAG,
getLibcallName(RTLIB::ADD_F128), 2);
case ISD::FSUB: return LowerF128Op(Op, DAG,
getLibcallName(RTLIB::SUB_F128), 2);
case ISD::FMUL: return LowerF128Op(Op, DAG,
getLibcallName(RTLIB::MUL_F128), 2);
case ISD::FDIV: return LowerF128Op(Op, DAG,
getLibcallName(RTLIB::DIV_F128), 2);
case ISD::FSQRT: return LowerF128Op(Op, DAG,
getLibcallName(RTLIB::SQRT_F128),1);
case ISD::FABS:
case ISD::FNEG: return LowerFNEGorFABS(Op, DAG, isV9);
case ISD::FP_EXTEND: return LowerF128_FPEXTEND(Op, DAG, *this);
case ISD::FP_ROUND: return LowerF128_FPROUND(Op, DAG, *this);
case ISD::ADDC:
case ISD::ADDE:
case ISD::SUBC:
case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
case ISD::UMULO:
case ISD::SMULO: return LowerUMULO_SMULO(Op, DAG, *this);
case ISD::ATOMIC_LOAD:
case ISD::ATOMIC_STORE: return LowerATOMIC_LOAD_STORE(Op, DAG);
}
}
MachineBasicBlock *
SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const {
switch (MI->getOpcode()) {
default: llvm_unreachable("Unknown SELECT_CC!");
case SP::SELECT_CC_Int_ICC:
case SP::SELECT_CC_FP_ICC:
case SP::SELECT_CC_DFP_ICC:
case SP::SELECT_CC_QFP_ICC:
return expandSelectCC(MI, BB, SP::BCOND);
case SP::SELECT_CC_Int_FCC:
case SP::SELECT_CC_FP_FCC:
case SP::SELECT_CC_DFP_FCC:
case SP::SELECT_CC_QFP_FCC:
return expandSelectCC(MI, BB, SP::FBCOND);
case SP::ATOMIC_LOAD_ADD_32:
return expandAtomicRMW(MI, BB, SP::ADDrr);
case SP::ATOMIC_LOAD_ADD_64:
return expandAtomicRMW(MI, BB, SP::ADDXrr);
case SP::ATOMIC_LOAD_SUB_32:
return expandAtomicRMW(MI, BB, SP::SUBrr);
case SP::ATOMIC_LOAD_SUB_64:
return expandAtomicRMW(MI, BB, SP::SUBXrr);
case SP::ATOMIC_LOAD_AND_32:
return expandAtomicRMW(MI, BB, SP::ANDrr);
case SP::ATOMIC_LOAD_AND_64:
return expandAtomicRMW(MI, BB, SP::ANDXrr);
case SP::ATOMIC_LOAD_OR_32:
return expandAtomicRMW(MI, BB, SP::ORrr);
case SP::ATOMIC_LOAD_OR_64:
return expandAtomicRMW(MI, BB, SP::ORXrr);
case SP::ATOMIC_LOAD_XOR_32:
return expandAtomicRMW(MI, BB, SP::XORrr);
case SP::ATOMIC_LOAD_XOR_64:
return expandAtomicRMW(MI, BB, SP::XORXrr);
case SP::ATOMIC_LOAD_NAND_32:
return expandAtomicRMW(MI, BB, SP::ANDrr);
case SP::ATOMIC_LOAD_NAND_64:
return expandAtomicRMW(MI, BB, SP::ANDXrr);
case SP::ATOMIC_SWAP_64:
return expandAtomicRMW(MI, BB, 0);
case SP::ATOMIC_LOAD_MAX_32:
return expandAtomicRMW(MI, BB, SP::MOVICCrr, SPCC::ICC_G);
case SP::ATOMIC_LOAD_MAX_64:
return expandAtomicRMW(MI, BB, SP::MOVXCCrr, SPCC::ICC_G);
case SP::ATOMIC_LOAD_MIN_32:
return expandAtomicRMW(MI, BB, SP::MOVICCrr, SPCC::ICC_LE);
case SP::ATOMIC_LOAD_MIN_64:
return expandAtomicRMW(MI, BB, SP::MOVXCCrr, SPCC::ICC_LE);
case SP::ATOMIC_LOAD_UMAX_32:
return expandAtomicRMW(MI, BB, SP::MOVICCrr, SPCC::ICC_GU);
case SP::ATOMIC_LOAD_UMAX_64:
return expandAtomicRMW(MI, BB, SP::MOVXCCrr, SPCC::ICC_GU);
case SP::ATOMIC_LOAD_UMIN_32:
return expandAtomicRMW(MI, BB, SP::MOVICCrr, SPCC::ICC_LEU);
case SP::ATOMIC_LOAD_UMIN_64:
return expandAtomicRMW(MI, BB, SP::MOVXCCrr, SPCC::ICC_LEU);
}
}
MachineBasicBlock*
SparcTargetLowering::expandSelectCC(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned BROpcode) const {
const TargetInstrInfo &TII =
*getTargetMachine().getSubtargetImpl()->getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
unsigned CC = (SPCC::CondCodes)MI->getOperand(3).getImm();
// To "insert" a SELECT_CC instruction, we actually have to insert the diamond
// control-flow pattern. The incoming instruction knows the destination vreg
// to set, the condition code register to branch on, the true/false values to
// select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// [f]bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)),
BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
BuildMI(BB, dl, TII.get(BROpcode)).addMBB(sinkMBB).addImm(CC);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(*BB, BB->begin(), dl, TII.get(SP::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB)
.addReg(MI->getOperand(1).getReg()).addMBB(thisMBB);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock*
SparcTargetLowering::expandAtomicRMW(MachineInstr *MI,
MachineBasicBlock *MBB,
unsigned Opcode,
unsigned CondCode) const {
const TargetInstrInfo &TII =
*getTargetMachine().getSubtargetImpl()->getInstrInfo();
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
DebugLoc DL = MI->getDebugLoc();
// MI is an atomic read-modify-write instruction of the form:
//
// rd = atomicrmw<op> addr, rs2
//
// All three operands are registers.
unsigned DestReg = MI->getOperand(0).getReg();
unsigned AddrReg = MI->getOperand(1).getReg();
unsigned Rs2Reg = MI->getOperand(2).getReg();
// SelectionDAG has already inserted memory barriers before and after MI, so
// we simply have to implement the operatiuon in terms of compare-and-swap.
//
// %val0 = load %addr
// loop:
// %val = phi %val0, %dest
// %upd = op %val, %rs2
// %dest = cas %addr, %val, %upd
// cmp %val, %dest
// bne loop
// done:
//
bool is64Bit = SP::I64RegsRegClass.hasSubClassEq(MRI.getRegClass(DestReg));
const TargetRegisterClass *ValueRC =
is64Bit ? &SP::I64RegsRegClass : &SP::IntRegsRegClass;
unsigned Val0Reg = MRI.createVirtualRegister(ValueRC);
BuildMI(*MBB, MI, DL, TII.get(is64Bit ? SP::LDXri : SP::LDri), Val0Reg)
.addReg(AddrReg).addImm(0);
// Split the basic block MBB before MI and insert the loop block in the hole.
MachineFunction::iterator MFI = MBB;
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
MachineFunction *MF = MBB->getParent();
MachineBasicBlock *LoopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *DoneMBB = MF->CreateMachineBasicBlock(LLVM_BB);
++MFI;
MF->insert(MFI, LoopMBB);
MF->insert(MFI, DoneMBB);
// Move MI and following instructions to DoneMBB.
DoneMBB->splice(DoneMBB->begin(), MBB, MI, MBB->end());
DoneMBB->transferSuccessorsAndUpdatePHIs(MBB);
// Connect the CFG again.
MBB->addSuccessor(LoopMBB);
LoopMBB->addSuccessor(LoopMBB);
LoopMBB->addSuccessor(DoneMBB);
// Build the loop block.
unsigned ValReg = MRI.createVirtualRegister(ValueRC);
// Opcode == 0 means try to write Rs2Reg directly (ATOMIC_SWAP).
unsigned UpdReg = (Opcode ? MRI.createVirtualRegister(ValueRC) : Rs2Reg);
BuildMI(LoopMBB, DL, TII.get(SP::PHI), ValReg)
.addReg(Val0Reg).addMBB(MBB)
.addReg(DestReg).addMBB(LoopMBB);
if (CondCode) {
// This is one of the min/max operations. We need a CMPrr followed by a
// MOVXCC/MOVICC.
BuildMI(LoopMBB, DL, TII.get(SP::CMPrr)).addReg(ValReg).addReg(Rs2Reg);
BuildMI(LoopMBB, DL, TII.get(Opcode), UpdReg)
.addReg(ValReg).addReg(Rs2Reg).addImm(CondCode);
} else if (Opcode) {
BuildMI(LoopMBB, DL, TII.get(Opcode), UpdReg)
.addReg(ValReg).addReg(Rs2Reg);
}
if (MI->getOpcode() == SP::ATOMIC_LOAD_NAND_32 ||
MI->getOpcode() == SP::ATOMIC_LOAD_NAND_64) {
unsigned TmpReg = UpdReg;
UpdReg = MRI.createVirtualRegister(ValueRC);
BuildMI(LoopMBB, DL, TII.get(SP::XORri), UpdReg).addReg(TmpReg).addImm(-1);
}
BuildMI(LoopMBB, DL, TII.get(is64Bit ? SP::CASXrr : SP::CASrr), DestReg)
.addReg(AddrReg).addReg(ValReg).addReg(UpdReg)
.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
BuildMI(LoopMBB, DL, TII.get(SP::CMPrr)).addReg(ValReg).addReg(DestReg);
BuildMI(LoopMBB, DL, TII.get(is64Bit ? SP::BPXCC : SP::BCOND))
.addMBB(LoopMBB).addImm(SPCC::ICC_NE);
MI->eraseFromParent();
return DoneMBB;
}
//===----------------------------------------------------------------------===//
// Sparc Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
SparcTargetLowering::ConstraintType
SparcTargetLowering::getConstraintType(const std::string &Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default: break;
case 'r': return C_RegisterClass;
case 'I': // SIMM13
return C_Other;
}
}
return TargetLowering::getConstraintType(Constraint);
}
TargetLowering::ConstraintWeight SparcTargetLowering::
getSingleConstraintMatchWeight(AsmOperandInfo &info,
const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (!CallOperandVal)
return CW_Default;
// Look at the constraint type.
switch (*constraint) {
default:
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
break;
case 'I': // SIMM13
if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
if (isInt<13>(C->getSExtValue()))
weight = CW_Constant;
}
break;
}
return weight;
}
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
void SparcTargetLowering::
LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const {
SDValue Result(nullptr, 0);
// Only support length 1 constraints for now.
if (Constraint.length() > 1)
return;
char ConstraintLetter = Constraint[0];
switch (ConstraintLetter) {
default: break;
case 'I':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (isInt<13>(C->getSExtValue())) {
Result = DAG.getTargetConstant(C->getSExtValue(), Op.getValueType());
break;
}
return;
}
}
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
std::pair<unsigned, const TargetRegisterClass*>
SparcTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
MVT VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r':
return std::make_pair(0U, &SP::IntRegsRegClass);
}
} else if (!Constraint.empty() && Constraint.size() <= 5
&& Constraint[0] == '{' && *(Constraint.end()-1) == '}') {
// constraint = '{r<d>}'
// Remove the braces from around the name.
StringRef name(Constraint.data()+1, Constraint.size()-2);
// Handle register aliases:
// r0-r7 -> g0-g7
// r8-r15 -> o0-o7
// r16-r23 -> l0-l7
// r24-r31 -> i0-i7
uint64_t intVal = 0;
if (name.substr(0, 1).equals("r")
&& !name.substr(1).getAsInteger(10, intVal) && intVal <= 31) {
const char regTypes[] = { 'g', 'o', 'l', 'i' };
char regType = regTypes[intVal/8];
char regIdx = '0' + (intVal % 8);
char tmp[] = { '{', regType, regIdx, '}', 0 };
std::string newConstraint = std::string(tmp);
return TargetLowering::getRegForInlineAsmConstraint(newConstraint, VT);
}
}
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
}
bool
SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
// The Sparc target isn't yet aware of offsets.
return false;
}
void SparcTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue>& Results,
SelectionDAG &DAG) const {
SDLoc dl(N);
RTLIB::Libcall libCall = RTLIB::UNKNOWN_LIBCALL;
switch (N->getOpcode()) {
default:
llvm_unreachable("Do not know how to custom type legalize this operation!");
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
// Custom lower only if it involves f128 or i64.
if (N->getOperand(0).getValueType() != MVT::f128
|| N->getValueType(0) != MVT::i64)
return;
libCall = ((N->getOpcode() == ISD::FP_TO_SINT)
? RTLIB::FPTOSINT_F128_I64
: RTLIB::FPTOUINT_F128_I64);
Results.push_back(LowerF128Op(SDValue(N, 0),
DAG,
getLibcallName(libCall),
1));
return;
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
// Custom lower only if it involves f128 or i64.
if (N->getValueType(0) != MVT::f128
|| N->getOperand(0).getValueType() != MVT::i64)
return;
libCall = ((N->getOpcode() == ISD::SINT_TO_FP)
? RTLIB::SINTTOFP_I64_F128
: RTLIB::UINTTOFP_I64_F128);
Results.push_back(LowerF128Op(SDValue(N, 0),
DAG,
getLibcallName(libCall),
1));
return;
}
}