llvm/lib/Target/Mips/MipsISelLowering.cpp
Akira Hatanaka 714e04b84a [mips] Fix a bug in function CC_MipsO32_FP64. The second double precision
argument was not being passed in $f14.
 


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194522 91177308-0d34-0410-b5e6-96231b3b80d8
2013-11-12 22:16:18 +00:00

3615 lines
139 KiB
C++

//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that Mips uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "mips-lower"
#include "MipsISelLowering.h"
#include "InstPrinter/MipsInstPrinter.h"
#include "MCTargetDesc/MipsBaseInfo.h"
#include "MipsMachineFunction.h"
#include "MipsSubtarget.h"
#include "MipsTargetMachine.h"
#include "MipsTargetObjectFile.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cctype>
using namespace llvm;
STATISTIC(NumTailCalls, "Number of tail calls");
static cl::opt<bool>
LargeGOT("mxgot", cl::Hidden,
cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
static cl::opt<bool>
NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
cl::desc("MIPS: Don't trap on integer division by zero."),
cl::init(false));
static const uint16_t O32IntRegs[4] = {
Mips::A0, Mips::A1, Mips::A2, Mips::A3
};
static const uint16_t Mips64IntRegs[8] = {
Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
};
static const uint16_t Mips64DPRegs[8] = {
Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
};
// If I is a shifted mask, set the size (Size) and the first bit of the
// mask (Pos), and return true.
// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
if (!isShiftedMask_64(I))
return false;
Size = CountPopulation_64(I);
Pos = countTrailingZeros(I);
return true;
}
SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
}
SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
SelectionDAG &DAG,
unsigned Flag) const {
return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
}
SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
SelectionDAG &DAG,
unsigned Flag) const {
return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
}
SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
SelectionDAG &DAG,
unsigned Flag) const {
return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
}
SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
SelectionDAG &DAG,
unsigned Flag) const {
return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
}
SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
SelectionDAG &DAG,
unsigned Flag) const {
return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
N->getOffset(), Flag);
}
const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
case MipsISD::JmpLink: return "MipsISD::JmpLink";
case MipsISD::TailCall: return "MipsISD::TailCall";
case MipsISD::Hi: return "MipsISD::Hi";
case MipsISD::Lo: return "MipsISD::Lo";
case MipsISD::GPRel: return "MipsISD::GPRel";
case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer";
case MipsISD::Ret: return "MipsISD::Ret";
case MipsISD::EH_RETURN: return "MipsISD::EH_RETURN";
case MipsISD::FPBrcond: return "MipsISD::FPBrcond";
case MipsISD::FPCmp: return "MipsISD::FPCmp";
case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T";
case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F";
case MipsISD::TruncIntFP: return "MipsISD::TruncIntFP";
case MipsISD::MFHI: return "MipsISD::MFHI";
case MipsISD::MFLO: return "MipsISD::MFLO";
case MipsISD::MTLOHI: return "MipsISD::MTLOHI";
case MipsISD::Mult: return "MipsISD::Mult";
case MipsISD::Multu: return "MipsISD::Multu";
case MipsISD::MAdd: return "MipsISD::MAdd";
case MipsISD::MAddu: return "MipsISD::MAddu";
case MipsISD::MSub: return "MipsISD::MSub";
case MipsISD::MSubu: return "MipsISD::MSubu";
case MipsISD::DivRem: return "MipsISD::DivRem";
case MipsISD::DivRemU: return "MipsISD::DivRemU";
case MipsISD::DivRem16: return "MipsISD::DivRem16";
case MipsISD::DivRemU16: return "MipsISD::DivRemU16";
case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64";
case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
case MipsISD::Wrapper: return "MipsISD::Wrapper";
case MipsISD::Sync: return "MipsISD::Sync";
case MipsISD::Ext: return "MipsISD::Ext";
case MipsISD::Ins: return "MipsISD::Ins";
case MipsISD::LWL: return "MipsISD::LWL";
case MipsISD::LWR: return "MipsISD::LWR";
case MipsISD::SWL: return "MipsISD::SWL";
case MipsISD::SWR: return "MipsISD::SWR";
case MipsISD::LDL: return "MipsISD::LDL";
case MipsISD::LDR: return "MipsISD::LDR";
case MipsISD::SDL: return "MipsISD::SDL";
case MipsISD::SDR: return "MipsISD::SDR";
case MipsISD::EXTP: return "MipsISD::EXTP";
case MipsISD::EXTPDP: return "MipsISD::EXTPDP";
case MipsISD::EXTR_S_H: return "MipsISD::EXTR_S_H";
case MipsISD::EXTR_W: return "MipsISD::EXTR_W";
case MipsISD::EXTR_R_W: return "MipsISD::EXTR_R_W";
case MipsISD::EXTR_RS_W: return "MipsISD::EXTR_RS_W";
case MipsISD::SHILO: return "MipsISD::SHILO";
case MipsISD::MTHLIP: return "MipsISD::MTHLIP";
case MipsISD::MULT: return "MipsISD::MULT";
case MipsISD::MULTU: return "MipsISD::MULTU";
case MipsISD::MADD_DSP: return "MipsISD::MADD_DSP";
case MipsISD::MADDU_DSP: return "MipsISD::MADDU_DSP";
case MipsISD::MSUB_DSP: return "MipsISD::MSUB_DSP";
case MipsISD::MSUBU_DSP: return "MipsISD::MSUBU_DSP";
case MipsISD::SHLL_DSP: return "MipsISD::SHLL_DSP";
case MipsISD::SHRA_DSP: return "MipsISD::SHRA_DSP";
case MipsISD::SHRL_DSP: return "MipsISD::SHRL_DSP";
case MipsISD::SETCC_DSP: return "MipsISD::SETCC_DSP";
case MipsISD::SELECT_CC_DSP: return "MipsISD::SELECT_CC_DSP";
case MipsISD::VALL_ZERO: return "MipsISD::VALL_ZERO";
case MipsISD::VANY_ZERO: return "MipsISD::VANY_ZERO";
case MipsISD::VALL_NONZERO: return "MipsISD::VALL_NONZERO";
case MipsISD::VANY_NONZERO: return "MipsISD::VANY_NONZERO";
case MipsISD::VCEQ: return "MipsISD::VCEQ";
case MipsISD::VCLE_S: return "MipsISD::VCLE_S";
case MipsISD::VCLE_U: return "MipsISD::VCLE_U";
case MipsISD::VCLT_S: return "MipsISD::VCLT_S";
case MipsISD::VCLT_U: return "MipsISD::VCLT_U";
case MipsISD::VSMAX: return "MipsISD::VSMAX";
case MipsISD::VSMIN: return "MipsISD::VSMIN";
case MipsISD::VUMAX: return "MipsISD::VUMAX";
case MipsISD::VUMIN: return "MipsISD::VUMIN";
case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
case MipsISD::VNOR: return "MipsISD::VNOR";
case MipsISD::VSHF: return "MipsISD::VSHF";
case MipsISD::SHF: return "MipsISD::SHF";
case MipsISD::ILVEV: return "MipsISD::ILVEV";
case MipsISD::ILVOD: return "MipsISD::ILVOD";
case MipsISD::ILVL: return "MipsISD::ILVL";
case MipsISD::ILVR: return "MipsISD::ILVR";
case MipsISD::PCKEV: return "MipsISD::PCKEV";
case MipsISD::PCKOD: return "MipsISD::PCKOD";
default: return NULL;
}
}
MipsTargetLowering::
MipsTargetLowering(MipsTargetMachine &TM)
: TargetLowering(TM, new MipsTargetObjectFile()),
Subtarget(&TM.getSubtarget<MipsSubtarget>()),
HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
IsO32(Subtarget->isABI_O32()) {
// Mips does not have i1 type, so use i32 for
// setcc operations results (slt, sgt, ...).
setBooleanContents(ZeroOrOneBooleanContent);
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
// Load extented operations for i1 types must be promoted
setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
// MIPS doesn't have extending float->double load/store
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// Used by legalize types to correctly generate the setcc result.
// Without this, every float setcc comes with a AND/OR with the result,
// we don't want this, since the fpcmp result goes to a flag register,
// which is used implicitly by brcond and select operations.
AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
// Mips Custom Operations
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
setOperationAction(ISD::SELECT, MVT::f32, Custom);
setOperationAction(ISD::SELECT, MVT::f64, Custom);
setOperationAction(ISD::SELECT, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
setOperationAction(ISD::SETCC, MVT::f32, Custom);
setOperationAction(ISD::SETCC, MVT::f64, Custom);
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
if (!TM.Options.NoNaNsFPMath) {
setOperationAction(ISD::FABS, MVT::f32, Custom);
setOperationAction(ISD::FABS, MVT::f64, Custom);
}
if (HasMips64) {
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
setOperationAction(ISD::SELECT, MVT::i64, Custom);
setOperationAction(ISD::LOAD, MVT::i64, Custom);
setOperationAction(ISD::STORE, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
}
if (!HasMips64) {
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
}
setOperationAction(ISD::ADD, MVT::i32, Custom);
if (HasMips64)
setOperationAction(ISD::ADD, MVT::i64, Custom);
setOperationAction(ISD::SDIV, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::UDIV, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::SDIV, MVT::i64, Expand);
setOperationAction(ISD::SREM, MVT::i64, Expand);
setOperationAction(ISD::UDIV, MVT::i64, Expand);
setOperationAction(ISD::UREM, MVT::i64, Expand);
// Operations not directly supported by Mips.
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
setOperationAction(ISD::BR_CC, MVT::f64, Expand);
setOperationAction(ISD::BR_CC, MVT::i32, Expand);
setOperationAction(ISD::BR_CC, MVT::i64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
setOperationAction(ISD::CTPOP, MVT::i64, Expand);
setOperationAction(ISD::CTTZ, MVT::i32, Expand);
setOperationAction(ISD::CTTZ, MVT::i64, Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
setOperationAction(ISD::ROTL, MVT::i32, Expand);
setOperationAction(ISD::ROTL, MVT::i64, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
if (!Subtarget->hasMips32r2())
setOperationAction(ISD::ROTR, MVT::i32, Expand);
if (!Subtarget->hasMips64r2())
setOperationAction(ISD::ROTR, MVT::i64, Expand);
setOperationAction(ISD::FSIN, MVT::f32, Expand);
setOperationAction(ISD::FSIN, MVT::f64, Expand);
setOperationAction(ISD::FCOS, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
setOperationAction(ISD::FPOWI, MVT::f32, Expand);
setOperationAction(ISD::FPOW, MVT::f32, Expand);
setOperationAction(ISD::FPOW, MVT::f64, Expand);
setOperationAction(ISD::FLOG, MVT::f32, Expand);
setOperationAction(ISD::FLOG2, MVT::f32, Expand);
setOperationAction(ISD::FLOG10, MVT::f32, Expand);
setOperationAction(ISD::FEXP, MVT::f32, Expand);
setOperationAction(ISD::FMA, MVT::f32, Expand);
setOperationAction(ISD::FMA, MVT::f64, Expand);
setOperationAction(ISD::FREM, MVT::f32, Expand);
setOperationAction(ISD::FREM, MVT::f64, Expand);
if (!TM.Options.NoNaNsFPMath) {
setOperationAction(ISD::FNEG, MVT::f32, Expand);
setOperationAction(ISD::FNEG, MVT::f64, Expand);
}
setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::Other, Expand);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
// Use the default for now
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
setInsertFencesForAtomic(true);
if (!Subtarget->hasSEInReg()) {
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
}
if (!Subtarget->hasBitCount()) {
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
setOperationAction(ISD::CTLZ, MVT::i64, Expand);
}
if (!Subtarget->hasSwap()) {
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
setOperationAction(ISD::BSWAP, MVT::i64, Expand);
}
if (HasMips64) {
setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
setTruncStoreAction(MVT::i64, MVT::i32, Custom);
}
setOperationAction(ISD::TRAP, MVT::Other, Legal);
setTargetDAGCombine(ISD::SDIVREM);
setTargetDAGCombine(ISD::UDIVREM);
setTargetDAGCombine(ISD::SELECT);
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::ADD);
setMinFunctionAlignment(HasMips64 ? 3 : 2);
setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
MaxStoresPerMemcpy = 16;
}
const MipsTargetLowering *MipsTargetLowering::create(MipsTargetMachine &TM) {
if (TM.getSubtargetImpl()->inMips16Mode())
return llvm::createMips16TargetLowering(TM);
return llvm::createMipsSETargetLowering(TM);
}
EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
if (!VT.isVector())
return MVT::i32;
return VT.changeVectorElementTypeToInteger();
}
static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget *Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
EVT Ty = N->getValueType(0);
unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
MipsISD::DivRemU16;
SDLoc DL(N);
SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
N->getOperand(0), N->getOperand(1));
SDValue InChain = DAG.getEntryNode();
SDValue InGlue = DivRem;
// insert MFLO
if (N->hasAnyUseOfValue(0)) {
SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
InGlue);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
InChain = CopyFromLo.getValue(1);
InGlue = CopyFromLo.getValue(2);
}
// insert MFHI
if (N->hasAnyUseOfValue(1)) {
SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
HI, Ty, InGlue);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
}
return SDValue();
}
static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Unknown fp condition code!");
case ISD::SETEQ:
case ISD::SETOEQ: return Mips::FCOND_OEQ;
case ISD::SETUNE: return Mips::FCOND_UNE;
case ISD::SETLT:
case ISD::SETOLT: return Mips::FCOND_OLT;
case ISD::SETGT:
case ISD::SETOGT: return Mips::FCOND_OGT;
case ISD::SETLE:
case ISD::SETOLE: return Mips::FCOND_OLE;
case ISD::SETGE:
case ISD::SETOGE: return Mips::FCOND_OGE;
case ISD::SETULT: return Mips::FCOND_ULT;
case ISD::SETULE: return Mips::FCOND_ULE;
case ISD::SETUGT: return Mips::FCOND_UGT;
case ISD::SETUGE: return Mips::FCOND_UGE;
case ISD::SETUO: return Mips::FCOND_UN;
case ISD::SETO: return Mips::FCOND_OR;
case ISD::SETNE:
case ISD::SETONE: return Mips::FCOND_ONE;
case ISD::SETUEQ: return Mips::FCOND_UEQ;
}
}
/// This function returns true if the floating point conditional branches and
/// conditional moves which use condition code CC should be inverted.
static bool invertFPCondCodeUser(Mips::CondCode CC) {
if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
return false;
assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
"Illegal Condition Code");
return true;
}
// Creates and returns an FPCmp node from a setcc node.
// Returns Op if setcc is not a floating point comparison.
static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
// must be a SETCC node
if (Op.getOpcode() != ISD::SETCC)
return Op;
SDValue LHS = Op.getOperand(0);
if (!LHS.getValueType().isFloatingPoint())
return Op;
SDValue RHS = Op.getOperand(1);
SDLoc DL(Op);
// Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
// node if necessary.
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
DAG.getConstant(condCodeToFCC(CC), MVT::i32));
}
// Creates and returns a CMovFPT/F node.
static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
SDValue False, SDLoc DL) {
ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
True.getValueType(), True, FCC0, False, Cond);
}
static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget *Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
SDValue SetCC = N->getOperand(0);
if ((SetCC.getOpcode() != ISD::SETCC) ||
!SetCC.getOperand(0).getValueType().isInteger())
return SDValue();
SDValue False = N->getOperand(2);
EVT FalseTy = False.getValueType();
if (!FalseTy.isInteger())
return SDValue();
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
if (!CN || CN->getZExtValue())
return SDValue();
const SDLoc DL(N);
ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
SDValue True = N->getOperand(1);
SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
}
static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget *Subtarget) {
// Pattern match EXT.
// $dst = and ((sra or srl) $src , pos), (2**size - 1)
// => ext $dst, $src, size, pos
if (DCI.isBeforeLegalizeOps() || !Subtarget->hasExtractInsert())
return SDValue();
SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
unsigned ShiftRightOpc = ShiftRight.getOpcode();
// Op's first operand must be a shift right.
if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
return SDValue();
// The second operand of the shift must be an immediate.
ConstantSDNode *CN;
if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
return SDValue();
uint64_t Pos = CN->getZExtValue();
uint64_t SMPos, SMSize;
// Op's second operand must be a shifted mask.
if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
!isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
return SDValue();
// Return if the shifted mask does not start at bit 0 or the sum of its size
// and Pos exceeds the word's size.
EVT ValTy = N->getValueType(0);
if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
return SDValue();
return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy,
ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
DAG.getConstant(SMSize, MVT::i32));
}
static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget *Subtarget) {
// Pattern match INS.
// $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
// where mask1 = (2**size - 1) << pos, mask0 = ~mask1
// => ins $dst, $src, size, pos, $src1
if (DCI.isBeforeLegalizeOps() || !Subtarget->hasExtractInsert())
return SDValue();
SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
ConstantSDNode *CN;
// See if Op's first operand matches (and $src1 , mask0).
if (And0.getOpcode() != ISD::AND)
return SDValue();
if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
!isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
return SDValue();
// See if Op's second operand matches (and (shl $src, pos), mask1).
if (And1.getOpcode() != ISD::AND)
return SDValue();
if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
!isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
return SDValue();
// The shift masks must have the same position and size.
if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
return SDValue();
SDValue Shl = And1.getOperand(0);
if (Shl.getOpcode() != ISD::SHL)
return SDValue();
if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
return SDValue();
unsigned Shamt = CN->getZExtValue();
// Return if the shift amount and the first bit position of mask are not the
// same.
EVT ValTy = N->getValueType(0);
if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
return SDValue();
return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0),
DAG.getConstant(SMPos0, MVT::i32),
DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
}
static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget *Subtarget) {
// (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
if (DCI.isBeforeLegalizeOps())
return SDValue();
SDValue Add = N->getOperand(1);
if (Add.getOpcode() != ISD::ADD)
return SDValue();
SDValue Lo = Add.getOperand(1);
if ((Lo.getOpcode() != MipsISD::Lo) ||
(Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
return SDValue();
EVT ValTy = N->getValueType(0);
SDLoc DL(N);
SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
Add.getOperand(0));
return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
}
SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
const {
SelectionDAG &DAG = DCI.DAG;
unsigned Opc = N->getOpcode();
switch (Opc) {
default: break;
case ISD::SDIVREM:
case ISD::UDIVREM:
return performDivRemCombine(N, DAG, DCI, Subtarget);
case ISD::SELECT:
return performSELECTCombine(N, DAG, DCI, Subtarget);
case ISD::AND:
return performANDCombine(N, DAG, DCI, Subtarget);
case ISD::OR:
return performORCombine(N, DAG, DCI, Subtarget);
case ISD::ADD:
return performADDCombine(N, DAG, DCI, Subtarget);
}
return SDValue();
}
void
MipsTargetLowering::LowerOperationWrapper(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
SDValue Res = LowerOperation(SDValue(N, 0), DAG);
for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
Results.push_back(Res.getValue(I));
}
void
MipsTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
return LowerOperationWrapper(N, Results, DAG);
}
SDValue MipsTargetLowering::
LowerOperation(SDValue Op, SelectionDAG &DAG) const
{
switch (Op.getOpcode())
{
case ISD::BR_JT: return lowerBR_JT(Op, DAG);
case ISD::BRCOND: return lowerBRCOND(Op, DAG);
case ISD::ConstantPool: return lowerConstantPool(Op, DAG);
case ISD::GlobalAddress: return lowerGlobalAddress(Op, DAG);
case ISD::BlockAddress: return lowerBlockAddress(Op, DAG);
case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(Op, DAG);
case ISD::JumpTable: return lowerJumpTable(Op, DAG);
case ISD::SELECT: return lowerSELECT(Op, DAG);
case ISD::SELECT_CC: return lowerSELECT_CC(Op, DAG);
case ISD::SETCC: return lowerSETCC(Op, DAG);
case ISD::VASTART: return lowerVASTART(Op, DAG);
case ISD::FCOPYSIGN: return lowerFCOPYSIGN(Op, DAG);
case ISD::FABS: return lowerFABS(Op, DAG);
case ISD::FRAMEADDR: return lowerFRAMEADDR(Op, DAG);
case ISD::RETURNADDR: return lowerRETURNADDR(Op, DAG);
case ISD::EH_RETURN: return lowerEH_RETURN(Op, DAG);
case ISD::ATOMIC_FENCE: return lowerATOMIC_FENCE(Op, DAG);
case ISD::SHL_PARTS: return lowerShiftLeftParts(Op, DAG);
case ISD::SRA_PARTS: return lowerShiftRightParts(Op, DAG, true);
case ISD::SRL_PARTS: return lowerShiftRightParts(Op, DAG, false);
case ISD::LOAD: return lowerLOAD(Op, DAG);
case ISD::STORE: return lowerSTORE(Op, DAG);
case ISD::ADD: return lowerADD(Op, DAG);
case ISD::FP_TO_SINT: return lowerFP_TO_SINT(Op, DAG);
}
return SDValue();
}
//===----------------------------------------------------------------------===//
// Lower helper functions
//===----------------------------------------------------------------------===//
// addLiveIn - This helper function adds the specified physical register to the
// MachineFunction as a live in value. It also creates a corresponding
// virtual register for it.
static unsigned
addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
{
unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
MF.getRegInfo().addLiveIn(PReg, VReg);
return VReg;
}
static MachineBasicBlock *expandPseudoDIV(MachineInstr *MI,
MachineBasicBlock &MBB,
const TargetInstrInfo &TII,
bool Is64Bit) {
if (NoZeroDivCheck)
return &MBB;
// Insert instruction "teq $divisor_reg, $zero, 7".
MachineBasicBlock::iterator I(MI);
MachineInstrBuilder MIB;
MachineOperand &Divisor = MI->getOperand(2);
MIB = BuildMI(MBB, llvm::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ))
.addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
.addReg(Mips::ZERO).addImm(7);
// Use the 32-bit sub-register if this is a 64-bit division.
if (Is64Bit)
MIB->getOperand(0).setSubReg(Mips::sub_32);
// Clear Divisor's kill flag.
Divisor.setIsKill(false);
return &MBB;
}
MachineBasicBlock *
MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const {
switch (MI->getOpcode()) {
default:
llvm_unreachable("Unexpected instr type to insert");
case Mips::ATOMIC_LOAD_ADD_I8:
return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
case Mips::ATOMIC_LOAD_ADD_I16:
return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
case Mips::ATOMIC_LOAD_ADD_I32:
return emitAtomicBinary(MI, BB, 4, Mips::ADDu);
case Mips::ATOMIC_LOAD_ADD_I64:
return emitAtomicBinary(MI, BB, 8, Mips::DADDu);
case Mips::ATOMIC_LOAD_AND_I8:
return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
case Mips::ATOMIC_LOAD_AND_I16:
return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
case Mips::ATOMIC_LOAD_AND_I32:
return emitAtomicBinary(MI, BB, 4, Mips::AND);
case Mips::ATOMIC_LOAD_AND_I64:
return emitAtomicBinary(MI, BB, 8, Mips::AND64);
case Mips::ATOMIC_LOAD_OR_I8:
return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
case Mips::ATOMIC_LOAD_OR_I16:
return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
case Mips::ATOMIC_LOAD_OR_I32:
return emitAtomicBinary(MI, BB, 4, Mips::OR);
case Mips::ATOMIC_LOAD_OR_I64:
return emitAtomicBinary(MI, BB, 8, Mips::OR64);
case Mips::ATOMIC_LOAD_XOR_I8:
return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
case Mips::ATOMIC_LOAD_XOR_I16:
return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
case Mips::ATOMIC_LOAD_XOR_I32:
return emitAtomicBinary(MI, BB, 4, Mips::XOR);
case Mips::ATOMIC_LOAD_XOR_I64:
return emitAtomicBinary(MI, BB, 8, Mips::XOR64);
case Mips::ATOMIC_LOAD_NAND_I8:
return emitAtomicBinaryPartword(MI, BB, 1, 0, true);
case Mips::ATOMIC_LOAD_NAND_I16:
return emitAtomicBinaryPartword(MI, BB, 2, 0, true);
case Mips::ATOMIC_LOAD_NAND_I32:
return emitAtomicBinary(MI, BB, 4, 0, true);
case Mips::ATOMIC_LOAD_NAND_I64:
return emitAtomicBinary(MI, BB, 8, 0, true);
case Mips::ATOMIC_LOAD_SUB_I8:
return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
case Mips::ATOMIC_LOAD_SUB_I16:
return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
case Mips::ATOMIC_LOAD_SUB_I32:
return emitAtomicBinary(MI, BB, 4, Mips::SUBu);
case Mips::ATOMIC_LOAD_SUB_I64:
return emitAtomicBinary(MI, BB, 8, Mips::DSUBu);
case Mips::ATOMIC_SWAP_I8:
return emitAtomicBinaryPartword(MI, BB, 1, 0);
case Mips::ATOMIC_SWAP_I16:
return emitAtomicBinaryPartword(MI, BB, 2, 0);
case Mips::ATOMIC_SWAP_I32:
return emitAtomicBinary(MI, BB, 4, 0);
case Mips::ATOMIC_SWAP_I64:
return emitAtomicBinary(MI, BB, 8, 0);
case Mips::ATOMIC_CMP_SWAP_I8:
return emitAtomicCmpSwapPartword(MI, BB, 1);
case Mips::ATOMIC_CMP_SWAP_I16:
return emitAtomicCmpSwapPartword(MI, BB, 2);
case Mips::ATOMIC_CMP_SWAP_I32:
return emitAtomicCmpSwap(MI, BB, 4);
case Mips::ATOMIC_CMP_SWAP_I64:
return emitAtomicCmpSwap(MI, BB, 8);
case Mips::PseudoSDIV:
case Mips::PseudoUDIV:
return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), false);
case Mips::PseudoDSDIV:
case Mips::PseudoDUDIV:
return expandPseudoDIV(MI, *BB, *getTargetMachine().getInstrInfo(), true);
}
}
// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
MachineBasicBlock *
MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
unsigned Size, unsigned BinOpcode,
bool Nand) const {
assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned LL, SC, AND, NOR, ZERO, BEQ;
if (Size == 4) {
LL = Mips::LL;
SC = Mips::SC;
AND = Mips::AND;
NOR = Mips::NOR;
ZERO = Mips::ZERO;
BEQ = Mips::BEQ;
}
else {
LL = Mips::LLD;
SC = Mips::SCD;
AND = Mips::AND64;
NOR = Mips::NOR64;
ZERO = Mips::ZERO_64;
BEQ = Mips::BEQ64;
}
unsigned OldVal = MI->getOperand(0).getReg();
unsigned Ptr = MI->getOperand(1).getReg();
unsigned Incr = MI->getOperand(2).getReg();
unsigned StoreVal = RegInfo.createVirtualRegister(RC);
unsigned AndRes = RegInfo.createVirtualRegister(RC);
unsigned Success = RegInfo.createVirtualRegister(RC);
// insert new blocks after the current block
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator It = BB;
++It;
MF->insert(It, loopMBB);
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
// thisMBB:
// ...
// fallthrough --> loopMBB
BB->addSuccessor(loopMBB);
loopMBB->addSuccessor(loopMBB);
loopMBB->addSuccessor(exitMBB);
// loopMBB:
// ll oldval, 0(ptr)
// <binop> storeval, oldval, incr
// sc success, storeval, 0(ptr)
// beq success, $0, loopMBB
BB = loopMBB;
BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
if (Nand) {
// and andres, oldval, incr
// nor storeval, $0, andres
BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
} else if (BinOpcode) {
// <binop> storeval, oldval, incr
BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
} else {
StoreVal = Incr;
}
BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
MI->eraseFromParent(); // The instruction is gone now.
return exitMBB;
}
MachineBasicBlock *
MipsTargetLowering::emitAtomicBinaryPartword(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Size, unsigned BinOpcode,
bool Nand) const {
assert((Size == 1 || Size == 2) &&
"Unsupported size for EmitAtomicBinaryPartial.");
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned Dest = MI->getOperand(0).getReg();
unsigned Ptr = MI->getOperand(1).getReg();
unsigned Incr = MI->getOperand(2).getReg();
unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
unsigned Mask = RegInfo.createVirtualRegister(RC);
unsigned Mask2 = RegInfo.createVirtualRegister(RC);
unsigned NewVal = RegInfo.createVirtualRegister(RC);
unsigned OldVal = RegInfo.createVirtualRegister(RC);
unsigned Incr2 = RegInfo.createVirtualRegister(RC);
unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
unsigned AndRes = RegInfo.createVirtualRegister(RC);
unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
unsigned StoreVal = RegInfo.createVirtualRegister(RC);
unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
unsigned SrlRes = RegInfo.createVirtualRegister(RC);
unsigned SllRes = RegInfo.createVirtualRegister(RC);
unsigned Success = RegInfo.createVirtualRegister(RC);
// insert new blocks after the current block
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator It = BB;
++It;
MF->insert(It, loopMBB);
MF->insert(It, sinkMBB);
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(loopMBB);
loopMBB->addSuccessor(loopMBB);
loopMBB->addSuccessor(sinkMBB);
sinkMBB->addSuccessor(exitMBB);
// thisMBB:
// addiu masklsb2,$0,-4 # 0xfffffffc
// and alignedaddr,ptr,masklsb2
// andi ptrlsb2,ptr,3
// sll shiftamt,ptrlsb2,3
// ori maskupper,$0,255 # 0xff
// sll mask,maskupper,shiftamt
// nor mask2,$0,mask
// sll incr2,incr,shiftamt
int64_t MaskImm = (Size == 1) ? 255 : 65535;
BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
.addReg(Mips::ZERO).addImm(-4);
BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
.addReg(Ptr).addReg(MaskLSB2);
BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
if (Subtarget->isLittle()) {
BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
} else {
unsigned Off = RegInfo.createVirtualRegister(RC);
BuildMI(BB, DL, TII->get(Mips::XORi), Off)
.addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
}
BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
.addReg(Mips::ZERO).addImm(MaskImm);
BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
.addReg(MaskUpper).addReg(ShiftAmt);
BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
// atomic.load.binop
// loopMBB:
// ll oldval,0(alignedaddr)
// binop binopres,oldval,incr2
// and newval,binopres,mask
// and maskedoldval0,oldval,mask2
// or storeval,maskedoldval0,newval
// sc success,storeval,0(alignedaddr)
// beq success,$0,loopMBB
// atomic.swap
// loopMBB:
// ll oldval,0(alignedaddr)
// and newval,incr2,mask
// and maskedoldval0,oldval,mask2
// or storeval,maskedoldval0,newval
// sc success,storeval,0(alignedaddr)
// beq success,$0,loopMBB
BB = loopMBB;
BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
if (Nand) {
// and andres, oldval, incr2
// nor binopres, $0, andres
// and newval, binopres, mask
BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes)
.addReg(Mips::ZERO).addReg(AndRes);
BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
} else if (BinOpcode) {
// <binop> binopres, oldval, incr2
// and newval, binopres, mask
BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
} else { // atomic.swap
// and newval, incr2, mask
BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
}
BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
.addReg(OldVal).addReg(Mask2);
BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
.addReg(MaskedOldVal0).addReg(NewVal);
BuildMI(BB, DL, TII->get(Mips::SC), Success)
.addReg(StoreVal).addReg(AlignedAddr).addImm(0);
BuildMI(BB, DL, TII->get(Mips::BEQ))
.addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
// sinkMBB:
// and maskedoldval1,oldval,mask
// srl srlres,maskedoldval1,shiftamt
// sll sllres,srlres,24
// sra dest,sllres,24
BB = sinkMBB;
int64_t ShiftImm = (Size == 1) ? 24 : 16;
BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
.addReg(OldVal).addReg(Mask);
BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
.addReg(MaskedOldVal1).addReg(ShiftAmt);
BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
.addReg(SrlRes).addImm(ShiftImm);
BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
.addReg(SllRes).addImm(ShiftImm);
MI->eraseFromParent(); // The instruction is gone now.
return exitMBB;
}
MachineBasicBlock * MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Size) const {
assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned LL, SC, ZERO, BNE, BEQ;
if (Size == 4) {
LL = Mips::LL;
SC = Mips::SC;
ZERO = Mips::ZERO;
BNE = Mips::BNE;
BEQ = Mips::BEQ;
} else {
LL = Mips::LLD;
SC = Mips::SCD;
ZERO = Mips::ZERO_64;
BNE = Mips::BNE64;
BEQ = Mips::BEQ64;
}
unsigned Dest = MI->getOperand(0).getReg();
unsigned Ptr = MI->getOperand(1).getReg();
unsigned OldVal = MI->getOperand(2).getReg();
unsigned NewVal = MI->getOperand(3).getReg();
unsigned Success = RegInfo.createVirtualRegister(RC);
// insert new blocks after the current block
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator It = BB;
++It;
MF->insert(It, loop1MBB);
MF->insert(It, loop2MBB);
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
// thisMBB:
// ...
// fallthrough --> loop1MBB
BB->addSuccessor(loop1MBB);
loop1MBB->addSuccessor(exitMBB);
loop1MBB->addSuccessor(loop2MBB);
loop2MBB->addSuccessor(loop1MBB);
loop2MBB->addSuccessor(exitMBB);
// loop1MBB:
// ll dest, 0(ptr)
// bne dest, oldval, exitMBB
BB = loop1MBB;
BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0);
BuildMI(BB, DL, TII->get(BNE))
.addReg(Dest).addReg(OldVal).addMBB(exitMBB);
// loop2MBB:
// sc success, newval, 0(ptr)
// beq success, $0, loop1MBB
BB = loop2MBB;
BuildMI(BB, DL, TII->get(SC), Success)
.addReg(NewVal).addReg(Ptr).addImm(0);
BuildMI(BB, DL, TII->get(BEQ))
.addReg(Success).addReg(ZERO).addMBB(loop1MBB);
MI->eraseFromParent(); // The instruction is gone now.
return exitMBB;
}
MachineBasicBlock *
MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Size) const {
assert((Size == 1 || Size == 2) &&
"Unsupported size for EmitAtomicCmpSwapPartial.");
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned Dest = MI->getOperand(0).getReg();
unsigned Ptr = MI->getOperand(1).getReg();
unsigned CmpVal = MI->getOperand(2).getReg();
unsigned NewVal = MI->getOperand(3).getReg();
unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
unsigned Mask = RegInfo.createVirtualRegister(RC);
unsigned Mask2 = RegInfo.createVirtualRegister(RC);
unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
unsigned OldVal = RegInfo.createVirtualRegister(RC);
unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
unsigned StoreVal = RegInfo.createVirtualRegister(RC);
unsigned SrlRes = RegInfo.createVirtualRegister(RC);
unsigned SllRes = RegInfo.createVirtualRegister(RC);
unsigned Success = RegInfo.createVirtualRegister(RC);
// insert new blocks after the current block
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator It = BB;
++It;
MF->insert(It, loop1MBB);
MF->insert(It, loop2MBB);
MF->insert(It, sinkMBB);
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(loop1MBB);
loop1MBB->addSuccessor(sinkMBB);
loop1MBB->addSuccessor(loop2MBB);
loop2MBB->addSuccessor(loop1MBB);
loop2MBB->addSuccessor(sinkMBB);
sinkMBB->addSuccessor(exitMBB);
// FIXME: computation of newval2 can be moved to loop2MBB.
// thisMBB:
// addiu masklsb2,$0,-4 # 0xfffffffc
// and alignedaddr,ptr,masklsb2
// andi ptrlsb2,ptr,3
// sll shiftamt,ptrlsb2,3
// ori maskupper,$0,255 # 0xff
// sll mask,maskupper,shiftamt
// nor mask2,$0,mask
// andi maskedcmpval,cmpval,255
// sll shiftedcmpval,maskedcmpval,shiftamt
// andi maskednewval,newval,255
// sll shiftednewval,maskednewval,shiftamt
int64_t MaskImm = (Size == 1) ? 255 : 65535;
BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2)
.addReg(Mips::ZERO).addImm(-4);
BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr)
.addReg(Ptr).addReg(MaskLSB2);
BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
if (Subtarget->isLittle()) {
BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
} else {
unsigned Off = RegInfo.createVirtualRegister(RC);
BuildMI(BB, DL, TII->get(Mips::XORi), Off)
.addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
}
BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
.addReg(Mips::ZERO).addImm(MaskImm);
BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
.addReg(MaskUpper).addReg(ShiftAmt);
BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
.addReg(CmpVal).addImm(MaskImm);
BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
.addReg(MaskedCmpVal).addReg(ShiftAmt);
BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
.addReg(NewVal).addImm(MaskImm);
BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
.addReg(MaskedNewVal).addReg(ShiftAmt);
// loop1MBB:
// ll oldval,0(alginedaddr)
// and maskedoldval0,oldval,mask
// bne maskedoldval0,shiftedcmpval,sinkMBB
BB = loop1MBB;
BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0)
.addReg(OldVal).addReg(Mask);
BuildMI(BB, DL, TII->get(Mips::BNE))
.addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
// loop2MBB:
// and maskedoldval1,oldval,mask2
// or storeval,maskedoldval1,shiftednewval
// sc success,storeval,0(alignedaddr)
// beq success,$0,loop1MBB
BB = loop2MBB;
BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1)
.addReg(OldVal).addReg(Mask2);
BuildMI(BB, DL, TII->get(Mips::OR), StoreVal)
.addReg(MaskedOldVal1).addReg(ShiftedNewVal);
BuildMI(BB, DL, TII->get(Mips::SC), Success)
.addReg(StoreVal).addReg(AlignedAddr).addImm(0);
BuildMI(BB, DL, TII->get(Mips::BEQ))
.addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
// sinkMBB:
// srl srlres,maskedoldval0,shiftamt
// sll sllres,srlres,24
// sra dest,sllres,24
BB = sinkMBB;
int64_t ShiftImm = (Size == 1) ? 24 : 16;
BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes)
.addReg(MaskedOldVal0).addReg(ShiftAmt);
BuildMI(BB, DL, TII->get(Mips::SLL), SllRes)
.addReg(SrlRes).addImm(ShiftImm);
BuildMI(BB, DL, TII->get(Mips::SRA), Dest)
.addReg(SllRes).addImm(ShiftImm);
MI->eraseFromParent(); // The instruction is gone now.
return exitMBB;
}
//===----------------------------------------------------------------------===//
// Misc Lower Operation implementation
//===----------------------------------------------------------------------===//
SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Table = Op.getOperand(1);
SDValue Index = Op.getOperand(2);
SDLoc DL(Op);
EVT PTy = getPointerTy();
unsigned EntrySize =
DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout());
Index = DAG.getNode(ISD::MUL, DL, PTy, Index,
DAG.getConstant(EntrySize, PTy));
SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table);
EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr,
MachinePointerInfo::getJumpTable(), MemVT, false, false,
0);
Chain = Addr.getValue(1);
if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || IsN64) {
// For PIC, the sequence is:
// BRIND(load(Jumptable + index) + RelocBase)
// RelocBase can be JumpTable, GOT or some sort of global base.
Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr,
getPICJumpTableRelocBase(Table, DAG));
}
return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr);
}
SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
// The first operand is the chain, the second is the condition, the third is
// the block to branch to if the condition is true.
SDValue Chain = Op.getOperand(0);
SDValue Dest = Op.getOperand(2);
SDLoc DL(Op);
SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
// Return if flag is not set by a floating point comparison.
if (CondRes.getOpcode() != MipsISD::FPCmp)
return Op;
SDValue CCNode = CondRes.getOperand(2);
Mips::CondCode CC =
(Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
SDValue BrCode = DAG.getConstant(Opc, MVT::i32);
SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
FCC0, Dest, CondRes);
}
SDValue MipsTargetLowering::
lowerSELECT(SDValue Op, SelectionDAG &DAG) const
{
SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
// Return if flag is not set by a floating point comparison.
if (Cond.getOpcode() != MipsISD::FPCmp)
return Op;
return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
SDLoc(Op));
}
SDValue MipsTargetLowering::
lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
{
SDLoc DL(Op);
EVT Ty = Op.getOperand(0).getValueType();
SDValue Cond = DAG.getNode(ISD::SETCC, DL,
getSetCCResultType(*DAG.getContext(), Ty),
Op.getOperand(0), Op.getOperand(1),
Op.getOperand(4));
return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
Op.getOperand(3));
}
SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
SDValue Cond = createFPCmp(DAG, Op);
assert(Cond.getOpcode() == MipsISD::FPCmp &&
"Floating point operand expected.");
SDValue True = DAG.getConstant(1, MVT::i32);
SDValue False = DAG.getConstant(0, MVT::i32);
return createCMovFP(DAG, Cond, True, False, SDLoc(Op));
}
SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
// FIXME there isn't actually debug info here
SDLoc DL(Op);
EVT Ty = Op.getValueType();
GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = N->getGlobal();
if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
const MipsTargetObjectFile &TLOF =
(const MipsTargetObjectFile&)getObjFileLowering();
// %gp_rel relocation
if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
MipsII::MO_GPREL);
SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL,
DAG.getVTList(MVT::i32), &GA, 1);
SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode);
}
// %hi/%lo relocation
return getAddrNonPIC(N, Ty, DAG);
}
if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
return getAddrLocal(N, Ty, DAG, HasMips64);
if (LargeGOT)
return getAddrGlobalLargeGOT(N, Ty, DAG, MipsII::MO_GOT_HI16,
MipsII::MO_GOT_LO16, DAG.getEntryNode(),
MachinePointerInfo::getGOT());
return getAddrGlobal(N, Ty, DAG,
HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16,
DAG.getEntryNode(), MachinePointerInfo::getGOT());
}
SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
EVT Ty = Op.getValueType();
if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
return getAddrNonPIC(N, Ty, DAG);
return getAddrLocal(N, Ty, DAG, HasMips64);
}
SDValue MipsTargetLowering::
lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
{
// If the relocation model is PIC, use the General Dynamic TLS Model or
// Local Dynamic TLS model, otherwise use the Initial Exec or
// Local Exec TLS Model.
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
SDLoc DL(GA);
const GlobalValue *GV = GA->getGlobal();
EVT PtrVT = getPointerTy();
TLSModel::Model model = getTargetMachine().getTLSModel(GV);
if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
// General Dynamic and Local Dynamic TLS Model.
unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
: MipsII::MO_TLSGD;
SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
getGlobalReg(DAG, PtrVT), TGA);
unsigned PtrSize = PtrVT.getSizeInBits();
IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
ArgListTy Args;
ArgListEntry Entry;
Entry.Node = Argument;
Entry.Ty = PtrTy;
Args.push_back(Entry);
TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
false, false, false, false, 0, CallingConv::C,
/*IsTailCall=*/false, /*doesNotRet=*/false,
/*isReturnValueUsed=*/true,
TlsGetAddr, Args, DAG, DL);
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
SDValue Ret = CallResult.first;
if (model != TLSModel::LocalDynamic)
return Ret;
SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
MipsII::MO_DTPREL_HI);
SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
MipsII::MO_DTPREL_LO);
SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
}
SDValue Offset;
if (model == TLSModel::InitialExec) {
// Initial Exec TLS Model
SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
MipsII::MO_GOTTPREL);
TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
TGA);
Offset = DAG.getLoad(PtrVT, DL,
DAG.getEntryNode(), TGA, MachinePointerInfo(),
false, false, false, 0);
} else {
// Local Exec TLS Model
assert(model == TLSModel::LocalExec);
SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
MipsII::MO_TPREL_HI);
SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
MipsII::MO_TPREL_LO);
SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi);
SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
}
SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
}
SDValue MipsTargetLowering::
lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
{
JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
EVT Ty = Op.getValueType();
if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
return getAddrNonPIC(N, Ty, DAG);
return getAddrLocal(N, Ty, DAG, HasMips64);
}
SDValue MipsTargetLowering::
lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
{
// gp_rel relocation
// FIXME: we should reference the constant pool using small data sections,
// but the asm printer currently doesn't support this feature without
// hacking it. This feature should come soon so we can uncomment the
// stuff below.
//if (IsInSmallSection(C->getType())) {
// SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
// SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
// ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
EVT Ty = Op.getValueType();
if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
return getAddrNonPIC(N, Ty, DAG);
return getAddrLocal(N, Ty, DAG, HasMips64);
}
SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
SDLoc DL(Op);
SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
getPointerTy());
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
MachinePointerInfo(SV), false, false, 0);
}
static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
bool HasExtractInsert) {
EVT TyX = Op.getOperand(0).getValueType();
EVT TyY = Op.getOperand(1).getValueType();
SDValue Const1 = DAG.getConstant(1, MVT::i32);
SDValue Const31 = DAG.getConstant(31, MVT::i32);
SDLoc DL(Op);
SDValue Res;
// If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
// to i32.
SDValue X = (TyX == MVT::f32) ?
DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
Const1);
SDValue Y = (TyY == MVT::f32) ?
DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
Const1);
if (HasExtractInsert) {
// ext E, Y, 31, 1 ; extract bit31 of Y
// ins X, E, 31, 1 ; insert extracted bit at bit31 of X
SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
} else {
// sll SllX, X, 1
// srl SrlX, SllX, 1
// srl SrlY, Y, 31
// sll SllY, SrlX, 31
// or Or, SrlX, SllY
SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
}
if (TyX == MVT::f32)
return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
Op.getOperand(0), DAG.getConstant(0, MVT::i32));
return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
}
static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
bool HasExtractInsert) {
unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
SDValue Const1 = DAG.getConstant(1, MVT::i32);
SDLoc DL(Op);
// Bitcast to integer nodes.
SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
if (HasExtractInsert) {
// ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y
// ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X
SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
DAG.getConstant(WidthY - 1, MVT::i32), Const1);
if (WidthX > WidthY)
E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
else if (WidthY > WidthX)
E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
}
// (d)sll SllX, X, 1
// (d)srl SrlX, SllX, 1
// (d)srl SrlY, Y, width(Y)-1
// (d)sll SllY, SrlX, width(Y)-1
// or Or, SrlX, SllY
SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
DAG.getConstant(WidthY - 1, MVT::i32));
if (WidthX > WidthY)
SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
else if (WidthY > WidthX)
SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
DAG.getConstant(WidthX - 1, MVT::i32));
SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
}
SDValue
MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
if (Subtarget->hasMips64())
return lowerFCOPYSIGN64(Op, DAG, Subtarget->hasExtractInsert());
return lowerFCOPYSIGN32(Op, DAG, Subtarget->hasExtractInsert());
}
static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG,
bool HasExtractInsert) {
SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
SDLoc DL(Op);
// If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
// to i32.
SDValue X = (Op.getValueType() == MVT::f32) ?
DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
Const1);
// Clear MSB.
if (HasExtractInsert)
Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
DAG.getRegister(Mips::ZERO, MVT::i32),
DAG.getConstant(31, MVT::i32), Const1, X);
else {
SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
}
if (Op.getValueType() == MVT::f32)
return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
Op.getOperand(0), DAG.getConstant(0, MVT::i32));
return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
}
static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG,
bool HasExtractInsert) {
SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
SDLoc DL(Op);
// Bitcast to integer node.
SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
// Clear MSB.
if (HasExtractInsert)
Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
DAG.getRegister(Mips::ZERO_64, MVT::i64),
DAG.getConstant(63, MVT::i32), Const1, X);
else {
SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
}
return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
}
SDValue
MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
return lowerFABS64(Op, DAG, Subtarget->hasExtractInsert());
return lowerFABS32(Op, DAG, Subtarget->hasExtractInsert());
}
SDValue MipsTargetLowering::
lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
// check the depth
assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
"Frame address can only be determined for current frame.");
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MFI->setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
IsN64 ? Mips::FP_64 : Mips::FP, VT);
return FrameAddr;
}
SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
// check the depth
assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
"Return address can be determined only for current frame.");
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MVT VT = Op.getSimpleValueType();
unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
MFI->setReturnAddressIsTaken(true);
// Return RA, which contains the return address. Mark it an implicit live-in.
unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
}
// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
// generated from __builtin_eh_return (offset, handler)
// The effect of this is to adjust the stack pointer by "offset"
// and then branch to "handler".
SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
const {
MachineFunction &MF = DAG.getMachineFunction();
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
MipsFI->setCallsEhReturn();
SDValue Chain = Op.getOperand(0);
SDValue Offset = Op.getOperand(1);
SDValue Handler = Op.getOperand(2);
SDLoc DL(Op);
EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
// Store stack offset in V1, store jump target in V0. Glue CopyToReg and
// EH_RETURN nodes, so that instructions are emitted back-to-back.
unsigned OffsetReg = IsN64 ? Mips::V1_64 : Mips::V1;
unsigned AddrReg = IsN64 ? Mips::V0_64 : Mips::V0;
Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
DAG.getRegister(OffsetReg, Ty),
DAG.getRegister(AddrReg, getPointerTy()),
Chain.getValue(1));
}
SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
SelectionDAG &DAG) const {
// FIXME: Need pseudo-fence for 'singlethread' fences
// FIXME: Set SType for weaker fences where supported/appropriate.
unsigned SType = 0;
SDLoc DL(Op);
return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
DAG.getConstant(SType, MVT::i32));
}
SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
SDValue Shamt = Op.getOperand(2);
// if shamt < 32:
// lo = (shl lo, shamt)
// hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
// else:
// lo = 0
// hi = (shl lo, shamt[4:0])
SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
DAG.getConstant(-1, MVT::i32));
SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
DAG.getConstant(1, MVT::i32));
SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
Not);
SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
DAG.getConstant(0x20, MVT::i32));
Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
DAG.getConstant(0, MVT::i32), ShiftLeftLo);
Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
SDValue Ops[2] = {Lo, Hi};
return DAG.getMergeValues(Ops, 2, DL);
}
SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
bool IsSRA) const {
SDLoc DL(Op);
SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
SDValue Shamt = Op.getOperand(2);
// if shamt < 32:
// lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
// if isSRA:
// hi = (sra hi, shamt)
// else:
// hi = (srl hi, shamt)
// else:
// if isSRA:
// lo = (sra hi, shamt[4:0])
// hi = (sra hi, 31)
// else:
// lo = (srl hi, shamt[4:0])
// hi = 0
SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
DAG.getConstant(-1, MVT::i32));
SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
DAG.getConstant(1, MVT::i32));
SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
Hi, Shamt);
SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
DAG.getConstant(0x20, MVT::i32));
SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
DAG.getConstant(31, MVT::i32));
Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
ShiftRightHi);
SDValue Ops[2] = {Lo, Hi};
return DAG.getMergeValues(Ops, 2, DL);
}
static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
SDValue Chain, SDValue Src, unsigned Offset) {
SDValue Ptr = LD->getBasePtr();
EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
EVT BasePtrVT = Ptr.getValueType();
SDLoc DL(LD);
SDVTList VTList = DAG.getVTList(VT, MVT::Other);
if (Offset)
Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
DAG.getConstant(Offset, BasePtrVT));
SDValue Ops[] = { Chain, Ptr, Src };
return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
LD->getMemOperand());
}
// Expand an unaligned 32 or 64-bit integer load node.
SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
LoadSDNode *LD = cast<LoadSDNode>(Op);
EVT MemVT = LD->getMemoryVT();
// Return if load is aligned or if MemVT is neither i32 nor i64.
if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
((MemVT != MVT::i32) && (MemVT != MVT::i64)))
return SDValue();
bool IsLittle = Subtarget->isLittle();
EVT VT = Op.getValueType();
ISD::LoadExtType ExtType = LD->getExtensionType();
SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
assert((VT == MVT::i32) || (VT == MVT::i64));
// Expand
// (set dst, (i64 (load baseptr)))
// to
// (set tmp, (ldl (add baseptr, 7), undef))
// (set dst, (ldr baseptr, tmp))
if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
IsLittle ? 7 : 0);
return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
IsLittle ? 0 : 7);
}
SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
IsLittle ? 3 : 0);
SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
IsLittle ? 0 : 3);
// Expand
// (set dst, (i32 (load baseptr))) or
// (set dst, (i64 (sextload baseptr))) or
// (set dst, (i64 (extload baseptr)))
// to
// (set tmp, (lwl (add baseptr, 3), undef))
// (set dst, (lwr baseptr, tmp))
if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
(ExtType == ISD::EXTLOAD))
return LWR;
assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
// Expand
// (set dst, (i64 (zextload baseptr)))
// to
// (set tmp0, (lwl (add baseptr, 3), undef))
// (set tmp1, (lwr baseptr, tmp0))
// (set tmp2, (shl tmp1, 32))
// (set dst, (srl tmp2, 32))
SDLoc DL(LD);
SDValue Const32 = DAG.getConstant(32, MVT::i32);
SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
SDValue Ops[] = { SRL, LWR.getValue(1) };
return DAG.getMergeValues(Ops, 2, DL);
}
static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
SDValue Chain, unsigned Offset) {
SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
SDLoc DL(SD);
SDVTList VTList = DAG.getVTList(MVT::Other);
if (Offset)
Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
DAG.getConstant(Offset, BasePtrVT));
SDValue Ops[] = { Chain, Value, Ptr };
return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
SD->getMemOperand());
}
// Expand an unaligned 32 or 64-bit integer store node.
static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
bool IsLittle) {
SDValue Value = SD->getValue(), Chain = SD->getChain();
EVT VT = Value.getValueType();
// Expand
// (store val, baseptr) or
// (truncstore val, baseptr)
// to
// (swl val, (add baseptr, 3))
// (swr val, baseptr)
if ((VT == MVT::i32) || SD->isTruncatingStore()) {
SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
IsLittle ? 3 : 0);
return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
}
assert(VT == MVT::i64);
// Expand
// (store val, baseptr)
// to
// (sdl val, (add baseptr, 7))
// (sdr val, baseptr)
SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
}
// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) {
SDValue Val = SD->getValue();
if (Val.getOpcode() != ISD::FP_TO_SINT)
return SDValue();
EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
Val.getOperand(0));
return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
SD->getPointerInfo(), SD->isVolatile(),
SD->isNonTemporal(), SD->getAlignment());
}
SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
StoreSDNode *SD = cast<StoreSDNode>(Op);
EVT MemVT = SD->getMemoryVT();
// Lower unaligned integer stores.
if ((SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
((MemVT == MVT::i32) || (MemVT == MVT::i64)))
return lowerUnalignedIntStore(SD, DAG, Subtarget->isLittle());
return lowerFP_TO_SINT_STORE(SD, DAG);
}
SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const {
if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
|| cast<ConstantSDNode>
(Op->getOperand(0).getOperand(0))->getZExtValue() != 0
|| Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
return SDValue();
// The pattern
// (add (frameaddr 0), (frame_to_args_offset))
// results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
// (add FrameObject, 0)
// where FrameObject is a fixed StackObject with offset 0 which points to
// the old stack pointer.
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
EVT ValTy = Op->getValueType(0);
int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr,
DAG.getConstant(0, ValTy));
}
SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
SelectionDAG &DAG) const {
EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
Op.getOperand(0));
return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
}
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// TODO: Implement a generic logic using tblgen that can support this.
// Mips O32 ABI rules:
// ---
// i32 - Passed in A0, A1, A2, A3 and stack
// f32 - Only passed in f32 registers if no int reg has been used yet to hold
// an argument. Otherwise, passed in A1, A2, A3 and stack.
// f64 - Only passed in two aliased f32 registers if no int reg has been used
// yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
// not used, it must be shadowed. If only A3 is avaiable, shadow it and
// go to stack.
//
// For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
//===----------------------------------------------------------------------===//
static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
CCState &State, const uint16_t *F64Regs) {
static const unsigned IntRegsSize = 4, FloatRegsSize = 2;
static const uint16_t IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
static const uint16_t F32Regs[] = { Mips::F12, Mips::F14 };
// Do not process byval args here.
if (ArgFlags.isByVal())
return true;
// Promote i8 and i16
if (LocVT == MVT::i8 || LocVT == MVT::i16) {
LocVT = MVT::i32;
if (ArgFlags.isSExt())
LocInfo = CCValAssign::SExt;
else if (ArgFlags.isZExt())
LocInfo = CCValAssign::ZExt;
else
LocInfo = CCValAssign::AExt;
}
unsigned Reg;
// f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
// is true: function is vararg, argument is 3rd or higher, there is previous
// argument which is not f32 or f64.
bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
|| State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
unsigned OrigAlign = ArgFlags.getOrigAlign();
bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
Reg = State.AllocateReg(IntRegs, IntRegsSize);
// If this is the first part of an i64 arg,
// the allocated register must be either A0 or A2.
if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
Reg = State.AllocateReg(IntRegs, IntRegsSize);
LocVT = MVT::i32;
} else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
// Allocate int register and shadow next int register. If first
// available register is Mips::A1 or Mips::A3, shadow it too.
Reg = State.AllocateReg(IntRegs, IntRegsSize);
if (Reg == Mips::A1 || Reg == Mips::A3)
Reg = State.AllocateReg(IntRegs, IntRegsSize);
State.AllocateReg(IntRegs, IntRegsSize);
LocVT = MVT::i32;
} else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
// we are guaranteed to find an available float register
if (ValVT == MVT::f32) {
Reg = State.AllocateReg(F32Regs, FloatRegsSize);
// Shadow int register
State.AllocateReg(IntRegs, IntRegsSize);
} else {
Reg = State.AllocateReg(F64Regs, FloatRegsSize);
// Shadow int registers
unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
State.AllocateReg(IntRegs, IntRegsSize);
State.AllocateReg(IntRegs, IntRegsSize);
}
} else
llvm_unreachable("Cannot handle this ValVT.");
if (!Reg) {
unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
OrigAlign);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
} else
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
static const uint16_t F64Regs[] = { Mips::D6, Mips::D7 };
return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
}
static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
static const uint16_t F64Regs[] = { Mips::D12_64, Mips::D14_64 };
return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
}
#include "MipsGenCallingConv.inc"
//===----------------------------------------------------------------------===//
// Call Calling Convention Implementation
//===----------------------------------------------------------------------===//
// Return next O32 integer argument register.
static unsigned getNextIntArgReg(unsigned Reg) {
assert((Reg == Mips::A0) || (Reg == Mips::A2));
return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
}
SDValue
MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
SDValue Chain, SDValue Arg, SDLoc DL,
bool IsTailCall, SelectionDAG &DAG) const {
if (!IsTailCall) {
SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
DAG.getIntPtrConstant(Offset));
return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
false, 0);
}
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
/*isVolatile=*/ true, false, 0);
}
void MipsTargetLowering::
getOpndList(SmallVectorImpl<SDValue> &Ops,
std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
// Insert node "GP copy globalreg" before call to function.
//
// R_MIPS_CALL* operators (emitted when non-internal functions are called
// in PIC mode) allow symbols to be resolved via lazy binding.
// The lazy binding stub requires GP to point to the GOT.
if (IsPICCall && !InternalLinkage) {
unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
}
// Build a sequence of copy-to-reg nodes chained together with token
// chain and flag operands which copy the outgoing args into registers.
// The InFlag in necessary since all emitted instructions must be
// stuck together.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// Add argument registers to the end of the list so that they are
// known live into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
if (Subtarget->inMips16HardFloat()) {
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
llvm::StringRef Sym = G->getGlobal()->getName();
Function *F = G->getGlobal()->getParent()->getFunction(Sym);
if (F->hasFnAttribute("__Mips16RetHelper")) {
Mask = MipsRegisterInfo::getMips16RetHelperMask();
}
}
}
Ops.push_back(CLI.DAG.getRegisterMask(Mask));
if (InFlag.getNode())
Ops.push_back(InFlag);
}
/// LowerCall - functions arguments are copied from virtual regs to
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
SDValue
MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc DL = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &IsTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool IsVarArg = CLI.IsVarArg;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
MipsCC::SpecialCallingConvType SpecialCallingConv =
getSpecialCallingConv(Callee);
MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo,
SpecialCallingConv);
MipsCCInfo.analyzeCallOperands(Outs, IsVarArg,
Subtarget->mipsSEUsesSoftFloat(),
Callee.getNode(), CLI.Args);
// Get a count of how many bytes are to be pushed on the stack.
unsigned NextStackOffset = CCInfo.getNextStackOffset();
// Check if it's really possible to do a tail call.
if (IsTailCall)
IsTailCall =
isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
*MF.getInfo<MipsFunctionInfo>());
if (IsTailCall)
++NumTailCalls;
// Chain is the output chain of the last Load/Store or CopyToReg node.
// ByValChain is the output chain of the last Memcpy node created for copying
// byval arguments to the stack.
unsigned StackAlignment = TFL->getStackAlignment();
NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
if (!IsTailCall)
Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL);
SDValue StackPtr = DAG.getCopyFromReg(Chain, DL,
IsN64 ? Mips::SP_64 : Mips::SP,
getPointerTy());
// With EABI is it possible to have 16 args on registers.
std::deque< std::pair<unsigned, SDValue> > RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
SDValue Arg = OutVals[i];
CCValAssign &VA = ArgLocs[i];
MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
ISD::ArgFlagsTy Flags = Outs[i].Flags;
// ByVal Arg.
if (Flags.isByVal()) {
assert(Flags.getByValSize() &&
"ByVal args of size 0 should have been ignored by front-end.");
assert(ByValArg != MipsCCInfo.byval_end());
assert(!IsTailCall &&
"Do not tail-call optimize if there is a byval argument.");
passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
++ByValArg;
continue;
}
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full:
if (VA.isRegLoc()) {
if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
(ValVT == MVT::f64 && LocVT == MVT::i64) ||
(ValVT == MVT::i64 && LocVT == MVT::f64))
Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
Arg, DAG.getConstant(0, MVT::i32));
SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
Arg, DAG.getConstant(1, MVT::i32));
if (!Subtarget->isLittle())
std::swap(Lo, Hi);
unsigned LocRegLo = VA.getLocReg();
unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
continue;
}
}
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
break;
}
// Arguments that can be passed on register must be kept at
// RegsToPass vector
if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
continue;
}
// Register can't get to this point...
assert(VA.isMemLoc());
// emit ISD::STORE whichs stores the
// parameter value to a stack Location
MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
Chain, Arg, DL, IsTailCall, DAG));
}
// Transform all store nodes into one single node because all store
// nodes are independent of each other.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
// node so that legalize doesn't hack it.
bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
bool GlobalOrExternal = false, InternalLinkage = false;
SDValue CalleeLo;
EVT Ty = Callee.getValueType();
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
if (IsPICCall) {
const GlobalValue *Val = G->getGlobal();
InternalLinkage = Val->hasInternalLinkage();
if (InternalLinkage)
Callee = getAddrLocal(G, Ty, DAG, HasMips64);
else if (LargeGOT)
Callee = getAddrGlobalLargeGOT(G, Ty, DAG, MipsII::MO_CALL_HI16,
MipsII::MO_CALL_LO16, Chain,
FuncInfo->callPtrInfo(Val));
else
Callee = getAddrGlobal(G, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
FuncInfo->callPtrInfo(Val));
} else
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0,
MipsII::MO_NO_FLAG);
GlobalOrExternal = true;
}
else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
const char *Sym = S->getSymbol();
if (!IsN64 && !IsPIC) // !N64 && static
Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(),
MipsII::MO_NO_FLAG);
else if (LargeGOT)
Callee = getAddrGlobalLargeGOT(S, Ty, DAG, MipsII::MO_CALL_HI16,
MipsII::MO_CALL_LO16, Chain,
FuncInfo->callPtrInfo(Sym));
else // N64 || PIC
Callee = getAddrGlobal(S, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
FuncInfo->callPtrInfo(Sym));
GlobalOrExternal = true;
}
SmallVector<SDValue, 8> Ops(1, Chain);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage,
CLI, Callee, Chain);
if (IsTailCall)
return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, &Ops[0], Ops.size());
Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, &Ops[0], Ops.size());
SDValue InFlag = Chain.getValue(1);
// Create the CALLSEQ_END node.
Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
DAG.getIntPtrConstant(0, true), InFlag, DL);
InFlag = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, CallConv, IsVarArg,
Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy);
}
/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
SDValue
MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals,
const SDNode *CallNode,
const Type *RetTy) const {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
getTargetMachine(), RVLocs, *DAG.getContext());
MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
MipsCCInfo.analyzeCallResult(Ins, Subtarget->mipsSEUsesSoftFloat(),
CallNode, RetTy);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
RVLocs[i].getLocVT(), InFlag);
Chain = Val.getValue(1);
InFlag = Val.getValue(2);
if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val);
InVals.push_back(Val);
}
return Chain;
}
//===----------------------------------------------------------------------===//
// Formal Arguments Calling Convention Implementation
//===----------------------------------------------------------------------===//
/// LowerFormalArguments - transform physical registers into virtual registers
/// and generate load operations for arguments places on the stack.
SDValue
MipsTargetLowering::LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv,
bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals)
const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
MipsFI->setVarArgsFrameIndex(0);
// Used with vargs to acumulate store chains.
std::vector<SDValue> OutChains;
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
Function::const_arg_iterator FuncArg =
DAG.getMachineFunction().getFunction()->arg_begin();
bool UseSoftFloat = Subtarget->mipsSEUsesSoftFloat();
MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg);
MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
MipsCCInfo.hasByValArg());
unsigned CurArgIdx = 0;
MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
CurArgIdx = Ins[i].OrigArgIndex;
EVT ValVT = VA.getValVT();
ISD::ArgFlagsTy Flags = Ins[i].Flags;
bool IsRegLoc = VA.isRegLoc();
if (Flags.isByVal()) {
assert(Flags.getByValSize() &&
"ByVal args of size 0 should have been ignored by front-end.");
assert(ByValArg != MipsCCInfo.byval_end());
copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
MipsCCInfo, *ByValArg);
++ByValArg;
continue;
}
// Arguments stored on registers
if (IsRegLoc) {
MVT RegVT = VA.getLocVT();
unsigned ArgReg = VA.getLocReg();
const TargetRegisterClass *RC = getRegClassFor(RegVT);
// Transform the arguments stored on
// physical registers into virtual ones
unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
// If this is an 8 or 16-bit value, it has been passed promoted
// to 32 bits. Insert an assert[sz]ext to capture this, then
// truncate to the right size.
if (VA.getLocInfo() != CCValAssign::Full) {
unsigned Opcode = 0;
if (VA.getLocInfo() == CCValAssign::SExt)
Opcode = ISD::AssertSext;
else if (VA.getLocInfo() == CCValAssign::ZExt)
Opcode = ISD::AssertZext;
if (Opcode)
ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue,
DAG.getValueType(ValVT));
ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue);
}
// Handle floating point arguments passed in integer registers and
// long double arguments passed in floating point registers.
if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
(RegVT == MVT::i64 && ValVT == MVT::f64) ||
(RegVT == MVT::f64 && ValVT == MVT::i64))
ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
getNextIntArgReg(ArgReg), RC);
SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
if (!Subtarget->isLittle())
std::swap(ArgValue, ArgValue2);
ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
ArgValue, ArgValue2);
}
InVals.push_back(ArgValue);
} else { // VA.isRegLoc()
// sanity check
assert(VA.isMemLoc());
// The stack pointer offset is relative to the caller stack frame.
int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
VA.getLocMemOffset(), true);
// Create load nodes to retrieve arguments from the stack
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
SDValue Load = DAG.getLoad(ValVT, DL, Chain, FIN,
MachinePointerInfo::getFixedStack(FI),
false, false, false, 0);
InVals.push_back(Load);
OutChains.push_back(Load.getValue(1));
}
}
// The mips ABIs for returning structs by value requires that we copy
// the sret argument into $v0 for the return. Save the argument into
// a virtual register so that we can access it from the return points.
if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
unsigned Reg = MipsFI->getSRetReturnReg();
if (!Reg) {
Reg = MF.getRegInfo().
createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
MipsFI->setSRetReturnReg(Reg);
}
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
}
if (IsVarArg)
writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG);
// All stores are grouped in one node to allow the matching between
// the size of Ins and InVals. This only happens when on varg functions
if (!OutChains.empty()) {
OutChains.push_back(Chain);
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
&OutChains[0], OutChains.size());
}
return Chain;
}
//===----------------------------------------------------------------------===//
// Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//
bool
MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
MachineFunction &MF, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(),
RVLocs, Context);
return CCInfo.CheckReturn(Outs, RetCC_Mips);
}
SDValue
MipsTargetLowering::LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
SDLoc DL, SelectionDAG &DAG) const {
// CCValAssign - represent the assignment of
// the return value to a location
SmallVector<CCValAssign, 16> RVLocs;
MachineFunction &MF = DAG.getMachineFunction();
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, IsVarArg, MF, getTargetMachine(), RVLocs,
*DAG.getContext());
MipsCC MipsCCInfo(CallConv, IsO32, Subtarget->isFP64bit(), CCInfo);
// Analyze return values.
MipsCCInfo.analyzeReturn(Outs, Subtarget->mipsSEUsesSoftFloat(),
MF.getFunction()->getReturnType());
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
SDValue Val = OutVals[i];
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
if (RVLocs[i].getValVT() != RVLocs[i].getLocVT())
Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val);
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
// Guarantee that all emitted copies are stuck together with flags.
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
// The mips ABIs for returning structs by value requires that we copy
// the sret argument into $v0 for the return. We saved the argument into
// a virtual register in the entry block, so now we copy the value out
// and into $v0.
if (MF.getFunction()->hasStructRetAttr()) {
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
unsigned Reg = MipsFI->getSRetReturnReg();
if (!Reg)
llvm_unreachable("sret virtual register not created in the entry block");
SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(V0, getPointerTy()));
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
// Return on Mips is always a "jr $ra"
return DAG.getNode(MipsISD::Ret, DL, MVT::Other, &RetOps[0], RetOps.size());
}
//===----------------------------------------------------------------------===//
// Mips Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
MipsTargetLowering::ConstraintType MipsTargetLowering::
getConstraintType(const std::string &Constraint) const
{
// Mips specific constraints
// GCC config/mips/constraints.md
//
// 'd' : An address register. Equivalent to r
// unless generating MIPS16 code.
// 'y' : Equivalent to r; retained for
// backwards compatibility.
// 'c' : A register suitable for use in an indirect
// jump. This will always be $25 for -mabicalls.
// 'l' : The lo register. 1 word storage.
// 'x' : The hilo register pair. Double word storage.
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default : break;
case 'd':
case 'y':
case 'f':
case 'c':
case 'l':
case 'x':
return C_RegisterClass;
case 'R':
return C_Memory;
}
}
return TargetLowering::getConstraintType(Constraint);
}
/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
MipsTargetLowering::getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (CallOperandVal == NULL)
return CW_Default;
Type *type = CallOperandVal->getType();
// Look at the constraint type.
switch (*constraint) {
default:
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
break;
case 'd':
case 'y':
if (type->isIntegerTy())
weight = CW_Register;
break;
case 'f': // FPU or MSA register
if (Subtarget->hasMSA() && type->isVectorTy() &&
cast<VectorType>(type)->getBitWidth() == 128)
weight = CW_Register;
else if (type->isFloatTy())
weight = CW_Register;
break;
case 'c': // $25 for indirect jumps
case 'l': // lo register
case 'x': // hilo register pair
if (type->isIntegerTy())
weight = CW_SpecificReg;
break;
case 'I': // signed 16 bit immediate
case 'J': // integer zero
case 'K': // unsigned 16 bit immediate
case 'L': // signed 32 bit immediate where lower 16 bits are 0
case 'N': // immediate in the range of -65535 to -1 (inclusive)
case 'O': // signed 15 bit immediate (+- 16383)
case 'P': // immediate in the range of 65535 to 1 (inclusive)
if (isa<ConstantInt>(CallOperandVal))
weight = CW_Constant;
break;
case 'R':
weight = CW_Memory;
break;
}
return weight;
}
/// This is a helper function to parse a physical register string and split it
/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
/// that is returned indicates whether parsing was successful. The second flag
/// is true if the numeric part exists.
static std::pair<bool, bool>
parsePhysicalReg(const StringRef &C, std::string &Prefix,
unsigned long long &Reg) {
if (C.front() != '{' || C.back() != '}')
return std::make_pair(false, false);
// Search for the first numeric character.
StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
I = std::find_if(B, E, std::ptr_fun(isdigit));
Prefix.assign(B, I - B);
// The second flag is set to false if no numeric characters were found.
if (I == E)
return std::make_pair(true, false);
// Parse the numeric characters.
return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
true);
}
std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
parseRegForInlineAsmConstraint(const StringRef &C, MVT VT) const {
const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
const TargetRegisterClass *RC;
std::string Prefix;
unsigned long long Reg;
std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
if (!R.first)
return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
// No numeric characters follow "hi" or "lo".
if (R.second)
return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
RC = TRI->getRegClass(Prefix == "hi" ?
Mips::HI32RegClassID : Mips::LO32RegClassID);
return std::make_pair(*(RC->begin()), RC);
} else if (Prefix.compare(0, 4, "$msa") == 0) {
// Parse $msa(ir|csr|access|save|modify|request|map|unmap)
// No numeric characters follow the name.
if (R.second)
return std::make_pair((unsigned)0, (const TargetRegisterClass *)0);
Reg = StringSwitch<unsigned long long>(Prefix)
.Case("$msair", Mips::MSAIR)
.Case("$msacsr", Mips::MSACSR)
.Case("$msaaccess", Mips::MSAAccess)
.Case("$msasave", Mips::MSASave)
.Case("$msamodify", Mips::MSAModify)
.Case("$msarequest", Mips::MSARequest)
.Case("$msamap", Mips::MSAMap)
.Case("$msaunmap", Mips::MSAUnmap)
.Default(0);
if (!Reg)
return std::make_pair((unsigned)0, (const TargetRegisterClass *)0);
RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
return std::make_pair(Reg, RC);
}
if (!R.second)
return std::make_pair((unsigned)0, (const TargetRegisterClass*)0);
if (Prefix == "$f") { // Parse $f0-$f31.
// If the size of FP registers is 64-bit or Reg is an even number, select
// the 64-bit register class. Otherwise, select the 32-bit register class.
if (VT == MVT::Other)
VT = (Subtarget->isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
RC = getRegClassFor(VT);
if (RC == &Mips::AFGR64RegClass) {
assert(Reg % 2 == 0);
Reg >>= 1;
}
} else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
RC = TRI->getRegClass(Mips::FCCRegClassID);
else if (Prefix == "$w") { // Parse $w0-$w31.
RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
} else { // Parse $0-$31.
assert(Prefix == "$");
RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
}
assert(Reg < RC->getNumRegs());
return std::make_pair(*(RC->begin() + Reg), RC);
}
/// Given a register class constraint, like 'r', if this corresponds directly
/// to an LLVM register class, return a register of 0 and the register class
/// pointer.
std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const
{
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
case 'y': // Same as 'r'. Exists for compatibility.
case 'r':
if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
if (Subtarget->inMips16Mode())
return std::make_pair(0U, &Mips::CPU16RegsRegClass);
return std::make_pair(0U, &Mips::GPR32RegClass);
}
if (VT == MVT::i64 && !HasMips64)
return std::make_pair(0U, &Mips::GPR32RegClass);
if (VT == MVT::i64 && HasMips64)
return std::make_pair(0U, &Mips::GPR64RegClass);
// This will generate an error message
return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
case 'f': // FPU or MSA register
if (VT == MVT::v16i8)
return std::make_pair(0U, &Mips::MSA128BRegClass);
else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return std::make_pair(0U, &Mips::MSA128HRegClass);
else if (VT == MVT::v4i32 || VT == MVT::v4f32)
return std::make_pair(0U, &Mips::MSA128WRegClass);
else if (VT == MVT::v2i64 || VT == MVT::v2f64)
return std::make_pair(0U, &Mips::MSA128DRegClass);
else if (VT == MVT::f32)
return std::make_pair(0U, &Mips::FGR32RegClass);
else if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
if (Subtarget->isFP64bit())
return std::make_pair(0U, &Mips::FGR64RegClass);
return std::make_pair(0U, &Mips::AFGR64RegClass);
}
break;
case 'c': // register suitable for indirect jump
if (VT == MVT::i32)
return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
assert(VT == MVT::i64 && "Unexpected type.");
return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
case 'l': // register suitable for indirect jump
if (VT == MVT::i32)
return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
case 'x': // register suitable for indirect jump
// Fixme: Not triggering the use of both hi and low
// This will generate an error message
return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
}
}
std::pair<unsigned, const TargetRegisterClass *> R;
R = parseRegForInlineAsmConstraint(Constraint, VT);
if (R.second)
return R;
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
}
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue>&Ops,
SelectionDAG &DAG) const {
SDValue Result(0, 0);
// Only support length 1 constraints for now.
if (Constraint.length() > 1) return;
char ConstraintLetter = Constraint[0];
switch (ConstraintLetter) {
default: break; // This will fall through to the generic implementation
case 'I': // Signed 16 bit constant
// If this fails, the parent routine will give an error
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
EVT Type = Op.getValueType();
int64_t Val = C->getSExtValue();
if (isInt<16>(Val)) {
Result = DAG.getTargetConstant(Val, Type);
break;
}
}
return;
case 'J': // integer zero
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
EVT Type = Op.getValueType();
int64_t Val = C->getZExtValue();
if (Val == 0) {
Result = DAG.getTargetConstant(0, Type);
break;
}
}
return;
case 'K': // unsigned 16 bit immediate
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
EVT Type = Op.getValueType();
uint64_t Val = (uint64_t)C->getZExtValue();
if (isUInt<16>(Val)) {
Result = DAG.getTargetConstant(Val, Type);
break;
}
}
return;
case 'L': // signed 32 bit immediate where lower 16 bits are 0
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
EVT Type = Op.getValueType();
int64_t Val = C->getSExtValue();
if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
Result = DAG.getTargetConstant(Val, Type);
break;
}
}
return;
case 'N': // immediate in the range of -65535 to -1 (inclusive)
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
EVT Type = Op.getValueType();
int64_t Val = C->getSExtValue();
if ((Val >= -65535) && (Val <= -1)) {
Result = DAG.getTargetConstant(Val, Type);
break;
}
}
return;
case 'O': // signed 15 bit immediate
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
EVT Type = Op.getValueType();
int64_t Val = C->getSExtValue();
if ((isInt<15>(Val))) {
Result = DAG.getTargetConstant(Val, Type);
break;
}
}
return;
case 'P': // immediate in the range of 1 to 65535 (inclusive)
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
EVT Type = Op.getValueType();
int64_t Val = C->getSExtValue();
if ((Val <= 65535) && (Val >= 1)) {
Result = DAG.getTargetConstant(Val, Type);
break;
}
}
return;
}
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
bool MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM,
Type *Ty) const {
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
switch (AM.Scale) {
case 0: // "r+i" or just "i", depending on HasBaseReg.
break;
case 1:
if (!AM.HasBaseReg) // allow "r+i".
break;
return false; // disallow "r+r" or "r+r+i".
default:
return false;
}
return true;
}
bool
MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
// The Mips target isn't yet aware of offsets.
return false;
}
EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
unsigned SrcAlign,
bool IsMemset, bool ZeroMemset,
bool MemcpyStrSrc,
MachineFunction &MF) const {
if (Subtarget->hasMips64())
return MVT::i64;
return MVT::i32;
}
bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
if (VT != MVT::f32 && VT != MVT::f64)
return false;
if (Imm.isNegZero())
return false;
return Imm.isZero();
}
unsigned MipsTargetLowering::getJumpTableEncoding() const {
if (IsN64)
return MachineJumpTableInfo::EK_GPRel64BlockAddress;
return TargetLowering::getJumpTableEncoding();
}
/// This function returns true if CallSym is a long double emulation routine.
static bool isF128SoftLibCall(const char *CallSym) {
const char *const LibCalls[] =
{"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2",
"__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi",
"__fixunstfti", "__floatditf", "__floatsitf", "__floattitf",
"__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2",
"__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3",
"__trunctfdf2", "__trunctfsf2", "__unordtf2",
"ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl",
"log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl",
"truncl"};
const char *const *End = LibCalls + array_lengthof(LibCalls);
// Check that LibCalls is sorted alphabetically.
MipsTargetLowering::LTStr Comp;
#ifndef NDEBUG
for (const char *const *I = LibCalls; I < End - 1; ++I)
assert(Comp(*I, *(I + 1)));
#endif
return std::binary_search(LibCalls, End, CallSym, Comp);
}
/// This function returns true if Ty is fp128 or i128 which was originally a
/// fp128.
static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) {
if (Ty->isFP128Ty())
return true;
const ExternalSymbolSDNode *ES =
dyn_cast_or_null<const ExternalSymbolSDNode>(CallNode);
// If the Ty is i128 and the function being called is a long double emulation
// routine, then the original type is f128.
return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol()));
}
MipsTargetLowering::MipsCC::SpecialCallingConvType
MipsTargetLowering::getSpecialCallingConv(SDValue Callee) const {
MipsCC::SpecialCallingConvType SpecialCallingConv =
MipsCC::NoSpecialCallingConv;;
if (Subtarget->inMips16HardFloat()) {
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
llvm::StringRef Sym = G->getGlobal()->getName();
Function *F = G->getGlobal()->getParent()->getFunction(Sym);
if (F->hasFnAttribute("__Mips16RetHelper")) {
SpecialCallingConv = MipsCC::Mips16RetHelperConv;
}
}
}
return SpecialCallingConv;
}
MipsTargetLowering::MipsCC::MipsCC(
CallingConv::ID CC, bool IsO32_, bool IsFP64_, CCState &Info,
MipsCC::SpecialCallingConvType SpecialCallingConv_)
: CCInfo(Info), CallConv(CC), IsO32(IsO32_), IsFP64(IsFP64_),
SpecialCallingConv(SpecialCallingConv_){
// Pre-allocate reserved argument area.
CCInfo.AllocateStack(reservedArgArea(), 1);
}
void MipsTargetLowering::MipsCC::
analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args,
bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode,
std::vector<ArgListEntry> &FuncArgs) {
assert((CallConv != CallingConv::Fast || !IsVarArg) &&
"CallingConv::Fast shouldn't be used for vararg functions.");
unsigned NumOpnds = Args.size();
llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn();
for (unsigned I = 0; I != NumOpnds; ++I) {
MVT ArgVT = Args[I].VT;
ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
bool R;
if (ArgFlags.isByVal()) {
handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
continue;
}
if (IsVarArg && !Args[I].IsFixed)
R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
else {
MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode,
IsSoftFloat);
R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo);
}
if (R) {
#ifndef NDEBUG
dbgs() << "Call operand #" << I << " has unhandled type "
<< EVT(ArgVT).getEVTString();
#endif
llvm_unreachable(0);
}
}
}
void MipsTargetLowering::MipsCC::
analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args,
bool IsSoftFloat, Function::const_arg_iterator FuncArg) {
unsigned NumArgs = Args.size();
llvm::CCAssignFn *FixedFn = fixedArgFn();
unsigned CurArgIdx = 0;
for (unsigned I = 0; I != NumArgs; ++I) {
MVT ArgVT = Args[I].VT;
ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx);
CurArgIdx = Args[I].OrigArgIndex;
if (ArgFlags.isByVal()) {
handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
continue;
}
MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), 0, IsSoftFloat);
if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo))
continue;
#ifndef NDEBUG
dbgs() << "Formal Arg #" << I << " has unhandled type "
<< EVT(ArgVT).getEVTString();
#endif
llvm_unreachable(0);
}
}
template<typename Ty>
void MipsTargetLowering::MipsCC::
analyzeReturn(const SmallVectorImpl<Ty> &RetVals, bool IsSoftFloat,
const SDNode *CallNode, const Type *RetTy) const {
CCAssignFn *Fn;
if (IsSoftFloat && originalTypeIsF128(RetTy, CallNode))
Fn = RetCC_F128Soft;
else
Fn = RetCC_Mips;
for (unsigned I = 0, E = RetVals.size(); I < E; ++I) {
MVT VT = RetVals[I].VT;
ISD::ArgFlagsTy Flags = RetVals[I].Flags;
MVT RegVT = this->getRegVT(VT, RetTy, CallNode, IsSoftFloat);
if (Fn(I, VT, RegVT, CCValAssign::Full, Flags, this->CCInfo)) {
#ifndef NDEBUG
dbgs() << "Call result #" << I << " has unhandled type "
<< EVT(VT).getEVTString() << '\n';
#endif
llvm_unreachable(0);
}
}
}
void MipsTargetLowering::MipsCC::
analyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsSoftFloat,
const SDNode *CallNode, const Type *RetTy) const {
analyzeReturn(Ins, IsSoftFloat, CallNode, RetTy);
}
void MipsTargetLowering::MipsCC::
analyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsSoftFloat,
const Type *RetTy) const {
analyzeReturn(Outs, IsSoftFloat, 0, RetTy);
}
void MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags) {
assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
struct ByValArgInfo ByVal;
unsigned RegSize = regSize();
unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
RegSize * 2);
if (useRegsForByval())
allocateRegs(ByVal, ByValSize, Align);
// Allocate space on caller's stack.
ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
Align);
CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
LocInfo));
ByValArgs.push_back(ByVal);
}
unsigned MipsTargetLowering::MipsCC::numIntArgRegs() const {
return IsO32 ? array_lengthof(O32IntRegs) : array_lengthof(Mips64IntRegs);
}
unsigned MipsTargetLowering::MipsCC::reservedArgArea() const {
return (IsO32 && (CallConv != CallingConv::Fast)) ? 16 : 0;
}
const uint16_t *MipsTargetLowering::MipsCC::intArgRegs() const {
return IsO32 ? O32IntRegs : Mips64IntRegs;
}
llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const {
if (CallConv == CallingConv::Fast)
return CC_Mips_FastCC;
if (SpecialCallingConv == Mips16RetHelperConv)
return CC_Mips16RetHelper;
return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN;
}
llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const {
return IsO32 ? (IsFP64 ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN_VarArg;
}
const uint16_t *MipsTargetLowering::MipsCC::shadowRegs() const {
return IsO32 ? O32IntRegs : Mips64DPRegs;
}
void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
unsigned ByValSize,
unsigned Align) {
unsigned RegSize = regSize(), NumIntArgRegs = numIntArgRegs();
const uint16_t *IntArgRegs = intArgRegs(), *ShadowRegs = shadowRegs();
assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
"Byval argument's size and alignment should be a multiple of"
"RegSize.");
ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
// If Align > RegSize, the first arg register must be even.
if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
++ByVal.FirstIdx;
}
// Mark the registers allocated.
for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
}
MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy,
const SDNode *CallNode,
bool IsSoftFloat) const {
if (IsSoftFloat || IsO32)
return VT;
// Check if the original type was fp128.
if (originalTypeIsF128(OrigTy, CallNode)) {
assert(VT == MVT::i64);
return MVT::f64;
}
return VT;
}
void MipsTargetLowering::
copyByValRegs(SDValue Chain, SDLoc DL, std::vector<SDValue> &OutChains,
SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
const MipsCC &CC, const ByValArgInfo &ByVal) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
int FrameObjOffset;
if (RegAreaSize)
FrameObjOffset = (int)CC.reservedArgArea() -
(int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
else
FrameObjOffset = ByVal.Address;
// Create frame object.
EVT PtrTy = getPointerTy();
int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
InVals.push_back(FIN);
if (!ByVal.NumRegs)
return;
// Copy arg registers.
MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
const TargetRegisterClass *RC = getRegClassFor(RegTy);
for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
unsigned VReg = addLiveIn(MF, ArgReg, RC);
unsigned Offset = I * CC.regSize();
SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
DAG.getConstant(Offset, PtrTy));
SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
StorePtr, MachinePointerInfo(FuncArg, Offset),
false, false, 0);
OutChains.push_back(Store);
}
}
// Copy byVal arg to registers and stack.
void MipsTargetLowering::
passByValArg(SDValue Chain, SDLoc DL,
std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
const MipsCC &CC, const ByValArgInfo &ByVal,
const ISD::ArgFlagsTy &Flags, bool isLittle) const {
unsigned ByValSize = Flags.getByValSize();
unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
unsigned RegSize = CC.regSize();
unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
if (ByVal.NumRegs) {
const uint16_t *ArgRegs = CC.intArgRegs();
bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
unsigned I = 0;
// Copy words to registers.
for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
DAG.getConstant(Offset, PtrTy));
SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
MachinePointerInfo(), false, false, false,
Alignment);
MemOpChains.push_back(LoadVal.getValue(1));
unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
}
// Return if the struct has been fully copied.
if (ByValSize == Offset)
return;
// Copy the remainder of the byval argument with sub-word loads and shifts.
if (LeftoverBytes) {
assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
"Size of the remainder should be smaller than RegSize.");
SDValue Val;
for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
Offset < ByValSize; LoadSize /= 2) {
unsigned RemSize = ByValSize - Offset;
if (RemSize < LoadSize)
continue;
// Load subword.
SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
DAG.getConstant(Offset, PtrTy));
SDValue LoadVal =
DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
false, false, Alignment);
MemOpChains.push_back(LoadVal.getValue(1));
// Shift the loaded value.
unsigned Shamt;
if (isLittle)
Shamt = TotalSizeLoaded;
else
Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
DAG.getConstant(Shamt, MVT::i32));
if (Val.getNode())
Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
else
Val = Shift;
Offset += LoadSize;
TotalSizeLoaded += LoadSize;
Alignment = std::min(Alignment, LoadSize);
}
unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
RegsToPass.push_back(std::make_pair(ArgReg, Val));
return;
}
}
// Copy remainder of byval arg to it with memcpy.
unsigned MemCpySize = ByValSize - Offset;
SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
DAG.getConstant(Offset, PtrTy));
SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
DAG.getIntPtrConstant(ByVal.Address));
Chain = DAG.getMemcpy(Chain, DL, Dst, Src, DAG.getConstant(MemCpySize, PtrTy),
Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
MachinePointerInfo(0), MachinePointerInfo(0));
MemOpChains.push_back(Chain);
}
void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
const MipsCC &CC, SDValue Chain,
SDLoc DL, SelectionDAG &DAG) const {
unsigned NumRegs = CC.numIntArgRegs();
const uint16_t *ArgRegs = CC.intArgRegs();
const CCState &CCInfo = CC.getCCInfo();
unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
unsigned RegSize = CC.regSize();
MVT RegTy = MVT::getIntegerVT(RegSize * 8);
const TargetRegisterClass *RC = getRegClassFor(RegTy);
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
// Offset of the first variable argument from stack pointer.
int VaArgOffset;
if (NumRegs == Idx)
VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
else
VaArgOffset = (int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
// Record the frame index of the first variable argument
// which is a value necessary to VASTART.
int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
MipsFI->setVarArgsFrameIndex(FI);
// Copy the integer registers that have not been used for argument passing
// to the argument register save area. For O32, the save area is allocated
// in the caller's stack frame, while for N32/64, it is allocated in the
// callee's stack frame.
for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
MachinePointerInfo(), false, false, 0);
cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
OutChains.push_back(Store);
}
}