mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-20 00:43:48 +00:00
8758b729f5
Any CPU can run this pass. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213190 91177308-0d34-0410-b5e6-96231b3b80d8
342 lines
12 KiB
C++
342 lines
12 KiB
C++
//===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the pass that finds instructions that can be
|
|
// re-written as LEA instructions in order to reduce pipeline delays.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "x86-fixup-LEAs"
|
|
|
|
STATISTIC(NumLEAs, "Number of LEA instructions created");
|
|
|
|
namespace {
|
|
class FixupLEAPass : public MachineFunctionPass {
|
|
enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
|
|
static char ID;
|
|
/// \brief Loop over all of the instructions in the basic block
|
|
/// replacing applicable instructions with LEA instructions,
|
|
/// where appropriate.
|
|
bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI);
|
|
|
|
const char *getPassName() const override { return "X86 LEA Fixup"; }
|
|
|
|
/// \brief Given a machine register, look for the instruction
|
|
/// which writes it in the current basic block. If found,
|
|
/// try to replace it with an equivalent LEA instruction.
|
|
/// If replacement succeeds, then also process the the newly created
|
|
/// instruction.
|
|
void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
|
|
MachineFunction::iterator MFI);
|
|
|
|
/// \brief Given a memory access or LEA instruction
|
|
/// whose address mode uses a base and/or index register, look for
|
|
/// an opportunity to replace the instruction which sets the base or index
|
|
/// register with an equivalent LEA instruction.
|
|
void processInstruction(MachineBasicBlock::iterator &I,
|
|
MachineFunction::iterator MFI);
|
|
|
|
/// \brief Given a LEA instruction which is unprofitable
|
|
/// on Silvermont try to replace it with an equivalent ADD instruction
|
|
void processInstructionForSLM(MachineBasicBlock::iterator &I,
|
|
MachineFunction::iterator MFI);
|
|
|
|
/// \brief Determine if an instruction references a machine register
|
|
/// and, if so, whether it reads or writes the register.
|
|
RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);
|
|
|
|
/// \brief Step backwards through a basic block, looking
|
|
/// for an instruction which writes a register within
|
|
/// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
|
|
MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
|
|
MachineBasicBlock::iterator &I,
|
|
MachineFunction::iterator MFI);
|
|
|
|
/// \brief if an instruction can be converted to an
|
|
/// equivalent LEA, insert the new instruction into the basic block
|
|
/// and return a pointer to it. Otherwise, return zero.
|
|
MachineInstr *postRAConvertToLEA(MachineFunction::iterator &MFI,
|
|
MachineBasicBlock::iterator &MBBI) const;
|
|
|
|
public:
|
|
FixupLEAPass() : MachineFunctionPass(ID) {}
|
|
|
|
/// \brief Loop over all of the basic blocks,
|
|
/// replacing instructions by equivalent LEA instructions
|
|
/// if needed and when possible.
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
private:
|
|
MachineFunction *MF;
|
|
const TargetMachine *TM;
|
|
const X86InstrInfo *TII; // Machine instruction info.
|
|
};
|
|
char FixupLEAPass::ID = 0;
|
|
}
|
|
|
|
MachineInstr *
|
|
FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
|
|
MachineBasicBlock::iterator &MBBI) const {
|
|
MachineInstr *MI = MBBI;
|
|
MachineInstr *NewMI;
|
|
switch (MI->getOpcode()) {
|
|
case X86::MOV32rr:
|
|
case X86::MOV64rr: {
|
|
const MachineOperand &Src = MI->getOperand(1);
|
|
const MachineOperand &Dest = MI->getOperand(0);
|
|
NewMI = BuildMI(*MF, MI->getDebugLoc(),
|
|
TII->get(MI->getOpcode() == X86::MOV32rr ? X86::LEA32r
|
|
: X86::LEA64r))
|
|
.addOperand(Dest)
|
|
.addOperand(Src)
|
|
.addImm(1)
|
|
.addReg(0)
|
|
.addImm(0)
|
|
.addReg(0);
|
|
MFI->insert(MBBI, NewMI); // Insert the new inst
|
|
return NewMI;
|
|
}
|
|
case X86::ADD64ri32:
|
|
case X86::ADD64ri8:
|
|
case X86::ADD64ri32_DB:
|
|
case X86::ADD64ri8_DB:
|
|
case X86::ADD32ri:
|
|
case X86::ADD32ri8:
|
|
case X86::ADD32ri_DB:
|
|
case X86::ADD32ri8_DB:
|
|
case X86::ADD16ri:
|
|
case X86::ADD16ri8:
|
|
case X86::ADD16ri_DB:
|
|
case X86::ADD16ri8_DB:
|
|
if (!MI->getOperand(2).isImm()) {
|
|
// convertToThreeAddress will call getImm()
|
|
// which requires isImm() to be true
|
|
return nullptr;
|
|
}
|
|
break;
|
|
case X86::ADD16rr:
|
|
case X86::ADD16rr_DB:
|
|
if (MI->getOperand(1).getReg() != MI->getOperand(2).getReg()) {
|
|
// if src1 != src2, then convertToThreeAddress will
|
|
// need to create a Virtual register, which we cannot do
|
|
// after register allocation.
|
|
return nullptr;
|
|
}
|
|
}
|
|
return TII->convertToThreeAddress(MFI, MBBI, nullptr);
|
|
}
|
|
|
|
FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
|
|
|
|
bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
|
|
MF = &Func;
|
|
TM = &Func.getTarget();
|
|
const X86Subtarget &ST = TM->getSubtarget<X86Subtarget>();
|
|
if (!ST.LEAusesAG() && !ST.slowLEA())
|
|
return false;
|
|
|
|
TII = static_cast<const X86InstrInfo *>(TM->getInstrInfo());
|
|
|
|
DEBUG(dbgs() << "Start X86FixupLEAs\n";);
|
|
// Process all basic blocks.
|
|
for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
|
|
processBasicBlock(Func, I);
|
|
DEBUG(dbgs() << "End X86FixupLEAs\n";);
|
|
|
|
return true;
|
|
}
|
|
|
|
FixupLEAPass::RegUsageState
|
|
FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
|
|
RegUsageState RegUsage = RU_NotUsed;
|
|
MachineInstr *MI = I;
|
|
|
|
for (unsigned int i = 0; i < MI->getNumOperands(); ++i) {
|
|
MachineOperand &opnd = MI->getOperand(i);
|
|
if (opnd.isReg() && opnd.getReg() == p.getReg()) {
|
|
if (opnd.isDef())
|
|
return RU_Write;
|
|
RegUsage = RU_Read;
|
|
}
|
|
}
|
|
return RegUsage;
|
|
}
|
|
|
|
/// getPreviousInstr - Given a reference to an instruction in a basic
|
|
/// block, return a reference to the previous instruction in the block,
|
|
/// wrapping around to the last instruction of the block if the block
|
|
/// branches to itself.
|
|
static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
|
|
MachineFunction::iterator MFI) {
|
|
if (I == MFI->begin()) {
|
|
if (MFI->isPredecessor(MFI)) {
|
|
I = --MFI->end();
|
|
return true;
|
|
} else
|
|
return false;
|
|
}
|
|
--I;
|
|
return true;
|
|
}
|
|
|
|
MachineBasicBlock::iterator
|
|
FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
|
|
MachineFunction::iterator MFI) {
|
|
int InstrDistance = 1;
|
|
MachineBasicBlock::iterator CurInst;
|
|
static const int INSTR_DISTANCE_THRESHOLD = 5;
|
|
|
|
CurInst = I;
|
|
bool Found;
|
|
Found = getPreviousInstr(CurInst, MFI);
|
|
while (Found && I != CurInst) {
|
|
if (CurInst->isCall() || CurInst->isInlineAsm())
|
|
break;
|
|
if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
|
|
break; // too far back to make a difference
|
|
if (usesRegister(p, CurInst) == RU_Write) {
|
|
return CurInst;
|
|
}
|
|
InstrDistance += TII->getInstrLatency(TM->getInstrItineraryData(), CurInst);
|
|
Found = getPreviousInstr(CurInst, MFI);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
|
|
MachineFunction::iterator MFI) {
|
|
// Process a load, store, or LEA instruction.
|
|
MachineInstr *MI = I;
|
|
int opcode = MI->getOpcode();
|
|
const MCInstrDesc &Desc = MI->getDesc();
|
|
int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags, opcode);
|
|
if (AddrOffset >= 0) {
|
|
AddrOffset += X86II::getOperandBias(Desc);
|
|
MachineOperand &p = MI->getOperand(AddrOffset + X86::AddrBaseReg);
|
|
if (p.isReg() && p.getReg() != X86::ESP) {
|
|
seekLEAFixup(p, I, MFI);
|
|
}
|
|
MachineOperand &q = MI->getOperand(AddrOffset + X86::AddrIndexReg);
|
|
if (q.isReg() && q.getReg() != X86::ESP) {
|
|
seekLEAFixup(q, I, MFI);
|
|
}
|
|
}
|
|
}
|
|
|
|
void FixupLEAPass::seekLEAFixup(MachineOperand &p,
|
|
MachineBasicBlock::iterator &I,
|
|
MachineFunction::iterator MFI) {
|
|
MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
|
|
if (MBI) {
|
|
MachineInstr *NewMI = postRAConvertToLEA(MFI, MBI);
|
|
if (NewMI) {
|
|
++NumLEAs;
|
|
DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
|
|
// now to replace with an equivalent LEA...
|
|
DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
|
|
MFI->erase(MBI);
|
|
MachineBasicBlock::iterator J =
|
|
static_cast<MachineBasicBlock::iterator>(NewMI);
|
|
processInstruction(J, MFI);
|
|
}
|
|
}
|
|
}
|
|
|
|
void FixupLEAPass::processInstructionForSLM(MachineBasicBlock::iterator &I,
|
|
MachineFunction::iterator MFI) {
|
|
MachineInstr *MI = I;
|
|
const int opcode = MI->getOpcode();
|
|
if (opcode != X86::LEA16r && opcode != X86::LEA32r && opcode != X86::LEA64r &&
|
|
opcode != X86::LEA64_32r)
|
|
return;
|
|
if (MI->getOperand(5).getReg() != 0 || !MI->getOperand(4).isImm() ||
|
|
!TII->isSafeToClobberEFLAGS(*MFI, I))
|
|
return;
|
|
const unsigned DstR = MI->getOperand(0).getReg();
|
|
const unsigned SrcR1 = MI->getOperand(1).getReg();
|
|
const unsigned SrcR2 = MI->getOperand(3).getReg();
|
|
if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
|
|
return;
|
|
if (MI->getOperand(2).getImm() > 1)
|
|
return;
|
|
int addrr_opcode, addri_opcode;
|
|
switch (opcode) {
|
|
case X86::LEA16r:
|
|
addrr_opcode = X86::ADD16rr;
|
|
addri_opcode = X86::ADD16ri;
|
|
break;
|
|
case X86::LEA32r:
|
|
addrr_opcode = X86::ADD32rr;
|
|
addri_opcode = X86::ADD32ri;
|
|
break;
|
|
case X86::LEA64_32r:
|
|
case X86::LEA64r:
|
|
addrr_opcode = X86::ADD64rr;
|
|
addri_opcode = X86::ADD64ri32;
|
|
break;
|
|
default:
|
|
assert(false && "Unexpected LEA instruction");
|
|
}
|
|
DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
|
|
DEBUG(dbgs() << "FixLEA: Replaced by: ";);
|
|
MachineInstr *NewMI = nullptr;
|
|
const MachineOperand &Dst = MI->getOperand(0);
|
|
// Make ADD instruction for two registers writing to LEA's destination
|
|
if (SrcR1 != 0 && SrcR2 != 0) {
|
|
const MachineOperand &Src1 = MI->getOperand(SrcR1 == DstR ? 1 : 3);
|
|
const MachineOperand &Src2 = MI->getOperand(SrcR1 == DstR ? 3 : 1);
|
|
NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addrr_opcode))
|
|
.addOperand(Dst)
|
|
.addOperand(Src1)
|
|
.addOperand(Src2);
|
|
MFI->insert(I, NewMI);
|
|
DEBUG(NewMI->dump(););
|
|
}
|
|
// Make ADD instruction for immediate
|
|
if (MI->getOperand(4).getImm() != 0) {
|
|
const MachineOperand &SrcR = MI->getOperand(SrcR1 == DstR ? 1 : 3);
|
|
NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addri_opcode))
|
|
.addOperand(Dst)
|
|
.addOperand(SrcR)
|
|
.addImm(MI->getOperand(4).getImm());
|
|
MFI->insert(I, NewMI);
|
|
DEBUG(NewMI->dump(););
|
|
}
|
|
if (NewMI) {
|
|
MFI->erase(I);
|
|
I = static_cast<MachineBasicBlock::iterator>(NewMI);
|
|
}
|
|
}
|
|
|
|
bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
|
|
MachineFunction::iterator MFI) {
|
|
|
|
for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
|
|
if (TM->getSubtarget<X86Subtarget>().isSLM())
|
|
processInstructionForSLM(I, MFI);
|
|
else
|
|
processInstruction(I, MFI);
|
|
}
|
|
return false;
|
|
}
|