mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-01 09:18:30 +00:00
aa9d854b33
terms of store and load, which means bitcasting between scalar integer and vector has endian-specific results, which undermines this whole approach. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97137 91177308-0d34-0410-b5e6-96231b3b80d8
642 lines
22 KiB
C++
642 lines
22 KiB
C++
//===-- TargetData.cpp - Data size & alignment routines --------------------==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines target properties related to datatype size/offset/alignment
|
|
// information.
|
|
//
|
|
// This structure should be created once, filled in if the defaults are not
|
|
// correct and then passed around by const&. None of the members functions
|
|
// require modification to the object.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/System/Mutex.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include <algorithm>
|
|
#include <cstdlib>
|
|
using namespace llvm;
|
|
|
|
// Handle the Pass registration stuff necessary to use TargetData's.
|
|
|
|
// Register the default SparcV9 implementation...
|
|
static RegisterPass<TargetData> X("targetdata", "Target Data Layout", false,
|
|
true);
|
|
char TargetData::ID = 0;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Support for StructLayout
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
StructLayout::StructLayout(const StructType *ST, const TargetData &TD) {
|
|
StructAlignment = 0;
|
|
StructSize = 0;
|
|
NumElements = ST->getNumElements();
|
|
|
|
// Loop over each of the elements, placing them in memory.
|
|
for (unsigned i = 0, e = NumElements; i != e; ++i) {
|
|
const Type *Ty = ST->getElementType(i);
|
|
unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty);
|
|
|
|
// Add padding if necessary to align the data element properly.
|
|
if ((StructSize & (TyAlign-1)) != 0)
|
|
StructSize = TargetData::RoundUpAlignment(StructSize, TyAlign);
|
|
|
|
// Keep track of maximum alignment constraint.
|
|
StructAlignment = std::max(TyAlign, StructAlignment);
|
|
|
|
MemberOffsets[i] = StructSize;
|
|
StructSize += TD.getTypeAllocSize(Ty); // Consume space for this data item
|
|
}
|
|
|
|
// Empty structures have alignment of 1 byte.
|
|
if (StructAlignment == 0) StructAlignment = 1;
|
|
|
|
// Add padding to the end of the struct so that it could be put in an array
|
|
// and all array elements would be aligned correctly.
|
|
if ((StructSize & (StructAlignment-1)) != 0)
|
|
StructSize = TargetData::RoundUpAlignment(StructSize, StructAlignment);
|
|
}
|
|
|
|
|
|
/// getElementContainingOffset - Given a valid offset into the structure,
|
|
/// return the structure index that contains it.
|
|
unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const {
|
|
const uint64_t *SI =
|
|
std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset);
|
|
assert(SI != &MemberOffsets[0] && "Offset not in structure type!");
|
|
--SI;
|
|
assert(*SI <= Offset && "upper_bound didn't work");
|
|
assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) &&
|
|
(SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) &&
|
|
"Upper bound didn't work!");
|
|
|
|
// Multiple fields can have the same offset if any of them are zero sized.
|
|
// For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop
|
|
// at the i32 element, because it is the last element at that offset. This is
|
|
// the right one to return, because anything after it will have a higher
|
|
// offset, implying that this element is non-empty.
|
|
return SI-&MemberOffsets[0];
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TargetAlignElem, TargetAlign support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
TargetAlignElem
|
|
TargetAlignElem::get(AlignTypeEnum align_type, unsigned char abi_align,
|
|
unsigned char pref_align, uint32_t bit_width) {
|
|
assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
|
|
TargetAlignElem retval;
|
|
retval.AlignType = align_type;
|
|
retval.ABIAlign = abi_align;
|
|
retval.PrefAlign = pref_align;
|
|
retval.TypeBitWidth = bit_width;
|
|
return retval;
|
|
}
|
|
|
|
bool
|
|
TargetAlignElem::operator==(const TargetAlignElem &rhs) const {
|
|
return (AlignType == rhs.AlignType
|
|
&& ABIAlign == rhs.ABIAlign
|
|
&& PrefAlign == rhs.PrefAlign
|
|
&& TypeBitWidth == rhs.TypeBitWidth);
|
|
}
|
|
|
|
const TargetAlignElem TargetData::InvalidAlignmentElem =
|
|
TargetAlignElem::get((AlignTypeEnum) -1, 0, 0, 0);
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TargetData Class Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getInt - Get an integer ignoring errors.
|
|
static unsigned getInt(StringRef R) {
|
|
unsigned Result = 0;
|
|
R.getAsInteger(10, Result);
|
|
return Result;
|
|
}
|
|
|
|
void TargetData::init(StringRef Desc) {
|
|
LayoutMap = 0;
|
|
LittleEndian = false;
|
|
PointerMemSize = 8;
|
|
PointerABIAlign = 8;
|
|
PointerPrefAlign = PointerABIAlign;
|
|
|
|
// Default alignments
|
|
setAlignment(INTEGER_ALIGN, 1, 1, 1); // i1
|
|
setAlignment(INTEGER_ALIGN, 1, 1, 8); // i8
|
|
setAlignment(INTEGER_ALIGN, 2, 2, 16); // i16
|
|
setAlignment(INTEGER_ALIGN, 4, 4, 32); // i32
|
|
setAlignment(INTEGER_ALIGN, 4, 8, 64); // i64
|
|
setAlignment(FLOAT_ALIGN, 4, 4, 32); // float
|
|
setAlignment(FLOAT_ALIGN, 8, 8, 64); // double
|
|
setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32, v1i64, ...
|
|
setAlignment(VECTOR_ALIGN, 16, 16, 128); // v16i8, v8i16, v4i32, ...
|
|
setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct
|
|
|
|
while (!Desc.empty()) {
|
|
std::pair<StringRef, StringRef> Split = Desc.split('-');
|
|
StringRef Token = Split.first;
|
|
Desc = Split.second;
|
|
|
|
if (Token.empty())
|
|
continue;
|
|
|
|
Split = Token.split(':');
|
|
StringRef Specifier = Split.first;
|
|
Token = Split.second;
|
|
|
|
assert(!Specifier.empty() && "Can't be empty here");
|
|
|
|
switch (Specifier[0]) {
|
|
case 'E':
|
|
LittleEndian = false;
|
|
break;
|
|
case 'e':
|
|
LittleEndian = true;
|
|
break;
|
|
case 'p':
|
|
Split = Token.split(':');
|
|
PointerMemSize = getInt(Split.first) / 8;
|
|
Split = Split.second.split(':');
|
|
PointerABIAlign = getInt(Split.first) / 8;
|
|
Split = Split.second.split(':');
|
|
PointerPrefAlign = getInt(Split.first) / 8;
|
|
if (PointerPrefAlign == 0)
|
|
PointerPrefAlign = PointerABIAlign;
|
|
break;
|
|
case 'i':
|
|
case 'v':
|
|
case 'f':
|
|
case 'a':
|
|
case 's': {
|
|
AlignTypeEnum AlignType;
|
|
switch (Specifier[0]) {
|
|
default:
|
|
case 'i': AlignType = INTEGER_ALIGN; break;
|
|
case 'v': AlignType = VECTOR_ALIGN; break;
|
|
case 'f': AlignType = FLOAT_ALIGN; break;
|
|
case 'a': AlignType = AGGREGATE_ALIGN; break;
|
|
case 's': AlignType = STACK_ALIGN; break;
|
|
}
|
|
unsigned Size = getInt(Specifier.substr(1));
|
|
Split = Token.split(':');
|
|
unsigned char ABIAlign = getInt(Split.first) / 8;
|
|
|
|
Split = Split.second.split(':');
|
|
unsigned char PrefAlign = getInt(Split.first) / 8;
|
|
if (PrefAlign == 0)
|
|
PrefAlign = ABIAlign;
|
|
setAlignment(AlignType, ABIAlign, PrefAlign, Size);
|
|
break;
|
|
}
|
|
case 'n': // Native integer types.
|
|
Specifier = Specifier.substr(1);
|
|
do {
|
|
if (unsigned Width = getInt(Specifier))
|
|
LegalIntWidths.push_back(Width);
|
|
Split = Token.split(':');
|
|
Specifier = Split.first;
|
|
Token = Split.second;
|
|
} while (!Specifier.empty() || !Token.empty());
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Default ctor.
|
|
///
|
|
/// @note This has to exist, because this is a pass, but it should never be
|
|
/// used.
|
|
TargetData::TargetData() : ImmutablePass(&ID) {
|
|
llvm_report_error("Bad TargetData ctor used. "
|
|
"Tool did not specify a TargetData to use?");
|
|
}
|
|
|
|
TargetData::TargetData(const Module *M)
|
|
: ImmutablePass(&ID) {
|
|
init(M->getDataLayout());
|
|
}
|
|
|
|
void
|
|
TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align,
|
|
unsigned char pref_align, uint32_t bit_width) {
|
|
assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
|
|
for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
|
|
if (Alignments[i].AlignType == align_type &&
|
|
Alignments[i].TypeBitWidth == bit_width) {
|
|
// Update the abi, preferred alignments.
|
|
Alignments[i].ABIAlign = abi_align;
|
|
Alignments[i].PrefAlign = pref_align;
|
|
return;
|
|
}
|
|
}
|
|
|
|
Alignments.push_back(TargetAlignElem::get(align_type, abi_align,
|
|
pref_align, bit_width));
|
|
}
|
|
|
|
/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or
|
|
/// preferred if ABIInfo = false) the target wants for the specified datatype.
|
|
unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType,
|
|
uint32_t BitWidth, bool ABIInfo,
|
|
const Type *Ty) const {
|
|
// Check to see if we have an exact match and remember the best match we see.
|
|
int BestMatchIdx = -1;
|
|
int LargestInt = -1;
|
|
for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
|
|
if (Alignments[i].AlignType == AlignType &&
|
|
Alignments[i].TypeBitWidth == BitWidth)
|
|
return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign;
|
|
|
|
// The best match so far depends on what we're looking for.
|
|
if (AlignType == VECTOR_ALIGN && Alignments[i].AlignType == VECTOR_ALIGN) {
|
|
// If this is a specification for a smaller vector type, we will fall back
|
|
// to it. This happens because <128 x double> can be implemented in terms
|
|
// of 64 <2 x double>.
|
|
if (Alignments[i].TypeBitWidth < BitWidth) {
|
|
// Verify that we pick the biggest of the fallbacks.
|
|
if (BestMatchIdx == -1 ||
|
|
Alignments[BestMatchIdx].TypeBitWidth < Alignments[i].TypeBitWidth)
|
|
BestMatchIdx = i;
|
|
}
|
|
} else if (AlignType == INTEGER_ALIGN &&
|
|
Alignments[i].AlignType == INTEGER_ALIGN) {
|
|
// The "best match" for integers is the smallest size that is larger than
|
|
// the BitWidth requested.
|
|
if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 ||
|
|
Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth))
|
|
BestMatchIdx = i;
|
|
// However, if there isn't one that's larger, then we must use the
|
|
// largest one we have (see below)
|
|
if (LargestInt == -1 ||
|
|
Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth)
|
|
LargestInt = i;
|
|
}
|
|
}
|
|
|
|
// Okay, we didn't find an exact solution. Fall back here depending on what
|
|
// is being looked for.
|
|
if (BestMatchIdx == -1) {
|
|
// If we didn't find an integer alignment, fall back on most conservative.
|
|
if (AlignType == INTEGER_ALIGN) {
|
|
BestMatchIdx = LargestInt;
|
|
} else {
|
|
assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!");
|
|
|
|
// If we didn't find a vector size that is smaller or equal to this type,
|
|
// then we will end up scalarizing this to its element type. Just return
|
|
// the alignment of the element.
|
|
return getAlignment(cast<VectorType>(Ty)->getElementType(), ABIInfo);
|
|
}
|
|
}
|
|
|
|
// Since we got a "best match" index, just return it.
|
|
return ABIInfo ? Alignments[BestMatchIdx].ABIAlign
|
|
: Alignments[BestMatchIdx].PrefAlign;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class StructLayoutMap : public AbstractTypeUser {
|
|
typedef DenseMap<const StructType*, StructLayout*> LayoutInfoTy;
|
|
LayoutInfoTy LayoutInfo;
|
|
|
|
void RemoveEntry(LayoutInfoTy::iterator I, bool WasAbstract) {
|
|
I->second->~StructLayout();
|
|
free(I->second);
|
|
if (WasAbstract)
|
|
I->first->removeAbstractTypeUser(this);
|
|
LayoutInfo.erase(I);
|
|
}
|
|
|
|
|
|
/// refineAbstractType - The callback method invoked when an abstract type is
|
|
/// resolved to another type. An object must override this method to update
|
|
/// its internal state to reference NewType instead of OldType.
|
|
///
|
|
virtual void refineAbstractType(const DerivedType *OldTy,
|
|
const Type *) {
|
|
LayoutInfoTy::iterator I = LayoutInfo.find(cast<const StructType>(OldTy));
|
|
assert(I != LayoutInfo.end() && "Using type but not in map?");
|
|
RemoveEntry(I, true);
|
|
}
|
|
|
|
/// typeBecameConcrete - The other case which AbstractTypeUsers must be aware
|
|
/// of is when a type makes the transition from being abstract (where it has
|
|
/// clients on its AbstractTypeUsers list) to concrete (where it does not).
|
|
/// This method notifies ATU's when this occurs for a type.
|
|
///
|
|
virtual void typeBecameConcrete(const DerivedType *AbsTy) {
|
|
LayoutInfoTy::iterator I = LayoutInfo.find(cast<const StructType>(AbsTy));
|
|
assert(I != LayoutInfo.end() && "Using type but not in map?");
|
|
RemoveEntry(I, true);
|
|
}
|
|
|
|
public:
|
|
virtual ~StructLayoutMap() {
|
|
// Remove any layouts.
|
|
for (LayoutInfoTy::iterator
|
|
I = LayoutInfo.begin(), E = LayoutInfo.end(); I != E; ++I) {
|
|
const Type *Key = I->first;
|
|
StructLayout *Value = I->second;
|
|
|
|
if (Key->isAbstract())
|
|
Key->removeAbstractTypeUser(this);
|
|
|
|
Value->~StructLayout();
|
|
free(Value);
|
|
}
|
|
}
|
|
|
|
void InvalidateEntry(const StructType *Ty) {
|
|
LayoutInfoTy::iterator I = LayoutInfo.find(Ty);
|
|
if (I == LayoutInfo.end()) return;
|
|
RemoveEntry(I, Ty->isAbstract());
|
|
}
|
|
|
|
StructLayout *&operator[](const StructType *STy) {
|
|
return LayoutInfo[STy];
|
|
}
|
|
|
|
// for debugging...
|
|
virtual void dump() const {}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
TargetData::~TargetData() {
|
|
delete static_cast<StructLayoutMap*>(LayoutMap);
|
|
}
|
|
|
|
const StructLayout *TargetData::getStructLayout(const StructType *Ty) const {
|
|
if (!LayoutMap)
|
|
LayoutMap = new StructLayoutMap();
|
|
|
|
StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap);
|
|
StructLayout *&SL = (*STM)[Ty];
|
|
if (SL) return SL;
|
|
|
|
// Otherwise, create the struct layout. Because it is variable length, we
|
|
// malloc it, then use placement new.
|
|
int NumElts = Ty->getNumElements();
|
|
StructLayout *L =
|
|
(StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t));
|
|
|
|
// Set SL before calling StructLayout's ctor. The ctor could cause other
|
|
// entries to be added to TheMap, invalidating our reference.
|
|
SL = L;
|
|
|
|
new (L) StructLayout(Ty, *this);
|
|
|
|
if (Ty->isAbstract())
|
|
Ty->addAbstractTypeUser(STM);
|
|
|
|
return L;
|
|
}
|
|
|
|
/// InvalidateStructLayoutInfo - TargetData speculatively caches StructLayout
|
|
/// objects. If a TargetData object is alive when types are being refined and
|
|
/// removed, this method must be called whenever a StructType is removed to
|
|
/// avoid a dangling pointer in this cache.
|
|
void TargetData::InvalidateStructLayoutInfo(const StructType *Ty) const {
|
|
if (!LayoutMap) return; // No cache.
|
|
|
|
static_cast<StructLayoutMap*>(LayoutMap)->InvalidateEntry(Ty);
|
|
}
|
|
|
|
std::string TargetData::getStringRepresentation() const {
|
|
std::string Result;
|
|
raw_string_ostream OS(Result);
|
|
|
|
OS << (LittleEndian ? "e" : "E")
|
|
<< "-p:" << PointerMemSize*8 << ':' << PointerABIAlign*8
|
|
<< ':' << PointerPrefAlign*8;
|
|
for (unsigned i = 0, e = Alignments.size(); i != e; ++i) {
|
|
const TargetAlignElem &AI = Alignments[i];
|
|
OS << '-' << (char)AI.AlignType << AI.TypeBitWidth << ':'
|
|
<< AI.ABIAlign*8 << ':' << AI.PrefAlign*8;
|
|
}
|
|
|
|
if (!LegalIntWidths.empty()) {
|
|
OS << "-n" << (unsigned)LegalIntWidths[0];
|
|
|
|
for (unsigned i = 1, e = LegalIntWidths.size(); i != e; ++i)
|
|
OS << ':' << (unsigned)LegalIntWidths[i];
|
|
}
|
|
return OS.str();
|
|
}
|
|
|
|
|
|
uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const {
|
|
assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
|
|
switch (Ty->getTypeID()) {
|
|
case Type::LabelTyID:
|
|
case Type::PointerTyID:
|
|
return getPointerSizeInBits();
|
|
case Type::ArrayTyID: {
|
|
const ArrayType *ATy = cast<ArrayType>(Ty);
|
|
return getTypeAllocSizeInBits(ATy->getElementType())*ATy->getNumElements();
|
|
}
|
|
case Type::StructTyID:
|
|
// Get the layout annotation... which is lazily created on demand.
|
|
return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
|
|
case Type::IntegerTyID:
|
|
return cast<IntegerType>(Ty)->getBitWidth();
|
|
case Type::VoidTyID:
|
|
return 8;
|
|
case Type::FloatTyID:
|
|
return 32;
|
|
case Type::DoubleTyID:
|
|
return 64;
|
|
case Type::PPC_FP128TyID:
|
|
case Type::FP128TyID:
|
|
return 128;
|
|
// In memory objects this is always aligned to a higher boundary, but
|
|
// only 80 bits contain information.
|
|
case Type::X86_FP80TyID:
|
|
return 80;
|
|
case Type::VectorTyID:
|
|
return cast<VectorType>(Ty)->getBitWidth();
|
|
default:
|
|
llvm_unreachable("TargetData::getTypeSizeInBits(): Unsupported type");
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*!
|
|
\param abi_or_pref Flag that determines which alignment is returned. true
|
|
returns the ABI alignment, false returns the preferred alignment.
|
|
\param Ty The underlying type for which alignment is determined.
|
|
|
|
Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
|
|
== false) for the requested type \a Ty.
|
|
*/
|
|
unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const {
|
|
int AlignType = -1;
|
|
|
|
assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
|
|
switch (Ty->getTypeID()) {
|
|
// Early escape for the non-numeric types.
|
|
case Type::LabelTyID:
|
|
case Type::PointerTyID:
|
|
return (abi_or_pref
|
|
? getPointerABIAlignment()
|
|
: getPointerPrefAlignment());
|
|
case Type::ArrayTyID:
|
|
return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);
|
|
|
|
case Type::StructTyID: {
|
|
// Packed structure types always have an ABI alignment of one.
|
|
if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
|
|
return 1;
|
|
|
|
// Get the layout annotation... which is lazily created on demand.
|
|
const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
|
|
unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty);
|
|
return std::max(Align, (unsigned)Layout->getAlignment());
|
|
}
|
|
case Type::IntegerTyID:
|
|
case Type::VoidTyID:
|
|
AlignType = INTEGER_ALIGN;
|
|
break;
|
|
case Type::FloatTyID:
|
|
case Type::DoubleTyID:
|
|
// PPC_FP128TyID and FP128TyID have different data contents, but the
|
|
// same size and alignment, so they look the same here.
|
|
case Type::PPC_FP128TyID:
|
|
case Type::FP128TyID:
|
|
case Type::X86_FP80TyID:
|
|
AlignType = FLOAT_ALIGN;
|
|
break;
|
|
case Type::VectorTyID:
|
|
AlignType = VECTOR_ALIGN;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Bad type for getAlignment!!!");
|
|
break;
|
|
}
|
|
|
|
return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSizeInBits(Ty),
|
|
abi_or_pref, Ty);
|
|
}
|
|
|
|
unsigned char TargetData::getABITypeAlignment(const Type *Ty) const {
|
|
return getAlignment(Ty, true);
|
|
}
|
|
|
|
/// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
|
|
/// an integer type of the specified bitwidth.
|
|
unsigned char TargetData::getABIIntegerTypeAlignment(unsigned BitWidth) const {
|
|
return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, 0);
|
|
}
|
|
|
|
|
|
unsigned char TargetData::getCallFrameTypeAlignment(const Type *Ty) const {
|
|
for (unsigned i = 0, e = Alignments.size(); i != e; ++i)
|
|
if (Alignments[i].AlignType == STACK_ALIGN)
|
|
return Alignments[i].ABIAlign;
|
|
|
|
return getABITypeAlignment(Ty);
|
|
}
|
|
|
|
unsigned char TargetData::getPrefTypeAlignment(const Type *Ty) const {
|
|
return getAlignment(Ty, false);
|
|
}
|
|
|
|
unsigned char TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const {
|
|
unsigned Align = (unsigned) getPrefTypeAlignment(Ty);
|
|
assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
|
|
return Log2_32(Align);
|
|
}
|
|
|
|
/// getIntPtrType - Return an unsigned integer type that is the same size or
|
|
/// greater to the host pointer size.
|
|
const IntegerType *TargetData::getIntPtrType(LLVMContext &C) const {
|
|
return IntegerType::get(C, getPointerSizeInBits());
|
|
}
|
|
|
|
|
|
uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices,
|
|
unsigned NumIndices) const {
|
|
const Type *Ty = ptrTy;
|
|
assert(Ty->isPointerTy() && "Illegal argument for getIndexedOffset()");
|
|
uint64_t Result = 0;
|
|
|
|
generic_gep_type_iterator<Value* const*>
|
|
TI = gep_type_begin(ptrTy, Indices, Indices+NumIndices);
|
|
for (unsigned CurIDX = 0; CurIDX != NumIndices; ++CurIDX, ++TI) {
|
|
if (const StructType *STy = dyn_cast<StructType>(*TI)) {
|
|
assert(Indices[CurIDX]->getType() ==
|
|
Type::getInt32Ty(ptrTy->getContext()) &&
|
|
"Illegal struct idx");
|
|
unsigned FieldNo = cast<ConstantInt>(Indices[CurIDX])->getZExtValue();
|
|
|
|
// Get structure layout information...
|
|
const StructLayout *Layout = getStructLayout(STy);
|
|
|
|
// Add in the offset, as calculated by the structure layout info...
|
|
Result += Layout->getElementOffset(FieldNo);
|
|
|
|
// Update Ty to refer to current element
|
|
Ty = STy->getElementType(FieldNo);
|
|
} else {
|
|
// Update Ty to refer to current element
|
|
Ty = cast<SequentialType>(Ty)->getElementType();
|
|
|
|
// Get the array index and the size of each array element.
|
|
int64_t arrayIdx = cast<ConstantInt>(Indices[CurIDX])->getSExtValue();
|
|
Result += arrayIdx * (int64_t)getTypeAllocSize(Ty);
|
|
}
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// getPreferredAlignment - Return the preferred alignment of the specified
|
|
/// global. This includes an explicitly requested alignment (if the global
|
|
/// has one).
|
|
unsigned TargetData::getPreferredAlignment(const GlobalVariable *GV) const {
|
|
const Type *ElemType = GV->getType()->getElementType();
|
|
unsigned Alignment = getPrefTypeAlignment(ElemType);
|
|
if (GV->getAlignment() > Alignment)
|
|
Alignment = GV->getAlignment();
|
|
|
|
if (GV->hasInitializer()) {
|
|
if (Alignment < 16) {
|
|
// If the global is not external, see if it is large. If so, give it a
|
|
// larger alignment.
|
|
if (getTypeSizeInBits(ElemType) > 128)
|
|
Alignment = 16; // 16-byte alignment.
|
|
}
|
|
}
|
|
return Alignment;
|
|
}
|
|
|
|
/// getPreferredAlignmentLog - Return the preferred alignment of the
|
|
/// specified global, returned in log form. This includes an explicitly
|
|
/// requested alignment (if the global has one).
|
|
unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const {
|
|
return Log2_32(getPreferredAlignment(GV));
|
|
}
|