llvm/lib/Target/AArch64/AArch64CollectLOH.cpp
Tim Northover 29f94c7201 AArch64/ARM64: move ARM64 into AArch64's place
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.

"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.

This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209577 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-24 12:50:23 +00:00

1118 lines
42 KiB
C++

//===---------- AArch64CollectLOH.cpp - AArch64 collect LOH pass --*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that collect the Linker Optimization Hint (LOH).
// This pass should be run at the very end of the compilation flow, just before
// assembly printer.
// To be useful for the linker, the LOH must be printed into the assembly file.
//
// A LOH describes a sequence of instructions that may be optimized by the
// linker.
// This same sequence cannot be optimized by the compiler because some of
// the information will be known at link time.
// For instance, consider the following sequence:
// L1: adrp xA, sym@PAGE
// L2: add xB, xA, sym@PAGEOFF
// L3: ldr xC, [xB, #imm]
// This sequence can be turned into:
// A literal load if sym@PAGE + sym@PAGEOFF + #imm - address(L3) is < 1MB:
// L3: ldr xC, sym+#imm
// It may also be turned into either the following more efficient
// code sequences:
// - If sym@PAGEOFF + #imm fits the encoding space of L3.
// L1: adrp xA, sym@PAGE
// L3: ldr xC, [xB, sym@PAGEOFF + #imm]
// - If sym@PAGE + sym@PAGEOFF - address(L1) < 1MB:
// L1: adr xA, sym
// L3: ldr xC, [xB, #imm]
//
// To be valid a LOH must meet all the requirements needed by all the related
// possible linker transformations.
// For instance, using the running example, the constraints to emit
// ".loh AdrpAddLdr" are:
// - L1, L2, and L3 instructions are of the expected type, i.e.,
// respectively ADRP, ADD (immediate), and LD.
// - The result of L1 is used only by L2.
// - The register argument (xA) used in the ADD instruction is defined
// only by L1.
// - The result of L2 is used only by L3.
// - The base address (xB) in L3 is defined only L2.
// - The ADRP in L1 and the ADD in L2 must reference the same symbol using
// @PAGE/@PAGEOFF with no additional constants
//
// Currently supported LOHs are:
// * So called non-ADRP-related:
// - .loh AdrpAddLdr L1, L2, L3:
// L1: adrp xA, sym@PAGE
// L2: add xB, xA, sym@PAGEOFF
// L3: ldr xC, [xB, #imm]
// - .loh AdrpLdrGotLdr L1, L2, L3:
// L1: adrp xA, sym@GOTPAGE
// L2: ldr xB, [xA, sym@GOTPAGEOFF]
// L3: ldr xC, [xB, #imm]
// - .loh AdrpLdr L1, L3:
// L1: adrp xA, sym@PAGE
// L3: ldr xC, [xA, sym@PAGEOFF]
// - .loh AdrpAddStr L1, L2, L3:
// L1: adrp xA, sym@PAGE
// L2: add xB, xA, sym@PAGEOFF
// L3: str xC, [xB, #imm]
// - .loh AdrpLdrGotStr L1, L2, L3:
// L1: adrp xA, sym@GOTPAGE
// L2: ldr xB, [xA, sym@GOTPAGEOFF]
// L3: str xC, [xB, #imm]
// - .loh AdrpAdd L1, L2:
// L1: adrp xA, sym@PAGE
// L2: add xB, xA, sym@PAGEOFF
// For all these LOHs, L1, L2, L3 form a simple chain:
// L1 result is used only by L2 and L2 result by L3.
// L3 LOH-related argument is defined only by L2 and L2 LOH-related argument
// by L1.
// All these LOHs aim at using more efficient load/store patterns by folding
// some instructions used to compute the address directly into the load/store.
//
// * So called ADRP-related:
// - .loh AdrpAdrp L2, L1:
// L2: ADRP xA, sym1@PAGE
// L1: ADRP xA, sym2@PAGE
// L2 dominates L1 and xA is not redifined between L2 and L1
// This LOH aims at getting rid of redundant ADRP instructions.
//
// The overall design for emitting the LOHs is:
// 1. AArch64CollectLOH (this pass) records the LOHs in the AArch64FunctionInfo.
// 2. AArch64AsmPrinter reads the LOHs from AArch64FunctionInfo and it:
// 1. Associates them a label.
// 2. Emits them in a MCStreamer (EmitLOHDirective).
// - The MCMachOStreamer records them into the MCAssembler.
// - The MCAsmStreamer prints them.
// - Other MCStreamers ignore them.
// 3. Closes the MCStreamer:
// - The MachObjectWriter gets them from the MCAssembler and writes
// them in the object file.
// - Other ObjectWriters ignore them.
//===----------------------------------------------------------------------===//
#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64MachineFunctionInfo.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-collect-loh"
static cl::opt<bool>
PreCollectRegister("aarch64-collect-loh-pre-collect-register", cl::Hidden,
cl::desc("Restrict analysis to registers invovled"
" in LOHs"),
cl::init(true));
static cl::opt<bool>
BasicBlockScopeOnly("aarch64-collect-loh-bb-only", cl::Hidden,
cl::desc("Restrict analysis at basic block scope"),
cl::init(true));
STATISTIC(NumADRPSimpleCandidate,
"Number of simplifiable ADRP dominate by another");
STATISTIC(NumADRPComplexCandidate2,
"Number of simplifiable ADRP reachable by 2 defs");
STATISTIC(NumADRPComplexCandidate3,
"Number of simplifiable ADRP reachable by 3 defs");
STATISTIC(NumADRPComplexCandidateOther,
"Number of simplifiable ADRP reachable by 4 or more defs");
STATISTIC(NumADDToSTRWithImm,
"Number of simplifiable STR with imm reachable by ADD");
STATISTIC(NumLDRToSTRWithImm,
"Number of simplifiable STR with imm reachable by LDR");
STATISTIC(NumADDToSTR, "Number of simplifiable STR reachable by ADD");
STATISTIC(NumLDRToSTR, "Number of simplifiable STR reachable by LDR");
STATISTIC(NumADDToLDRWithImm,
"Number of simplifiable LDR with imm reachable by ADD");
STATISTIC(NumLDRToLDRWithImm,
"Number of simplifiable LDR with imm reachable by LDR");
STATISTIC(NumADDToLDR, "Number of simplifiable LDR reachable by ADD");
STATISTIC(NumLDRToLDR, "Number of simplifiable LDR reachable by LDR");
STATISTIC(NumADRPToLDR, "Number of simplifiable LDR reachable by ADRP");
STATISTIC(NumCplxLvl1, "Number of complex case of level 1");
STATISTIC(NumTooCplxLvl1, "Number of too complex case of level 1");
STATISTIC(NumCplxLvl2, "Number of complex case of level 2");
STATISTIC(NumTooCplxLvl2, "Number of too complex case of level 2");
STATISTIC(NumADRSimpleCandidate, "Number of simplifiable ADRP + ADD");
STATISTIC(NumADRComplexCandidate, "Number of too complex ADRP + ADD");
namespace llvm {
void initializeAArch64CollectLOHPass(PassRegistry &);
}
namespace {
struct AArch64CollectLOH : public MachineFunctionPass {
static char ID;
AArch64CollectLOH() : MachineFunctionPass(ID) {
initializeAArch64CollectLOHPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
const char *getPassName() const override {
return "AArch64 Collect Linker Optimization Hint (LOH)";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<MachineDominatorTree>();
}
private:
};
/// A set of MachineInstruction.
typedef SetVector<const MachineInstr *> SetOfMachineInstr;
/// Map a basic block to a set of instructions per register.
/// This is used to represent the exposed uses of a basic block
/// per register.
typedef MapVector<const MachineBasicBlock *, SetOfMachineInstr *>
BlockToSetOfInstrsPerColor;
/// Map a basic block to an instruction per register.
/// This is used to represent the live-out definitions of a basic block
/// per register.
typedef MapVector<const MachineBasicBlock *, const MachineInstr **>
BlockToInstrPerColor;
/// Map an instruction to a set of instructions. Used to represent the
/// mapping def to reachable uses or use to definitions.
typedef MapVector<const MachineInstr *, SetOfMachineInstr> InstrToInstrs;
/// Map a basic block to a BitVector.
/// This is used to record the kill registers per basic block.
typedef MapVector<const MachineBasicBlock *, BitVector> BlockToRegSet;
/// Map a register to a dense id.
typedef DenseMap<unsigned, unsigned> MapRegToId;
/// Map a dense id to a register. Used for debug purposes.
typedef SmallVector<unsigned, 32> MapIdToReg;
} // end anonymous namespace.
char AArch64CollectLOH::ID = 0;
INITIALIZE_PASS_BEGIN(AArch64CollectLOH, "aarch64-collect-loh",
"AArch64 Collect Linker Optimization Hint (LOH)", false,
false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(AArch64CollectLOH, "aarch64-collect-loh",
"AArch64 Collect Linker Optimization Hint (LOH)", false,
false)
/// Given a couple (MBB, reg) get the corresponding set of instruction from
/// the given "sets".
/// If this couple does not reference any set, an empty set is added to "sets"
/// for this couple and returned.
/// \param nbRegs is used internally allocate some memory. It must be consistent
/// with the way sets is used.
static SetOfMachineInstr &getSet(BlockToSetOfInstrsPerColor &sets,
const MachineBasicBlock &MBB, unsigned reg,
unsigned nbRegs) {
SetOfMachineInstr *result;
BlockToSetOfInstrsPerColor::iterator it = sets.find(&MBB);
if (it != sets.end())
result = it->second;
else
result = sets[&MBB] = new SetOfMachineInstr[nbRegs];
return result[reg];
}
/// Given a couple (reg, MI) get the corresponding set of instructions from the
/// the given "sets".
/// This is used to get the uses record in sets of a definition identified by
/// MI and reg, i.e., MI defines reg.
/// If the couple does not reference anything, an empty set is added to
/// "sets[reg]".
/// \pre set[reg] is valid.
static SetOfMachineInstr &getUses(InstrToInstrs *sets, unsigned reg,
const MachineInstr &MI) {
return sets[reg][&MI];
}
/// Same as getUses but does not modify the input map: sets.
/// \return NULL if the couple (reg, MI) is not in sets.
static const SetOfMachineInstr *getUses(const InstrToInstrs *sets, unsigned reg,
const MachineInstr &MI) {
InstrToInstrs::const_iterator Res = sets[reg].find(&MI);
if (Res != sets[reg].end())
return &(Res->second);
return nullptr;
}
/// Initialize the reaching definition algorithm:
/// For each basic block BB in MF, record:
/// - its kill set.
/// - its reachable uses (uses that are exposed to BB's predecessors).
/// - its the generated definitions.
/// \param DummyOp if not NULL, specifies a Dummy Operation to be added to
/// the list of uses of exposed defintions.
/// \param ADRPMode specifies to only consider ADRP instructions for generated
/// definition. It also consider definitions of ADRP instructions as uses and
/// ignore other uses. The ADRPMode is used to collect the information for LHO
/// that involve ADRP operation only.
static void initReachingDef(MachineFunction &MF,
InstrToInstrs *ColorOpToReachedUses,
BlockToInstrPerColor &Gen, BlockToRegSet &Kill,
BlockToSetOfInstrsPerColor &ReachableUses,
const MapRegToId &RegToId,
const MachineInstr *DummyOp, bool ADRPMode) {
const TargetMachine &TM = MF.getTarget();
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
unsigned NbReg = RegToId.size();
for (MachineBasicBlock &MBB : MF) {
const MachineInstr **&BBGen = Gen[&MBB];
BBGen = new const MachineInstr *[NbReg];
memset(BBGen, 0, sizeof(const MachineInstr *) * NbReg);
BitVector &BBKillSet = Kill[&MBB];
BBKillSet.resize(NbReg);
for (const MachineInstr &MI : MBB) {
bool IsADRP = MI.getOpcode() == AArch64::ADRP;
// Process uses first.
if (IsADRP || !ADRPMode)
for (const MachineOperand &MO : MI.operands()) {
// Treat ADRP def as use, as the goal of the analysis is to find
// ADRP defs reached by other ADRP defs.
if (!MO.isReg() || (!ADRPMode && !MO.isUse()) ||
(ADRPMode && (!IsADRP || !MO.isDef())))
continue;
unsigned CurReg = MO.getReg();
MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
if (ItCurRegId == RegToId.end())
continue;
CurReg = ItCurRegId->second;
// if CurReg has not been defined, this use is reachable.
if (!BBGen[CurReg] && !BBKillSet.test(CurReg))
getSet(ReachableUses, MBB, CurReg, NbReg).insert(&MI);
// current basic block definition for this color, if any, is in Gen.
if (BBGen[CurReg])
getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(&MI);
}
// Process clobbers.
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isRegMask())
continue;
// Clobbers kill the related colors.
const uint32_t *PreservedRegs = MO.getRegMask();
// Set generated regs.
for (const auto Entry : RegToId) {
unsigned Reg = Entry.second;
// Use the global register ID when querying APIs external to this
// pass.
if (MachineOperand::clobbersPhysReg(PreservedRegs, Entry.first)) {
// Do not register clobbered definition for no ADRP.
// This definition is not used anyway (otherwise register
// allocation is wrong).
BBGen[Reg] = ADRPMode ? &MI : nullptr;
BBKillSet.set(Reg);
}
}
}
// Process register defs.
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg() || !MO.isDef())
continue;
unsigned CurReg = MO.getReg();
MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
if (ItCurRegId == RegToId.end())
continue;
for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI) {
MapRegToId::const_iterator ItRegId = RegToId.find(*AI);
assert(ItRegId != RegToId.end() &&
"Sub-register of an "
"involved register, not recorded as involved!");
BBKillSet.set(ItRegId->second);
BBGen[ItRegId->second] = &MI;
}
BBGen[ItCurRegId->second] = &MI;
}
}
// If we restrict our analysis to basic block scope, conservatively add a
// dummy
// use for each generated value.
if (!ADRPMode && DummyOp && !MBB.succ_empty())
for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg)
if (BBGen[CurReg])
getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(DummyOp);
}
}
/// Reaching def core algorithm:
/// while an Out has changed
/// for each bb
/// for each color
/// In[bb][color] = U Out[bb.predecessors][color]
/// insert reachableUses[bb][color] in each in[bb][color]
/// op.reachedUses
///
/// Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
static void reachingDefAlgorithm(MachineFunction &MF,
InstrToInstrs *ColorOpToReachedUses,
BlockToSetOfInstrsPerColor &In,
BlockToSetOfInstrsPerColor &Out,
BlockToInstrPerColor &Gen, BlockToRegSet &Kill,
BlockToSetOfInstrsPerColor &ReachableUses,
unsigned NbReg) {
bool HasChanged;
do {
HasChanged = false;
for (MachineBasicBlock &MBB : MF) {
unsigned CurReg;
for (CurReg = 0; CurReg < NbReg; ++CurReg) {
SetOfMachineInstr &BBInSet = getSet(In, MBB, CurReg, NbReg);
SetOfMachineInstr &BBReachableUses =
getSet(ReachableUses, MBB, CurReg, NbReg);
SetOfMachineInstr &BBOutSet = getSet(Out, MBB, CurReg, NbReg);
unsigned Size = BBOutSet.size();
// In[bb][color] = U Out[bb.predecessors][color]
for (MachineBasicBlock *PredMBB : MBB.predecessors()) {
SetOfMachineInstr &PredOutSet = getSet(Out, *PredMBB, CurReg, NbReg);
BBInSet.insert(PredOutSet.begin(), PredOutSet.end());
}
// insert reachableUses[bb][color] in each in[bb][color] op.reachedses
for (const MachineInstr *MI : BBInSet) {
SetOfMachineInstr &OpReachedUses =
getUses(ColorOpToReachedUses, CurReg, *MI);
OpReachedUses.insert(BBReachableUses.begin(), BBReachableUses.end());
}
// Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
if (!Kill[&MBB].test(CurReg))
BBOutSet.insert(BBInSet.begin(), BBInSet.end());
if (Gen[&MBB][CurReg])
BBOutSet.insert(Gen[&MBB][CurReg]);
HasChanged |= BBOutSet.size() != Size;
}
}
} while (HasChanged);
}
/// Release all memory dynamically allocated during the reaching
/// definition algorithm.
static void finitReachingDef(BlockToSetOfInstrsPerColor &In,
BlockToSetOfInstrsPerColor &Out,
BlockToInstrPerColor &Gen,
BlockToSetOfInstrsPerColor &ReachableUses) {
for (auto &IT : Out)
delete[] IT.second;
for (auto &IT : In)
delete[] IT.second;
for (auto &IT : ReachableUses)
delete[] IT.second;
for (auto &IT : Gen)
delete[] IT.second;
}
/// Reaching definition algorithm.
/// \param MF function on which the algorithm will operate.
/// \param[out] ColorOpToReachedUses will contain the result of the reaching
/// def algorithm.
/// \param ADRPMode specify whether the reaching def algorithm should be tuned
/// for ADRP optimization. \see initReachingDef for more details.
/// \param DummyOp if not NULL, the algorithm will work at
/// basic block scope and will set for every exposed definition a use to
/// @p DummyOp.
/// \pre ColorOpToReachedUses is an array of at least number of registers of
/// InstrToInstrs.
static void reachingDef(MachineFunction &MF,
InstrToInstrs *ColorOpToReachedUses,
const MapRegToId &RegToId, bool ADRPMode = false,
const MachineInstr *DummyOp = nullptr) {
// structures:
// For each basic block.
// Out: a set per color of definitions that reach the
// out boundary of this block.
// In: Same as Out but for in boundary.
// Gen: generated color in this block (one operation per color).
// Kill: register set of killed color in this block.
// ReachableUses: a set per color of uses (operation) reachable
// for "In" definitions.
BlockToSetOfInstrsPerColor Out, In, ReachableUses;
BlockToInstrPerColor Gen;
BlockToRegSet Kill;
// Initialize Gen, kill and reachableUses.
initReachingDef(MF, ColorOpToReachedUses, Gen, Kill, ReachableUses, RegToId,
DummyOp, ADRPMode);
// Algo.
if (!DummyOp)
reachingDefAlgorithm(MF, ColorOpToReachedUses, In, Out, Gen, Kill,
ReachableUses, RegToId.size());
// finit.
finitReachingDef(In, Out, Gen, ReachableUses);
}
#ifndef NDEBUG
/// print the result of the reaching definition algorithm.
static void printReachingDef(const InstrToInstrs *ColorOpToReachedUses,
unsigned NbReg, const TargetRegisterInfo *TRI,
const MapIdToReg &IdToReg) {
unsigned CurReg;
for (CurReg = 0; CurReg < NbReg; ++CurReg) {
if (ColorOpToReachedUses[CurReg].empty())
continue;
DEBUG(dbgs() << "*** Reg " << PrintReg(IdToReg[CurReg], TRI) << " ***\n");
for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
DEBUG(dbgs() << "Def:\n");
DEBUG(DefsIt.first->print(dbgs()));
DEBUG(dbgs() << "Reachable uses:\n");
for (const MachineInstr *MI : DefsIt.second) {
DEBUG(MI->print(dbgs()));
}
}
}
}
#endif // NDEBUG
/// Answer the following question: Can Def be one of the definition
/// involved in a part of a LOH?
static bool canDefBePartOfLOH(const MachineInstr *Def) {
unsigned Opc = Def->getOpcode();
// Accept ADRP, ADDLow and LOADGot.
switch (Opc) {
default:
return false;
case AArch64::ADRP:
return true;
case AArch64::ADDXri:
// Check immediate to see if the immediate is an address.
switch (Def->getOperand(2).getType()) {
default:
return false;
case MachineOperand::MO_GlobalAddress:
case MachineOperand::MO_JumpTableIndex:
case MachineOperand::MO_ConstantPoolIndex:
case MachineOperand::MO_BlockAddress:
return true;
}
case AArch64::LDRXui:
// Check immediate to see if the immediate is an address.
switch (Def->getOperand(2).getType()) {
default:
return false;
case MachineOperand::MO_GlobalAddress:
return true;
}
}
// Unreachable.
return false;
}
/// Check whether the given instruction can the end of a LOH chain involving a
/// store.
static bool isCandidateStore(const MachineInstr *Instr) {
switch (Instr->getOpcode()) {
default:
return false;
case AArch64::STRBui:
case AArch64::STRHui:
case AArch64::STRWui:
case AArch64::STRXui:
case AArch64::STRSui:
case AArch64::STRDui:
case AArch64::STRQui:
// In case we have str xA, [xA, #imm], this is two different uses
// of xA and we cannot fold, otherwise the xA stored may be wrong,
// even if #imm == 0.
if (Instr->getOperand(0).getReg() != Instr->getOperand(1).getReg())
return true;
}
return false;
}
/// Given the result of a reaching definition algorithm in ColorOpToReachedUses,
/// Build the Use to Defs information and filter out obvious non-LOH candidates.
/// In ADRPMode, non-LOH candidates are "uses" with non-ADRP definitions.
/// In non-ADRPMode, non-LOH candidates are "uses" with several definition,
/// i.e., no simple chain.
/// \param ADRPMode -- \see initReachingDef.
static void reachedUsesToDefs(InstrToInstrs &UseToReachingDefs,
const InstrToInstrs *ColorOpToReachedUses,
const MapRegToId &RegToId,
bool ADRPMode = false) {
SetOfMachineInstr NotCandidate;
unsigned NbReg = RegToId.size();
MapRegToId::const_iterator EndIt = RegToId.end();
for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg) {
// If this color is never defined, continue.
if (ColorOpToReachedUses[CurReg].empty())
continue;
for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
for (const MachineInstr *MI : DefsIt.second) {
const MachineInstr *Def = DefsIt.first;
MapRegToId::const_iterator It;
// if all the reaching defs are not adrp, this use will not be
// simplifiable.
if ((ADRPMode && Def->getOpcode() != AArch64::ADRP) ||
(!ADRPMode && !canDefBePartOfLOH(Def)) ||
(!ADRPMode && isCandidateStore(MI) &&
// store are LOH candidate iff the end of the chain is used as
// base.
((It = RegToId.find((MI)->getOperand(1).getReg())) == EndIt ||
It->second != CurReg))) {
NotCandidate.insert(MI);
continue;
}
// Do not consider self reaching as a simplifiable case for ADRP.
if (!ADRPMode || MI != DefsIt.first) {
UseToReachingDefs[MI].insert(DefsIt.first);
// If UsesIt has several reaching definitions, it is not
// candidate for simplificaton in non-ADRPMode.
if (!ADRPMode && UseToReachingDefs[MI].size() > 1)
NotCandidate.insert(MI);
}
}
}
}
for (const MachineInstr *Elem : NotCandidate) {
DEBUG(dbgs() << "Too many reaching defs: " << *Elem << "\n");
// It would have been better if we could just remove the entry
// from the map. Because of that, we have to filter the garbage
// (second.empty) in the subsequence analysis.
UseToReachingDefs[Elem].clear();
}
}
/// Based on the use to defs information (in ADRPMode), compute the
/// opportunities of LOH ADRP-related.
static void computeADRP(const InstrToInstrs &UseToDefs,
AArch64FunctionInfo &AArch64FI,
const MachineDominatorTree *MDT) {
DEBUG(dbgs() << "*** Compute LOH for ADRP\n");
for (const auto &Entry : UseToDefs) {
unsigned Size = Entry.second.size();
if (Size == 0)
continue;
if (Size == 1) {
const MachineInstr *L2 = *Entry.second.begin();
const MachineInstr *L1 = Entry.first;
if (!MDT->dominates(L2, L1)) {
DEBUG(dbgs() << "Dominance check failed:\n" << *L2 << '\n' << *L1
<< '\n');
continue;
}
DEBUG(dbgs() << "Record AdrpAdrp:\n" << *L2 << '\n' << *L1 << '\n');
SmallVector<const MachineInstr *, 2> Args;
Args.push_back(L2);
Args.push_back(L1);
AArch64FI.addLOHDirective(MCLOH_AdrpAdrp, Args);
++NumADRPSimpleCandidate;
}
#ifdef DEBUG
else if (Size == 2)
++NumADRPComplexCandidate2;
else if (Size == 3)
++NumADRPComplexCandidate3;
else
++NumADRPComplexCandidateOther;
#endif
// if Size < 1, the use should have been removed from the candidates
assert(Size >= 1 && "No reaching defs for that use!");
}
}
/// Check whether the given instruction can be the end of a LOH chain
/// involving a load.
static bool isCandidateLoad(const MachineInstr *Instr) {
switch (Instr->getOpcode()) {
default:
return false;
case AArch64::LDRSBWui:
case AArch64::LDRSBXui:
case AArch64::LDRSHWui:
case AArch64::LDRSHXui:
case AArch64::LDRSWui:
case AArch64::LDRBui:
case AArch64::LDRHui:
case AArch64::LDRWui:
case AArch64::LDRXui:
case AArch64::LDRSui:
case AArch64::LDRDui:
case AArch64::LDRQui:
if (Instr->getOperand(2).getTargetFlags() & AArch64II::MO_GOT)
return false;
return true;
}
// Unreachable.
return false;
}
/// Check whether the given instruction can load a litteral.
static bool supportLoadFromLiteral(const MachineInstr *Instr) {
switch (Instr->getOpcode()) {
default:
return false;
case AArch64::LDRSWui:
case AArch64::LDRWui:
case AArch64::LDRXui:
case AArch64::LDRSui:
case AArch64::LDRDui:
case AArch64::LDRQui:
return true;
}
// Unreachable.
return false;
}
/// Check whether the given instruction is a LOH candidate.
/// \param UseToDefs is used to check that Instr is at the end of LOH supported
/// chain.
/// \pre UseToDefs contains only on def per use, i.e., obvious non candidate are
/// already been filtered out.
static bool isCandidate(const MachineInstr *Instr,
const InstrToInstrs &UseToDefs,
const MachineDominatorTree *MDT) {
if (!isCandidateLoad(Instr) && !isCandidateStore(Instr))
return false;
const MachineInstr *Def = *UseToDefs.find(Instr)->second.begin();
if (Def->getOpcode() != AArch64::ADRP) {
// At this point, Def is ADDXri or LDRXui of the right type of
// symbol, because we filtered out the uses that were not defined
// by these kind of instructions (+ ADRP).
// Check if this forms a simple chain: each intermediate node must
// dominates the next one.
if (!MDT->dominates(Def, Instr))
return false;
// Move one node up in the simple chain.
if (UseToDefs.find(Def) ==
UseToDefs.end()
// The map may contain garbage we have to ignore.
||
UseToDefs.find(Def)->second.empty())
return false;
Instr = Def;
Def = *UseToDefs.find(Def)->second.begin();
}
// Check if we reached the top of the simple chain:
// - top is ADRP.
// - check the simple chain property: each intermediate node must
// dominates the next one.
if (Def->getOpcode() == AArch64::ADRP)
return MDT->dominates(Def, Instr);
return false;
}
static bool registerADRCandidate(const MachineInstr &Use,
const InstrToInstrs &UseToDefs,
const InstrToInstrs *DefsPerColorToUses,
AArch64FunctionInfo &AArch64FI,
SetOfMachineInstr *InvolvedInLOHs,
const MapRegToId &RegToId) {
// Look for opportunities to turn ADRP -> ADD or
// ADRP -> LDR GOTPAGEOFF into ADR.
// If ADRP has more than one use. Give up.
if (Use.getOpcode() != AArch64::ADDXri &&
(Use.getOpcode() != AArch64::LDRXui ||
!(Use.getOperand(2).getTargetFlags() & AArch64II::MO_GOT)))
return false;
InstrToInstrs::const_iterator It = UseToDefs.find(&Use);
// The map may contain garbage that we need to ignore.
if (It == UseToDefs.end() || It->second.empty())
return false;
const MachineInstr &Def = **It->second.begin();
if (Def.getOpcode() != AArch64::ADRP)
return false;
// Check the number of users of ADRP.
const SetOfMachineInstr *Users =
getUses(DefsPerColorToUses,
RegToId.find(Def.getOperand(0).getReg())->second, Def);
if (Users->size() > 1) {
++NumADRComplexCandidate;
return false;
}
++NumADRSimpleCandidate;
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Def)) &&
"ADRP already involved in LOH.");
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Use)) &&
"ADD already involved in LOH.");
DEBUG(dbgs() << "Record AdrpAdd\n" << Def << '\n' << Use << '\n');
SmallVector<const MachineInstr *, 2> Args;
Args.push_back(&Def);
Args.push_back(&Use);
AArch64FI.addLOHDirective(Use.getOpcode() == AArch64::ADDXri ? MCLOH_AdrpAdd
: MCLOH_AdrpLdrGot,
Args);
return true;
}
/// Based on the use to defs information (in non-ADRPMode), compute the
/// opportunities of LOH non-ADRP-related
static void computeOthers(const InstrToInstrs &UseToDefs,
const InstrToInstrs *DefsPerColorToUses,
AArch64FunctionInfo &AArch64FI, const MapRegToId &RegToId,
const MachineDominatorTree *MDT) {
SetOfMachineInstr *InvolvedInLOHs = nullptr;
#ifdef DEBUG
SetOfMachineInstr InvolvedInLOHsStorage;
InvolvedInLOHs = &InvolvedInLOHsStorage;
#endif // DEBUG
DEBUG(dbgs() << "*** Compute LOH for Others\n");
// ADRP -> ADD/LDR -> LDR/STR pattern.
// Fall back to ADRP -> ADD pattern if we fail to catch the bigger pattern.
// FIXME: When the statistics are not important,
// This initial filtering loop can be merged into the next loop.
// Currently, we didn't do it to have the same code for both DEBUG and
// NDEBUG builds. Indeed, the iterator of the second loop would need
// to be changed.
SetOfMachineInstr PotentialCandidates;
SetOfMachineInstr PotentialADROpportunities;
for (auto &Use : UseToDefs) {
// If no definition is available, this is a non candidate.
if (Use.second.empty())
continue;
// Keep only instructions that are load or store and at the end of
// a ADRP -> ADD/LDR/Nothing chain.
// We already filtered out the no-chain cases.
if (!isCandidate(Use.first, UseToDefs, MDT)) {
PotentialADROpportunities.insert(Use.first);
continue;
}
PotentialCandidates.insert(Use.first);
}
// Make the following distinctions for statistics as the linker does
// know how to decode instructions:
// - ADD/LDR/Nothing make there different patterns.
// - LDR/STR make two different patterns.
// Hence, 6 - 1 base patterns.
// (because ADRP-> Nothing -> STR is not simplifiable)
// The linker is only able to have a simple semantic, i.e., if pattern A
// do B.
// However, we want to see the opportunity we may miss if we were able to
// catch more complex cases.
// PotentialCandidates are result of a chain ADRP -> ADD/LDR ->
// A potential candidate becomes a candidate, if its current immediate
// operand is zero and all nodes of the chain have respectively only one user
#ifdef DEBUG
SetOfMachineInstr DefsOfPotentialCandidates;
#endif
for (const MachineInstr *Candidate : PotentialCandidates) {
// Get the definition of the candidate i.e., ADD or LDR.
const MachineInstr *Def = *UseToDefs.find(Candidate)->second.begin();
// Record the elements of the chain.
const MachineInstr *L1 = Def;
const MachineInstr *L2 = nullptr;
unsigned ImmediateDefOpc = Def->getOpcode();
if (Def->getOpcode() != AArch64::ADRP) {
// Check the number of users of this node.
const SetOfMachineInstr *Users =
getUses(DefsPerColorToUses,
RegToId.find(Def->getOperand(0).getReg())->second, *Def);
if (Users->size() > 1) {
#ifdef DEBUG
// if all the uses of this def are in potential candidate, this is
// a complex candidate of level 2.
bool IsLevel2 = true;
for (const MachineInstr *MI : *Users) {
if (!PotentialCandidates.count(MI)) {
++NumTooCplxLvl2;
IsLevel2 = false;
break;
}
}
if (IsLevel2)
++NumCplxLvl2;
#endif // DEBUG
PotentialADROpportunities.insert(Def);
continue;
}
L2 = Def;
Def = *UseToDefs.find(Def)->second.begin();
L1 = Def;
} // else the element in the middle of the chain is nothing, thus
// Def already contains the first element of the chain.
// Check the number of users of the first node in the chain, i.e., ADRP
const SetOfMachineInstr *Users =
getUses(DefsPerColorToUses,
RegToId.find(Def->getOperand(0).getReg())->second, *Def);
if (Users->size() > 1) {
#ifdef DEBUG
// if all the uses of this def are in the defs of the potential candidate,
// this is a complex candidate of level 1
if (DefsOfPotentialCandidates.empty()) {
// lazy init
DefsOfPotentialCandidates = PotentialCandidates;
for (const MachineInstr *Candidate : PotentialCandidates) {
if (!UseToDefs.find(Candidate)->second.empty())
DefsOfPotentialCandidates.insert(
*UseToDefs.find(Candidate)->second.begin());
}
}
bool Found = false;
for (auto &Use : *Users) {
if (!DefsOfPotentialCandidates.count(Use)) {
++NumTooCplxLvl1;
Found = true;
break;
}
}
if (!Found)
++NumCplxLvl1;
#endif // DEBUG
continue;
}
bool IsL2Add = (ImmediateDefOpc == AArch64::ADDXri);
// If the chain is three instructions long and ldr is the second element,
// then this ldr must load form GOT, otherwise this is not a correct chain.
if (L2 && !IsL2Add && L2->getOperand(2).getTargetFlags() != AArch64II::MO_GOT)
continue;
SmallVector<const MachineInstr *, 3> Args;
MCLOHType Kind;
if (isCandidateLoad(Candidate)) {
if (!L2) {
// At this point, the candidate LOH indicates that the ldr instruction
// may use a direct access to the symbol. There is not such encoding
// for loads of byte and half.
if (!supportLoadFromLiteral(Candidate))
continue;
DEBUG(dbgs() << "Record AdrpLdr:\n" << *L1 << '\n' << *Candidate
<< '\n');
Kind = MCLOH_AdrpLdr;
Args.push_back(L1);
Args.push_back(Candidate);
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
"L1 already involved in LOH.");
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
"Candidate already involved in LOH.");
++NumADRPToLDR;
} else {
DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot")
<< "Ldr:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate
<< '\n');
Kind = IsL2Add ? MCLOH_AdrpAddLdr : MCLOH_AdrpLdrGotLdr;
Args.push_back(L1);
Args.push_back(L2);
Args.push_back(Candidate);
PotentialADROpportunities.remove(L2);
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
"L1 already involved in LOH.");
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) &&
"L2 already involved in LOH.");
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
"Candidate already involved in LOH.");
#ifdef DEBUG
// get the immediate of the load
if (Candidate->getOperand(2).getImm() == 0)
if (ImmediateDefOpc == AArch64::ADDXri)
++NumADDToLDR;
else
++NumLDRToLDR;
else if (ImmediateDefOpc == AArch64::ADDXri)
++NumADDToLDRWithImm;
else
++NumLDRToLDRWithImm;
#endif // DEBUG
}
} else {
if (ImmediateDefOpc == AArch64::ADRP)
continue;
else {
DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot")
<< "Str:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate
<< '\n');
Kind = IsL2Add ? MCLOH_AdrpAddStr : MCLOH_AdrpLdrGotStr;
Args.push_back(L1);
Args.push_back(L2);
Args.push_back(Candidate);
PotentialADROpportunities.remove(L2);
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
"L1 already involved in LOH.");
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) &&
"L2 already involved in LOH.");
assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
"Candidate already involved in LOH.");
#ifdef DEBUG
// get the immediate of the store
if (Candidate->getOperand(2).getImm() == 0)
if (ImmediateDefOpc == AArch64::ADDXri)
++NumADDToSTR;
else
++NumLDRToSTR;
else if (ImmediateDefOpc == AArch64::ADDXri)
++NumADDToSTRWithImm;
else
++NumLDRToSTRWithImm;
#endif // DEBUG
}
}
AArch64FI.addLOHDirective(Kind, Args);
}
// Now, we grabbed all the big patterns, check ADR opportunities.
for (const MachineInstr *Candidate : PotentialADROpportunities)
registerADRCandidate(*Candidate, UseToDefs, DefsPerColorToUses, AArch64FI,
InvolvedInLOHs, RegToId);
}
/// Look for every register defined by potential LOHs candidates.
/// Map these registers with dense id in @p RegToId and vice-versa in
/// @p IdToReg. @p IdToReg is populated only in DEBUG mode.
static void collectInvolvedReg(MachineFunction &MF, MapRegToId &RegToId,
MapIdToReg &IdToReg,
const TargetRegisterInfo *TRI) {
unsigned CurRegId = 0;
if (!PreCollectRegister) {
unsigned NbReg = TRI->getNumRegs();
for (; CurRegId < NbReg; ++CurRegId) {
RegToId[CurRegId] = CurRegId;
DEBUG(IdToReg.push_back(CurRegId));
DEBUG(assert(IdToReg[CurRegId] == CurRegId && "Reg index mismatches"));
}
return;
}
DEBUG(dbgs() << "** Collect Involved Register\n");
for (const auto &MBB : MF) {
for (const MachineInstr &MI : MBB) {
if (!canDefBePartOfLOH(&MI))
continue;
// Process defs
for (MachineInstr::const_mop_iterator IO = MI.operands_begin(),
IOEnd = MI.operands_end();
IO != IOEnd; ++IO) {
if (!IO->isReg() || !IO->isDef())
continue;
unsigned CurReg = IO->getReg();
for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI)
if (RegToId.find(*AI) == RegToId.end()) {
DEBUG(IdToReg.push_back(*AI);
assert(IdToReg[CurRegId] == *AI &&
"Reg index mismatches insertion index."));
RegToId[*AI] = CurRegId++;
DEBUG(dbgs() << "Register: " << PrintReg(*AI, TRI) << '\n');
}
}
}
}
}
bool AArch64CollectLOH::runOnMachineFunction(MachineFunction &MF) {
const TargetMachine &TM = MF.getTarget();
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
const MachineDominatorTree *MDT = &getAnalysis<MachineDominatorTree>();
MapRegToId RegToId;
MapIdToReg IdToReg;
AArch64FunctionInfo *AArch64FI = MF.getInfo<AArch64FunctionInfo>();
assert(AArch64FI && "No MachineFunctionInfo for this function!");
DEBUG(dbgs() << "Looking for LOH in " << MF.getName() << '\n');
collectInvolvedReg(MF, RegToId, IdToReg, TRI);
if (RegToId.empty())
return false;
MachineInstr *DummyOp = nullptr;
if (BasicBlockScopeOnly) {
const AArch64InstrInfo *TII =
static_cast<const AArch64InstrInfo *>(TM.getInstrInfo());
// For local analysis, create a dummy operation to record uses that are not
// local.
DummyOp = MF.CreateMachineInstr(TII->get(AArch64::COPY), DebugLoc());
}
unsigned NbReg = RegToId.size();
bool Modified = false;
// Start with ADRP.
InstrToInstrs *ColorOpToReachedUses = new InstrToInstrs[NbReg];
// Compute the reaching def in ADRP mode, meaning ADRP definitions
// are first considered as uses.
reachingDef(MF, ColorOpToReachedUses, RegToId, true, DummyOp);
DEBUG(dbgs() << "ADRP reaching defs\n");
DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));
// Translate the definition to uses map into a use to definitions map to ease
// statistic computation.
InstrToInstrs ADRPToReachingDefs;
reachedUsesToDefs(ADRPToReachingDefs, ColorOpToReachedUses, RegToId, true);
// Compute LOH for ADRP.
computeADRP(ADRPToReachingDefs, *AArch64FI, MDT);
delete[] ColorOpToReachedUses;
// Continue with general ADRP -> ADD/LDR -> LDR/STR pattern.
ColorOpToReachedUses = new InstrToInstrs[NbReg];
// first perform a regular reaching def analysis.
reachingDef(MF, ColorOpToReachedUses, RegToId, false, DummyOp);
DEBUG(dbgs() << "All reaching defs\n");
DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));
// Turn that into a use to defs to ease statistic computation.
InstrToInstrs UsesToReachingDefs;
reachedUsesToDefs(UsesToReachingDefs, ColorOpToReachedUses, RegToId, false);
// Compute other than AdrpAdrp LOH.
computeOthers(UsesToReachingDefs, ColorOpToReachedUses, *AArch64FI, RegToId,
MDT);
delete[] ColorOpToReachedUses;
if (BasicBlockScopeOnly)
MF.DeleteMachineInstr(DummyOp);
return Modified;
}
/// createAArch64CollectLOHPass - returns an instance of the Statistic for
/// linker optimization pass.
FunctionPass *llvm::createAArch64CollectLOHPass() {
return new AArch64CollectLOH();
}