llvm/lib/Transforms/Utils/IntegerDivision.cpp
Duncan P. N. Exon Smith 5270f8871a TransformUtils: Remove implicit ilist iterator conversions, NFC
Continuing the work from last week to remove implicit ilist iterator
conversions.  First related commit was probably r249767, with some more
motivation in r249925.  This edition gets LLVMTransformUtils compiling
without the implicit conversions.

No functional change intended.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@250142 91177308-0d34-0410-b5e6-96231b3b80d8
2015-10-13 02:39:05 +00:00

684 lines
26 KiB
C++

//===-- IntegerDivision.cpp - Expand integer division ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains an implementation of 32bit and 64bit scalar integer
// division for targets that don't have native support. It's largely derived
// from compiler-rt's implementations of __udivsi3 and __udivmoddi4,
// but hand-tuned for targets that prefer less control flow.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/IntegerDivision.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "integer-division"
/// Generate code to compute the remainder of two signed integers. Returns the
/// remainder, which will have the sign of the dividend. Builder's insert point
/// should be pointing where the caller wants code generated, e.g. at the srem
/// instruction. This will generate a urem in the process, and Builder's insert
/// point will be pointing at the uren (if present, i.e. not folded), ready to
/// be expanded if the user wishes
static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor,
IRBuilder<> &Builder) {
unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
ConstantInt *Shift;
if (BitWidth == 64) {
Shift = Builder.getInt64(63);
} else {
assert(BitWidth == 32 && "Unexpected bit width");
Shift = Builder.getInt32(31);
}
// Following instructions are generated for both i32 (shift 31) and
// i64 (shift 63).
// ; %dividend_sgn = ashr i32 %dividend, 31
// ; %divisor_sgn = ashr i32 %divisor, 31
// ; %dvd_xor = xor i32 %dividend, %dividend_sgn
// ; %dvs_xor = xor i32 %divisor, %divisor_sgn
// ; %u_dividend = sub i32 %dvd_xor, %dividend_sgn
// ; %u_divisor = sub i32 %dvs_xor, %divisor_sgn
// ; %urem = urem i32 %dividend, %divisor
// ; %xored = xor i32 %urem, %dividend_sgn
// ; %srem = sub i32 %xored, %dividend_sgn
Value *DividendSign = Builder.CreateAShr(Dividend, Shift);
Value *DivisorSign = Builder.CreateAShr(Divisor, Shift);
Value *DvdXor = Builder.CreateXor(Dividend, DividendSign);
Value *DvsXor = Builder.CreateXor(Divisor, DivisorSign);
Value *UDividend = Builder.CreateSub(DvdXor, DividendSign);
Value *UDivisor = Builder.CreateSub(DvsXor, DivisorSign);
Value *URem = Builder.CreateURem(UDividend, UDivisor);
Value *Xored = Builder.CreateXor(URem, DividendSign);
Value *SRem = Builder.CreateSub(Xored, DividendSign);
if (Instruction *URemInst = dyn_cast<Instruction>(URem))
Builder.SetInsertPoint(URemInst);
return SRem;
}
/// Generate code to compute the remainder of two unsigned integers. Returns the
/// remainder. Builder's insert point should be pointing where the caller wants
/// code generated, e.g. at the urem instruction. This will generate a udiv in
/// the process, and Builder's insert point will be pointing at the udiv (if
/// present, i.e. not folded), ready to be expanded if the user wishes
static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor,
IRBuilder<> &Builder) {
// Remainder = Dividend - Quotient*Divisor
// Following instructions are generated for both i32 and i64
// ; %quotient = udiv i32 %dividend, %divisor
// ; %product = mul i32 %divisor, %quotient
// ; %remainder = sub i32 %dividend, %product
Value *Quotient = Builder.CreateUDiv(Dividend, Divisor);
Value *Product = Builder.CreateMul(Divisor, Quotient);
Value *Remainder = Builder.CreateSub(Dividend, Product);
if (Instruction *UDiv = dyn_cast<Instruction>(Quotient))
Builder.SetInsertPoint(UDiv);
return Remainder;
}
/// Generate code to divide two signed integers. Returns the quotient, rounded
/// towards 0. Builder's insert point should be pointing where the caller wants
/// code generated, e.g. at the sdiv instruction. This will generate a udiv in
/// the process, and Builder's insert point will be pointing at the udiv (if
/// present, i.e. not folded), ready to be expanded if the user wishes.
static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
IRBuilder<> &Builder) {
// Implementation taken from compiler-rt's __divsi3 and __divdi3
unsigned BitWidth = Dividend->getType()->getIntegerBitWidth();
ConstantInt *Shift;
if (BitWidth == 64) {
Shift = Builder.getInt64(63);
} else {
assert(BitWidth == 32 && "Unexpected bit width");
Shift = Builder.getInt32(31);
}
// Following instructions are generated for both i32 (shift 31) and
// i64 (shift 63).
// ; %tmp = ashr i32 %dividend, 31
// ; %tmp1 = ashr i32 %divisor, 31
// ; %tmp2 = xor i32 %tmp, %dividend
// ; %u_dvnd = sub nsw i32 %tmp2, %tmp
// ; %tmp3 = xor i32 %tmp1, %divisor
// ; %u_dvsr = sub nsw i32 %tmp3, %tmp1
// ; %q_sgn = xor i32 %tmp1, %tmp
// ; %q_mag = udiv i32 %u_dvnd, %u_dvsr
// ; %tmp4 = xor i32 %q_mag, %q_sgn
// ; %q = sub i32 %tmp4, %q_sgn
Value *Tmp = Builder.CreateAShr(Dividend, Shift);
Value *Tmp1 = Builder.CreateAShr(Divisor, Shift);
Value *Tmp2 = Builder.CreateXor(Tmp, Dividend);
Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp);
Value *Tmp3 = Builder.CreateXor(Tmp1, Divisor);
Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1);
Value *Q_Sgn = Builder.CreateXor(Tmp1, Tmp);
Value *Q_Mag = Builder.CreateUDiv(U_Dvnd, U_Dvsr);
Value *Tmp4 = Builder.CreateXor(Q_Mag, Q_Sgn);
Value *Q = Builder.CreateSub(Tmp4, Q_Sgn);
if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag))
Builder.SetInsertPoint(UDiv);
return Q;
}
/// Generates code to divide two unsigned scalar 32-bit or 64-bit integers.
/// Returns the quotient, rounded towards 0. Builder's insert point should
/// point where the caller wants code generated, e.g. at the udiv instruction.
static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
IRBuilder<> &Builder) {
// The basic algorithm can be found in the compiler-rt project's
// implementation of __udivsi3.c. Here, we do a lower-level IR based approach
// that's been hand-tuned to lessen the amount of control flow involved.
// Some helper values
IntegerType *DivTy = cast<IntegerType>(Dividend->getType());
unsigned BitWidth = DivTy->getBitWidth();
ConstantInt *Zero;
ConstantInt *One;
ConstantInt *NegOne;
ConstantInt *MSB;
if (BitWidth == 64) {
Zero = Builder.getInt64(0);
One = Builder.getInt64(1);
NegOne = ConstantInt::getSigned(DivTy, -1);
MSB = Builder.getInt64(63);
} else {
assert(BitWidth == 32 && "Unexpected bit width");
Zero = Builder.getInt32(0);
One = Builder.getInt32(1);
NegOne = ConstantInt::getSigned(DivTy, -1);
MSB = Builder.getInt32(31);
}
ConstantInt *True = Builder.getTrue();
BasicBlock *IBB = Builder.GetInsertBlock();
Function *F = IBB->getParent();
Function *CTLZ = Intrinsic::getDeclaration(F->getParent(), Intrinsic::ctlz,
DivTy);
// Our CFG is going to look like:
// +---------------------+
// | special-cases |
// | ... |
// +---------------------+
// | |
// | +----------+
// | | bb1 |
// | | ... |
// | +----------+
// | | |
// | | +------------+
// | | | preheader |
// | | | ... |
// | | +------------+
// | | |
// | | | +---+
// | | | | |
// | | +------------+ |
// | | | do-while | |
// | | | ... | |
// | | +------------+ |
// | | | | |
// | +-----------+ +---+
// | | loop-exit |
// | | ... |
// | +-----------+
// | |
// +-------+
// | ... |
// | end |
// +-------+
BasicBlock *SpecialCases = Builder.GetInsertBlock();
SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases"));
BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(),
"udiv-end");
BasicBlock *LoopExit = BasicBlock::Create(Builder.getContext(),
"udiv-loop-exit", F, End);
BasicBlock *DoWhile = BasicBlock::Create(Builder.getContext(),
"udiv-do-while", F, End);
BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(),
"udiv-preheader", F, End);
BasicBlock *BB1 = BasicBlock::Create(Builder.getContext(),
"udiv-bb1", F, End);
// We'll be overwriting the terminator to insert our extra blocks
SpecialCases->getTerminator()->eraseFromParent();
// Same instructions are generated for both i32 (msb 31) and i64 (msb 63).
// First off, check for special cases: dividend or divisor is zero, divisor
// is greater than dividend, and divisor is 1.
// ; special-cases:
// ; %ret0_1 = icmp eq i32 %divisor, 0
// ; %ret0_2 = icmp eq i32 %dividend, 0
// ; %ret0_3 = or i1 %ret0_1, %ret0_2
// ; %tmp0 = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true)
// ; %tmp1 = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true)
// ; %sr = sub nsw i32 %tmp0, %tmp1
// ; %ret0_4 = icmp ugt i32 %sr, 31
// ; %ret0 = or i1 %ret0_3, %ret0_4
// ; %retDividend = icmp eq i32 %sr, 31
// ; %retVal = select i1 %ret0, i32 0, i32 %dividend
// ; %earlyRet = or i1 %ret0, %retDividend
// ; br i1 %earlyRet, label %end, label %bb1
Builder.SetInsertPoint(SpecialCases);
Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero);
Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero);
Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2);
Value *Tmp0 = Builder.CreateCall(CTLZ, {Divisor, True});
Value *Tmp1 = Builder.CreateCall(CTLZ, {Dividend, True});
Value *SR = Builder.CreateSub(Tmp0, Tmp1);
Value *Ret0_4 = Builder.CreateICmpUGT(SR, MSB);
Value *Ret0 = Builder.CreateOr(Ret0_3, Ret0_4);
Value *RetDividend = Builder.CreateICmpEQ(SR, MSB);
Value *RetVal = Builder.CreateSelect(Ret0, Zero, Dividend);
Value *EarlyRet = Builder.CreateOr(Ret0, RetDividend);
Builder.CreateCondBr(EarlyRet, End, BB1);
// ; bb1: ; preds = %special-cases
// ; %sr_1 = add i32 %sr, 1
// ; %tmp2 = sub i32 31, %sr
// ; %q = shl i32 %dividend, %tmp2
// ; %skipLoop = icmp eq i32 %sr_1, 0
// ; br i1 %skipLoop, label %loop-exit, label %preheader
Builder.SetInsertPoint(BB1);
Value *SR_1 = Builder.CreateAdd(SR, One);
Value *Tmp2 = Builder.CreateSub(MSB, SR);
Value *Q = Builder.CreateShl(Dividend, Tmp2);
Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero);
Builder.CreateCondBr(SkipLoop, LoopExit, Preheader);
// ; preheader: ; preds = %bb1
// ; %tmp3 = lshr i32 %dividend, %sr_1
// ; %tmp4 = add i32 %divisor, -1
// ; br label %do-while
Builder.SetInsertPoint(Preheader);
Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1);
Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne);
Builder.CreateBr(DoWhile);
// ; do-while: ; preds = %do-while, %preheader
// ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
// ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
// ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
// ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
// ; %tmp5 = shl i32 %r_1, 1
// ; %tmp6 = lshr i32 %q_2, 31
// ; %tmp7 = or i32 %tmp5, %tmp6
// ; %tmp8 = shl i32 %q_2, 1
// ; %q_1 = or i32 %carry_1, %tmp8
// ; %tmp9 = sub i32 %tmp4, %tmp7
// ; %tmp10 = ashr i32 %tmp9, 31
// ; %carry = and i32 %tmp10, 1
// ; %tmp11 = and i32 %tmp10, %divisor
// ; %r = sub i32 %tmp7, %tmp11
// ; %sr_2 = add i32 %sr_3, -1
// ; %tmp12 = icmp eq i32 %sr_2, 0
// ; br i1 %tmp12, label %loop-exit, label %do-while
Builder.SetInsertPoint(DoWhile);
PHINode *Carry_1 = Builder.CreatePHI(DivTy, 2);
PHINode *SR_3 = Builder.CreatePHI(DivTy, 2);
PHINode *R_1 = Builder.CreatePHI(DivTy, 2);
PHINode *Q_2 = Builder.CreatePHI(DivTy, 2);
Value *Tmp5 = Builder.CreateShl(R_1, One);
Value *Tmp6 = Builder.CreateLShr(Q_2, MSB);
Value *Tmp7 = Builder.CreateOr(Tmp5, Tmp6);
Value *Tmp8 = Builder.CreateShl(Q_2, One);
Value *Q_1 = Builder.CreateOr(Carry_1, Tmp8);
Value *Tmp9 = Builder.CreateSub(Tmp4, Tmp7);
Value *Tmp10 = Builder.CreateAShr(Tmp9, MSB);
Value *Carry = Builder.CreateAnd(Tmp10, One);
Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor);
Value *R = Builder.CreateSub(Tmp7, Tmp11);
Value *SR_2 = Builder.CreateAdd(SR_3, NegOne);
Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero);
Builder.CreateCondBr(Tmp12, LoopExit, DoWhile);
// ; loop-exit: ; preds = %do-while, %bb1
// ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
// ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
// ; %tmp13 = shl i32 %q_3, 1
// ; %q_4 = or i32 %carry_2, %tmp13
// ; br label %end
Builder.SetInsertPoint(LoopExit);
PHINode *Carry_2 = Builder.CreatePHI(DivTy, 2);
PHINode *Q_3 = Builder.CreatePHI(DivTy, 2);
Value *Tmp13 = Builder.CreateShl(Q_3, One);
Value *Q_4 = Builder.CreateOr(Carry_2, Tmp13);
Builder.CreateBr(End);
// ; end: ; preds = %loop-exit, %special-cases
// ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
// ; ret i32 %q_5
Builder.SetInsertPoint(End, End->begin());
PHINode *Q_5 = Builder.CreatePHI(DivTy, 2);
// Populate the Phis, since all values have now been created. Our Phis were:
// ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
Carry_1->addIncoming(Zero, Preheader);
Carry_1->addIncoming(Carry, DoWhile);
// ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
SR_3->addIncoming(SR_1, Preheader);
SR_3->addIncoming(SR_2, DoWhile);
// ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
R_1->addIncoming(Tmp3, Preheader);
R_1->addIncoming(R, DoWhile);
// ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
Q_2->addIncoming(Q, Preheader);
Q_2->addIncoming(Q_1, DoWhile);
// ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
Carry_2->addIncoming(Zero, BB1);
Carry_2->addIncoming(Carry, DoWhile);
// ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
Q_3->addIncoming(Q, BB1);
Q_3->addIncoming(Q_1, DoWhile);
// ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
Q_5->addIncoming(Q_4, LoopExit);
Q_5->addIncoming(RetVal, SpecialCases);
return Q_5;
}
/// Generate code to calculate the remainder of two integers, replacing Rem with
/// the generated code. This currently generates code using the udiv expansion,
/// but future work includes generating more specialized code, e.g. when more
/// information about the operands are known. Implements both 32bit and 64bit
/// scalar division.
///
/// @brief Replace Rem with generated code.
bool llvm::expandRemainder(BinaryOperator *Rem) {
assert((Rem->getOpcode() == Instruction::SRem ||
Rem->getOpcode() == Instruction::URem) &&
"Trying to expand remainder from a non-remainder function");
IRBuilder<> Builder(Rem);
Type *RemTy = Rem->getType();
if (RemTy->isVectorTy())
llvm_unreachable("Div over vectors not supported");
unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
if (RemTyBitWidth != 32 && RemTyBitWidth != 64)
llvm_unreachable("Div of bitwidth other than 32 or 64 not supported");
// First prepare the sign if it's a signed remainder
if (Rem->getOpcode() == Instruction::SRem) {
Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0),
Rem->getOperand(1), Builder);
Rem->replaceAllUsesWith(Remainder);
Rem->dropAllReferences();
Rem->eraseFromParent();
// If we didn't actually generate an urem instruction, we're done
// This happens for example if the input were constant. In this case the
// Builder insertion point was unchanged
if (Rem == Builder.GetInsertPoint().getNodePtrUnchecked())
return true;
BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
Rem = BO;
}
Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0),
Rem->getOperand(1),
Builder);
Rem->replaceAllUsesWith(Remainder);
Rem->dropAllReferences();
Rem->eraseFromParent();
// Expand the udiv
if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) {
assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?");
expandDivision(UDiv);
}
return true;
}
/// Generate code to divide two integers, replacing Div with the generated
/// code. This currently generates code similarly to compiler-rt's
/// implementations, but future work includes generating more specialized code
/// when more information about the operands are known. Implements both
/// 32bit and 64bit scalar division.
///
/// @brief Replace Div with generated code.
bool llvm::expandDivision(BinaryOperator *Div) {
assert((Div->getOpcode() == Instruction::SDiv ||
Div->getOpcode() == Instruction::UDiv) &&
"Trying to expand division from a non-division function");
IRBuilder<> Builder(Div);
Type *DivTy = Div->getType();
if (DivTy->isVectorTy())
llvm_unreachable("Div over vectors not supported");
unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
if (DivTyBitWidth != 32 && DivTyBitWidth != 64)
llvm_unreachable("Div of bitwidth other than 32 or 64 not supported");
// First prepare the sign if it's a signed division
if (Div->getOpcode() == Instruction::SDiv) {
// Lower the code to unsigned division, and reset Div to point to the udiv.
Value *Quotient = generateSignedDivisionCode(Div->getOperand(0),
Div->getOperand(1), Builder);
Div->replaceAllUsesWith(Quotient);
Div->dropAllReferences();
Div->eraseFromParent();
// If we didn't actually generate an udiv instruction, we're done
// This happens for example if the input were constant. In this case the
// Builder insertion point was unchanged
if (Div == Builder.GetInsertPoint().getNodePtrUnchecked())
return true;
BinaryOperator *BO = dyn_cast<BinaryOperator>(Builder.GetInsertPoint());
Div = BO;
}
// Insert the unsigned division code
Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0),
Div->getOperand(1),
Builder);
Div->replaceAllUsesWith(Quotient);
Div->dropAllReferences();
Div->eraseFromParent();
return true;
}
/// Generate code to compute the remainder of two integers of bitwidth up to
/// 32 bits. Uses the above routines and extends the inputs/truncates the
/// outputs to operate in 32 bits; that is, these routines are good for targets
/// that have no or very little suppport for smaller than 32 bit integer
/// arithmetic.
///
/// @brief Replace Rem with emulation code.
bool llvm::expandRemainderUpTo32Bits(BinaryOperator *Rem) {
assert((Rem->getOpcode() == Instruction::SRem ||
Rem->getOpcode() == Instruction::URem) &&
"Trying to expand remainder from a non-remainder function");
Type *RemTy = Rem->getType();
if (RemTy->isVectorTy())
llvm_unreachable("Div over vectors not supported");
unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
if (RemTyBitWidth > 32)
llvm_unreachable("Div of bitwidth greater than 32 not supported");
if (RemTyBitWidth == 32)
return expandRemainder(Rem);
// If bitwidth smaller than 32 extend inputs, extend output and proceed
// with 32 bit division.
IRBuilder<> Builder(Rem);
Value *ExtDividend;
Value *ExtDivisor;
Value *ExtRem;
Value *Trunc;
Type *Int32Ty = Builder.getInt32Ty();
if (Rem->getOpcode() == Instruction::SRem) {
ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty);
ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty);
ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
} else {
ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty);
ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty);
ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
}
Trunc = Builder.CreateTrunc(ExtRem, RemTy);
Rem->replaceAllUsesWith(Trunc);
Rem->dropAllReferences();
Rem->eraseFromParent();
return expandRemainder(cast<BinaryOperator>(ExtRem));
}
/// Generate code to compute the remainder of two integers of bitwidth up to
/// 64 bits. Uses the above routines and extends the inputs/truncates the
/// outputs to operate in 64 bits.
///
/// @brief Replace Rem with emulation code.
bool llvm::expandRemainderUpTo64Bits(BinaryOperator *Rem) {
assert((Rem->getOpcode() == Instruction::SRem ||
Rem->getOpcode() == Instruction::URem) &&
"Trying to expand remainder from a non-remainder function");
Type *RemTy = Rem->getType();
if (RemTy->isVectorTy())
llvm_unreachable("Div over vectors not supported");
unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
if (RemTyBitWidth > 64)
llvm_unreachable("Div of bitwidth greater than 64 not supported");
if (RemTyBitWidth == 64)
return expandRemainder(Rem);
// If bitwidth smaller than 64 extend inputs, extend output and proceed
// with 64 bit division.
IRBuilder<> Builder(Rem);
Value *ExtDividend;
Value *ExtDivisor;
Value *ExtRem;
Value *Trunc;
Type *Int64Ty = Builder.getInt64Ty();
if (Rem->getOpcode() == Instruction::SRem) {
ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int64Ty);
ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int64Ty);
ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
} else {
ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int64Ty);
ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int64Ty);
ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
}
Trunc = Builder.CreateTrunc(ExtRem, RemTy);
Rem->replaceAllUsesWith(Trunc);
Rem->dropAllReferences();
Rem->eraseFromParent();
return expandRemainder(cast<BinaryOperator>(ExtRem));
}
/// Generate code to divide two integers of bitwidth up to 32 bits. Uses the
/// above routines and extends the inputs/truncates the outputs to operate
/// in 32 bits; that is, these routines are good for targets that have no
/// or very little support for smaller than 32 bit integer arithmetic.
///
/// @brief Replace Div with emulation code.
bool llvm::expandDivisionUpTo32Bits(BinaryOperator *Div) {
assert((Div->getOpcode() == Instruction::SDiv ||
Div->getOpcode() == Instruction::UDiv) &&
"Trying to expand division from a non-division function");
Type *DivTy = Div->getType();
if (DivTy->isVectorTy())
llvm_unreachable("Div over vectors not supported");
unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
if (DivTyBitWidth > 32)
llvm_unreachable("Div of bitwidth greater than 32 not supported");
if (DivTyBitWidth == 32)
return expandDivision(Div);
// If bitwidth smaller than 32 extend inputs, extend output and proceed
// with 32 bit division.
IRBuilder<> Builder(Div);
Value *ExtDividend;
Value *ExtDivisor;
Value *ExtDiv;
Value *Trunc;
Type *Int32Ty = Builder.getInt32Ty();
if (Div->getOpcode() == Instruction::SDiv) {
ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty);
ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty);
ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
} else {
ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty);
ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty);
ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
}
Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
Div->replaceAllUsesWith(Trunc);
Div->dropAllReferences();
Div->eraseFromParent();
return expandDivision(cast<BinaryOperator>(ExtDiv));
}
/// Generate code to divide two integers of bitwidth up to 64 bits. Uses the
/// above routines and extends the inputs/truncates the outputs to operate
/// in 64 bits.
///
/// @brief Replace Div with emulation code.
bool llvm::expandDivisionUpTo64Bits(BinaryOperator *Div) {
assert((Div->getOpcode() == Instruction::SDiv ||
Div->getOpcode() == Instruction::UDiv) &&
"Trying to expand division from a non-division function");
Type *DivTy = Div->getType();
if (DivTy->isVectorTy())
llvm_unreachable("Div over vectors not supported");
unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
if (DivTyBitWidth > 64)
llvm_unreachable("Div of bitwidth greater than 64 not supported");
if (DivTyBitWidth == 64)
return expandDivision(Div);
// If bitwidth smaller than 64 extend inputs, extend output and proceed
// with 64 bit division.
IRBuilder<> Builder(Div);
Value *ExtDividend;
Value *ExtDivisor;
Value *ExtDiv;
Value *Trunc;
Type *Int64Ty = Builder.getInt64Ty();
if (Div->getOpcode() == Instruction::SDiv) {
ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int64Ty);
ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int64Ty);
ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
} else {
ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int64Ty);
ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int64Ty);
ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
}
Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
Div->replaceAllUsesWith(Trunc);
Div->dropAllReferences();
Div->eraseFromParent();
return expandDivision(cast<BinaryOperator>(ExtDiv));
}