llvm/lib/Transforms/Utils/LoopUtils.cpp
James Molloy f30ebaced7 [LoopUtils,LV] Propagate fast-math flags on generated FCmp instructions
We're currently losing any fast-math flags when synthesizing fcmps for
min/max reductions. In LV, make sure we copy over the scalar inst's
flags. In LoopUtils, we know we only ever match patterns with
hasUnsafeAlgebra, so apply that to any synthesized ops.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248201 91177308-0d34-0410-b5e6-96231b3b80d8
2015-09-21 19:41:19 +00:00

730 lines
26 KiB
C++

//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines common loop utility functions.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Debug.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "loop-utils"
bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
SmallPtrSetImpl<Instruction *> &Set) {
for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
if (!Set.count(dyn_cast<Instruction>(*Use)))
return false;
return true;
}
bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
switch (Kind) {
default:
break;
case RK_IntegerAdd:
case RK_IntegerMult:
case RK_IntegerOr:
case RK_IntegerAnd:
case RK_IntegerXor:
case RK_IntegerMinMax:
return true;
}
return false;
}
bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
}
bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
switch (Kind) {
default:
break;
case RK_IntegerAdd:
case RK_IntegerMult:
case RK_FloatAdd:
case RK_FloatMult:
return true;
}
return false;
}
Instruction *
RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
SmallPtrSetImpl<Instruction *> &Visited,
SmallPtrSetImpl<Instruction *> &CI) {
if (!Phi->hasOneUse())
return Phi;
const APInt *M = nullptr;
Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
// Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
// with a new integer type of the corresponding bit width.
if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)),
m_And(m_APInt(M), m_Instruction(I))))) {
int32_t Bits = (*M + 1).exactLogBase2();
if (Bits > 0) {
RT = IntegerType::get(Phi->getContext(), Bits);
Visited.insert(Phi);
CI.insert(J);
return J;
}
}
return Phi;
}
bool RecurrenceDescriptor::getSourceExtensionKind(
Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
SmallPtrSetImpl<Instruction *> &Visited,
SmallPtrSetImpl<Instruction *> &CI) {
SmallVector<Instruction *, 8> Worklist;
bool FoundOneOperand = false;
unsigned DstSize = RT->getPrimitiveSizeInBits();
Worklist.push_back(Exit);
// Traverse the instructions in the reduction expression, beginning with the
// exit value.
while (!Worklist.empty()) {
Instruction *I = Worklist.pop_back_val();
for (Use &U : I->operands()) {
// Terminate the traversal if the operand is not an instruction, or we
// reach the starting value.
Instruction *J = dyn_cast<Instruction>(U.get());
if (!J || J == Start)
continue;
// Otherwise, investigate the operation if it is also in the expression.
if (Visited.count(J)) {
Worklist.push_back(J);
continue;
}
// If the operand is not in Visited, it is not a reduction operation, but
// it does feed into one. Make sure it is either a single-use sign- or
// zero-extend instruction.
CastInst *Cast = dyn_cast<CastInst>(J);
bool IsSExtInst = isa<SExtInst>(J);
if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
return false;
// Ensure the source type of the extend is no larger than the reduction
// type. It is not necessary for the types to be identical.
unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
if (SrcSize > DstSize)
return false;
// Furthermore, ensure that all such extends are of the same kind.
if (FoundOneOperand) {
if (IsSigned != IsSExtInst)
return false;
} else {
FoundOneOperand = true;
IsSigned = IsSExtInst;
}
// Lastly, if the source type of the extend matches the reduction type,
// add the extend to CI so that we can avoid accounting for it in the
// cost model.
if (SrcSize == DstSize)
CI.insert(Cast);
}
}
return true;
}
bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
Loop *TheLoop, bool HasFunNoNaNAttr,
RecurrenceDescriptor &RedDes) {
if (Phi->getNumIncomingValues() != 2)
return false;
// Reduction variables are only found in the loop header block.
if (Phi->getParent() != TheLoop->getHeader())
return false;
// Obtain the reduction start value from the value that comes from the loop
// preheader.
Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
// ExitInstruction is the single value which is used outside the loop.
// We only allow for a single reduction value to be used outside the loop.
// This includes users of the reduction, variables (which form a cycle
// which ends in the phi node).
Instruction *ExitInstruction = nullptr;
// Indicates that we found a reduction operation in our scan.
bool FoundReduxOp = false;
// We start with the PHI node and scan for all of the users of this
// instruction. All users must be instructions that can be used as reduction
// variables (such as ADD). We must have a single out-of-block user. The cycle
// must include the original PHI.
bool FoundStartPHI = false;
// To recognize min/max patterns formed by a icmp select sequence, we store
// the number of instruction we saw from the recognized min/max pattern,
// to make sure we only see exactly the two instructions.
unsigned NumCmpSelectPatternInst = 0;
InstDesc ReduxDesc(false, nullptr);
// Data used for determining if the recurrence has been type-promoted.
Type *RecurrenceType = Phi->getType();
SmallPtrSet<Instruction *, 4> CastInsts;
Instruction *Start = Phi;
bool IsSigned = false;
SmallPtrSet<Instruction *, 8> VisitedInsts;
SmallVector<Instruction *, 8> Worklist;
// Return early if the recurrence kind does not match the type of Phi. If the
// recurrence kind is arithmetic, we attempt to look through AND operations
// resulting from the type promotion performed by InstCombine. Vector
// operations are not limited to the legal integer widths, so we may be able
// to evaluate the reduction in the narrower width.
if (RecurrenceType->isFloatingPointTy()) {
if (!isFloatingPointRecurrenceKind(Kind))
return false;
} else {
if (!isIntegerRecurrenceKind(Kind))
return false;
if (isArithmeticRecurrenceKind(Kind))
Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
}
Worklist.push_back(Start);
VisitedInsts.insert(Start);
// A value in the reduction can be used:
// - By the reduction:
// - Reduction operation:
// - One use of reduction value (safe).
// - Multiple use of reduction value (not safe).
// - PHI:
// - All uses of the PHI must be the reduction (safe).
// - Otherwise, not safe.
// - By one instruction outside of the loop (safe).
// - By further instructions outside of the loop (not safe).
// - By an instruction that is not part of the reduction (not safe).
// This is either:
// * An instruction type other than PHI or the reduction operation.
// * A PHI in the header other than the initial PHI.
while (!Worklist.empty()) {
Instruction *Cur = Worklist.back();
Worklist.pop_back();
// No Users.
// If the instruction has no users then this is a broken chain and can't be
// a reduction variable.
if (Cur->use_empty())
return false;
bool IsAPhi = isa<PHINode>(Cur);
// A header PHI use other than the original PHI.
if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
return false;
// Reductions of instructions such as Div, and Sub is only possible if the
// LHS is the reduction variable.
if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
!isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
!VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
return false;
// Any reduction instruction must be of one of the allowed kinds. We ignore
// the starting value (the Phi or an AND instruction if the Phi has been
// type-promoted).
if (Cur != Start) {
ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
if (!ReduxDesc.isRecurrence())
return false;
}
// A reduction operation must only have one use of the reduction value.
if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
hasMultipleUsesOf(Cur, VisitedInsts))
return false;
// All inputs to a PHI node must be a reduction value.
if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
return false;
if (Kind == RK_IntegerMinMax &&
(isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
++NumCmpSelectPatternInst;
if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
++NumCmpSelectPatternInst;
// Check whether we found a reduction operator.
FoundReduxOp |= !IsAPhi && Cur != Start;
// Process users of current instruction. Push non-PHI nodes after PHI nodes
// onto the stack. This way we are going to have seen all inputs to PHI
// nodes once we get to them.
SmallVector<Instruction *, 8> NonPHIs;
SmallVector<Instruction *, 8> PHIs;
for (User *U : Cur->users()) {
Instruction *UI = cast<Instruction>(U);
// Check if we found the exit user.
BasicBlock *Parent = UI->getParent();
if (!TheLoop->contains(Parent)) {
// Exit if you find multiple outside users or if the header phi node is
// being used. In this case the user uses the value of the previous
// iteration, in which case we would loose "VF-1" iterations of the
// reduction operation if we vectorize.
if (ExitInstruction != nullptr || Cur == Phi)
return false;
// The instruction used by an outside user must be the last instruction
// before we feed back to the reduction phi. Otherwise, we loose VF-1
// operations on the value.
if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
return false;
ExitInstruction = Cur;
continue;
}
// Process instructions only once (termination). Each reduction cycle
// value must only be used once, except by phi nodes and min/max
// reductions which are represented as a cmp followed by a select.
InstDesc IgnoredVal(false, nullptr);
if (VisitedInsts.insert(UI).second) {
if (isa<PHINode>(UI))
PHIs.push_back(UI);
else
NonPHIs.push_back(UI);
} else if (!isa<PHINode>(UI) &&
((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
!isa<SelectInst>(UI)) ||
!isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
return false;
// Remember that we completed the cycle.
if (UI == Phi)
FoundStartPHI = true;
}
Worklist.append(PHIs.begin(), PHIs.end());
Worklist.append(NonPHIs.begin(), NonPHIs.end());
}
// This means we have seen one but not the other instruction of the
// pattern or more than just a select and cmp.
if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
NumCmpSelectPatternInst != 2)
return false;
if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
return false;
// If we think Phi may have been type-promoted, we also need to ensure that
// all source operands of the reduction are either SExtInsts or ZEstInsts. If
// so, we will be able to evaluate the reduction in the narrower bit width.
if (Start != Phi)
if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
IsSigned, VisitedInsts, CastInsts))
return false;
// We found a reduction var if we have reached the original phi node and we
// only have a single instruction with out-of-loop users.
// The ExitInstruction(Instruction which is allowed to have out-of-loop users)
// is saved as part of the RecurrenceDescriptor.
// Save the description of this reduction variable.
RecurrenceDescriptor RD(
RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
RedDes = RD;
return true;
}
/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
/// pattern corresponding to a min(X, Y) or max(X, Y).
RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
"Expect a select instruction");
Instruction *Cmp = nullptr;
SelectInst *Select = nullptr;
// We must handle the select(cmp()) as a single instruction. Advance to the
// select.
if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
return InstDesc(false, I);
return InstDesc(Select, Prev.getMinMaxKind());
}
// Only handle single use cases for now.
if (!(Select = dyn_cast<SelectInst>(I)))
return InstDesc(false, I);
if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
!(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
return InstDesc(false, I);
if (!Cmp->hasOneUse())
return InstDesc(false, I);
Value *CmpLeft;
Value *CmpRight;
// Look for a min/max pattern.
if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_UIntMin);
else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_UIntMax);
else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_SIntMax);
else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_SIntMin);
else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_FloatMin);
else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_FloatMax);
else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_FloatMin);
else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
return InstDesc(Select, MRK_FloatMax);
return InstDesc(false, I);
}
RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
InstDesc &Prev, bool HasFunNoNaNAttr) {
bool FP = I->getType()->isFloatingPointTy();
Instruction *UAI = Prev.getUnsafeAlgebraInst();
if (!UAI && FP && !I->hasUnsafeAlgebra())
UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
switch (I->getOpcode()) {
default:
return InstDesc(false, I);
case Instruction::PHI:
return InstDesc(I, Prev.getMinMaxKind());
case Instruction::Sub:
case Instruction::Add:
return InstDesc(Kind == RK_IntegerAdd, I);
case Instruction::Mul:
return InstDesc(Kind == RK_IntegerMult, I);
case Instruction::And:
return InstDesc(Kind == RK_IntegerAnd, I);
case Instruction::Or:
return InstDesc(Kind == RK_IntegerOr, I);
case Instruction::Xor:
return InstDesc(Kind == RK_IntegerXor, I);
case Instruction::FMul:
return InstDesc(Kind == RK_FloatMult, I, UAI);
case Instruction::FSub:
case Instruction::FAdd:
return InstDesc(Kind == RK_FloatAdd, I, UAI);
case Instruction::FCmp:
case Instruction::ICmp:
case Instruction::Select:
if (Kind != RK_IntegerMinMax &&
(!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
return InstDesc(false, I);
return isMinMaxSelectCmpPattern(I, Prev);
}
}
bool RecurrenceDescriptor::hasMultipleUsesOf(
Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
unsigned NumUses = 0;
for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
++Use) {
if (Insts.count(dyn_cast<Instruction>(*Use)))
++NumUses;
if (NumUses > 1)
return true;
}
return false;
}
bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
RecurrenceDescriptor &RedDes) {
bool HasFunNoNaNAttr = false;
BasicBlock *Header = TheLoop->getHeader();
Function &F = *Header->getParent();
if (F.hasFnAttribute("no-nans-fp-math"))
HasFunNoNaNAttr =
F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
RedDes)) {
DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
return true;
}
if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
return true;
}
// Not a reduction of known type.
return false;
}
/// This function returns the identity element (or neutral element) for
/// the operation K.
Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
Type *Tp) {
switch (K) {
case RK_IntegerXor:
case RK_IntegerAdd:
case RK_IntegerOr:
// Adding, Xoring, Oring zero to a number does not change it.
return ConstantInt::get(Tp, 0);
case RK_IntegerMult:
// Multiplying a number by 1 does not change it.
return ConstantInt::get(Tp, 1);
case RK_IntegerAnd:
// AND-ing a number with an all-1 value does not change it.
return ConstantInt::get(Tp, -1, true);
case RK_FloatMult:
// Multiplying a number by 1 does not change it.
return ConstantFP::get(Tp, 1.0L);
case RK_FloatAdd:
// Adding zero to a number does not change it.
return ConstantFP::get(Tp, 0.0L);
default:
llvm_unreachable("Unknown recurrence kind");
}
}
/// This function translates the recurrence kind to an LLVM binary operator.
unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
switch (Kind) {
case RK_IntegerAdd:
return Instruction::Add;
case RK_IntegerMult:
return Instruction::Mul;
case RK_IntegerOr:
return Instruction::Or;
case RK_IntegerAnd:
return Instruction::And;
case RK_IntegerXor:
return Instruction::Xor;
case RK_FloatMult:
return Instruction::FMul;
case RK_FloatAdd:
return Instruction::FAdd;
case RK_IntegerMinMax:
return Instruction::ICmp;
case RK_FloatMinMax:
return Instruction::FCmp;
default:
llvm_unreachable("Unknown recurrence operation");
}
}
Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
MinMaxRecurrenceKind RK,
Value *Left, Value *Right) {
CmpInst::Predicate P = CmpInst::ICMP_NE;
switch (RK) {
default:
llvm_unreachable("Unknown min/max recurrence kind");
case MRK_UIntMin:
P = CmpInst::ICMP_ULT;
break;
case MRK_UIntMax:
P = CmpInst::ICMP_UGT;
break;
case MRK_SIntMin:
P = CmpInst::ICMP_SLT;
break;
case MRK_SIntMax:
P = CmpInst::ICMP_SGT;
break;
case MRK_FloatMin:
P = CmpInst::FCMP_OLT;
break;
case MRK_FloatMax:
P = CmpInst::FCMP_OGT;
break;
}
// We only match FP sequences with unsafe algebra, so we can unconditionally
// set it on any generated instructions.
IRBuilder<>::FastMathFlagGuard FMFG(Builder);
FastMathFlags FMF;
FMF.setUnsafeAlgebra();
Builder.SetFastMathFlags(FMF);
Value *Cmp;
if (RK == MRK_FloatMin || RK == MRK_FloatMax)
Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
else
Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
return Select;
}
InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
ConstantInt *Step)
: StartValue(Start), IK(K), StepValue(Step) {
assert(IK != IK_NoInduction && "Not an induction");
assert(StartValue && "StartValue is null");
assert(StepValue && !StepValue->isZero() && "StepValue is zero");
assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
"StartValue is not a pointer for pointer induction");
assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
"StartValue is not an integer for integer induction");
assert(StepValue->getType()->isIntegerTy() &&
"StepValue is not an integer");
}
int InductionDescriptor::getConsecutiveDirection() const {
if (StepValue && (StepValue->isOne() || StepValue->isMinusOne()))
return StepValue->getSExtValue();
return 0;
}
Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index) const {
switch (IK) {
case IK_IntInduction:
assert(Index->getType() == StartValue->getType() &&
"Index type does not match StartValue type");
if (StepValue->isMinusOne())
return B.CreateSub(StartValue, Index);
if (!StepValue->isOne())
Index = B.CreateMul(Index, StepValue);
return B.CreateAdd(StartValue, Index);
case IK_PtrInduction:
assert(Index->getType() == StepValue->getType() &&
"Index type does not match StepValue type");
if (StepValue->isMinusOne())
Index = B.CreateNeg(Index);
else if (!StepValue->isOne())
Index = B.CreateMul(Index, StepValue);
return B.CreateGEP(nullptr, StartValue, Index);
case IK_NoInduction:
return nullptr;
}
llvm_unreachable("invalid enum");
}
bool InductionDescriptor::isInductionPHI(PHINode *Phi, ScalarEvolution *SE,
InductionDescriptor &D) {
Type *PhiTy = Phi->getType();
// We only handle integer and pointer inductions variables.
if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
return false;
// Check that the PHI is consecutive.
const SCEV *PhiScev = SE->getSCEV(Phi);
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
if (!AR) {
DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
return false;
}
assert(AR->getLoop()->getHeader() == Phi->getParent() &&
"PHI is an AddRec for a different loop?!");
Value *StartValue =
Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
const SCEV *Step = AR->getStepRecurrence(*SE);
// Calculate the pointer stride and check if it is consecutive.
const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
if (!C)
return false;
ConstantInt *CV = C->getValue();
if (PhiTy->isIntegerTy()) {
D = InductionDescriptor(StartValue, IK_IntInduction, CV);
return true;
}
assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
Type *PointerElementType = PhiTy->getPointerElementType();
// The pointer stride cannot be determined if the pointer element type is not
// sized.
if (!PointerElementType->isSized())
return false;
const DataLayout &DL = Phi->getModule()->getDataLayout();
int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
if (!Size)
return false;
int64_t CVSize = CV->getSExtValue();
if (CVSize % Size)
return false;
auto *StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size);
D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
return true;
}
/// \brief Returns the instructions that use values defined in the loop.
SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
SmallVector<Instruction *, 8> UsedOutside;
for (auto *Block : L->getBlocks())
// FIXME: I believe that this could use copy_if if the Inst reference could
// be adapted into a pointer.
for (auto &Inst : *Block) {
auto Users = Inst.users();
if (std::any_of(Users.begin(), Users.end(), [&](User *U) {
auto *Use = cast<Instruction>(U);
return !L->contains(Use->getParent());
}))
UsedOutside.push_back(&Inst);
}
return UsedOutside;
}