llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp
2011-12-09 21:19:53 +00:00

375 lines
16 KiB
C++

//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements some loop unrolling utilities for loops with run-time
// trip counts. See LoopUnroll.cpp for unrolling loops with compile-time
// trip counts.
//
// The functions in this file are used to generate extra code when the
// run-time trip count modulo the unroll factor is not 0. When this is the
// case, we need to generate code to execute these 'left over' iterations.
//
// The current strategy generates an if-then-else sequence prior to the
// unrolled loop to execute the 'left over' iterations. Other strategies
// include generate a loop before or after the unrolled loop.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-unroll"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include "llvm/BasicBlock.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <algorithm>
using namespace llvm;
STATISTIC(NumRuntimeUnrolled,
"Number of loops unrolled with run-time trip counts");
/// Connect the unrolling prolog code to the original loop.
/// The unrolling prolog code contains code to execute the
/// 'extra' iterations if the run-time trip count modulo the
/// unroll count is non-zero.
///
/// This function performs the following:
/// - Create PHI nodes at prolog end block to combine values
/// that exit the prolog code and jump around the prolog.
/// - Add a PHI operand to a PHI node at the loop exit block
/// for values that exit the prolog and go around the loop.
/// - Branch around the original loop if the trip count is less
/// than the unroll factor.
///
static void ConnectProlog(Loop *L, Value *TripCount, unsigned Count,
BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
BasicBlock *OrigPH, BasicBlock *NewPH,
ValueToValueMapTy &LVMap, Pass *P) {
BasicBlock *Latch = L->getLoopLatch();
assert(Latch != 0 && "Loop must have a latch");
// Create a PHI node for each outgoing value from the original loop
// (which means it is an outgoing value from the prolog code too).
// The new PHI node is inserted in the prolog end basic block.
// The new PHI name is added as an operand of a PHI node in either
// the loop header or the loop exit block.
for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
SBI != SBE; ++SBI) {
for (BasicBlock::iterator BBI = (*SBI)->begin();
PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
// Add a new PHI node to the prolog end block and add the
// appropriate incoming values.
PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
PrologEnd->getTerminator());
// Adding a value to the new PHI node from the original loop preheader.
// This is the value that skips all the prolog code.
if (L->contains(PN)) {
NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
} else {
NewPN->addIncoming(Constant::getNullValue(PN->getType()), OrigPH);
}
Value *OrigVal = PN->getIncomingValueForBlock(Latch);
Value *V = OrigVal;
if (Instruction *I = dyn_cast<Instruction>(V)) {
if (L->contains(I)) {
V = LVMap[I];
}
}
// Adding a value to the new PHI node from the last prolog block
// that was created.
NewPN->addIncoming(V, LastPrologBB);
// Update the existing PHI node operand with the value from the
// new PHI node. How this is done depends on if the existing
// PHI node is in the original loop block, or the exit block.
if (L->contains(PN)) {
PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
} else {
PN->addIncoming(NewPN, PrologEnd);
}
}
}
// Create a branch around the orignal loop, which is taken if the
// trip count is less than the unroll factor.
Instruction *InsertPt = PrologEnd->getTerminator();
Instruction *BrLoopExit =
new ICmpInst(InsertPt, ICmpInst::ICMP_ULT, TripCount,
ConstantInt::get(TripCount->getType(), Count));
BasicBlock *Exit = L->getUniqueExitBlock();
assert(Exit != 0 && "Loop must have a single exit block only");
// Split the exit to maintain loop canonicalization guarantees
SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
if (!Exit->isLandingPad()) {
SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", P);
} else {
SmallVector<BasicBlock*, 2> NewBBs;
SplitLandingPadPredecessors(Exit, Preds, ".unr1-lcssa", ".unr2-lcssa",
P, NewBBs);
}
// Add the branch to the exit block (around the unrolled loop)
BranchInst::Create(Exit, NewPH, BrLoopExit, InsertPt);
InsertPt->eraseFromParent();
}
/// Create a clone of the blocks in a loop and connect them together.
/// This function doesn't create a clone of the loop structure.
///
/// There are two value maps that are defined and used. VMap is
/// for the values in the current loop instance. LVMap contains
/// the values from the last loop instance. We need the LVMap values
/// to update the inital values for the current loop instance.
///
static void CloneLoopBlocks(Loop *L,
bool FirstCopy,
BasicBlock *InsertTop,
BasicBlock *InsertBot,
std::vector<BasicBlock *> &NewBlocks,
LoopBlocksDFS &LoopBlocks,
ValueToValueMapTy &VMap,
ValueToValueMapTy &LVMap,
LoopInfo *LI) {
BasicBlock *Preheader = L->getLoopPreheader();
BasicBlock *Header = L->getHeader();
BasicBlock *Latch = L->getLoopLatch();
Function *F = Header->getParent();
LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
// For each block in the original loop, create a new copy,
// and update the value map with the newly created values.
for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".unr", F);
NewBlocks.push_back(NewBB);
if (Loop *ParentLoop = L->getParentLoop())
ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
VMap[*BB] = NewBB;
if (Header == *BB) {
// For the first block, add a CFG connection to this newly
// created block
InsertTop->getTerminator()->setSuccessor(0, NewBB);
// Change the incoming values to the ones defined in the
// previously cloned loop.
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
PHINode *NewPHI = cast<PHINode>(VMap[I]);
if (FirstCopy) {
// We replace the first phi node with the value from the preheader
VMap[I] = NewPHI->getIncomingValueForBlock(Preheader);
NewBB->getInstList().erase(NewPHI);
} else {
// Update VMap with values from the previous block
unsigned idx = NewPHI->getBasicBlockIndex(Latch);
Value *InVal = NewPHI->getIncomingValue(idx);
if (Instruction *I = dyn_cast<Instruction>(InVal))
if (L->contains(I))
InVal = LVMap[InVal];
NewPHI->setIncomingValue(idx, InVal);
NewPHI->setIncomingBlock(idx, InsertTop);
}
}
}
if (Latch == *BB) {
VMap.erase((*BB)->getTerminator());
NewBB->getTerminator()->eraseFromParent();
BranchInst::Create(InsertBot, NewBB);
}
}
// LastValueMap is updated with the values for the current loop
// which are used the next time this function is called.
for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
VI != VE; ++VI) {
LVMap[VI->first] = VI->second;
}
}
/// Insert code in the prolog code when unrolling a loop with a
/// run-time trip-count.
///
/// This method assumes that the loop unroll factor is total number
/// of loop bodes in the loop after unrolling. (Some folks refer
/// to the unroll factor as the number of *extra* copies added).
/// We assume also that the loop unroll factor is a power-of-two. So, after
/// unrolling the loop, the number of loop bodies executed is 2,
/// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch
/// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
/// the switch instruction is generated.
///
/// extraiters = tripcount % loopfactor
/// if (extraiters == 0) jump Loop:
/// if (extraiters == loopfactor) jump L1
/// if (extraiters == loopfactor-1) jump L2
/// ...
/// L1: LoopBody;
/// L2: LoopBody;
/// ...
/// if tripcount < loopfactor jump End
/// Loop:
/// ...
/// End:
///
bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count, LoopInfo *LI,
LPPassManager *LPM) {
// for now, only unroll loops that contain a single exit
SmallVector<BasicBlock*, 4> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
if (ExitingBlocks.size() > 1)
return false;
// Make sure the loop is in canonical form, and there is a single
// exit block only.
if (!L->isLoopSimplifyForm() || L->getUniqueExitBlock() == 0)
return false;
// Use Scalar Evolution to compute the trip count. This allows more
// loops to be unrolled than relying on induction var simplification
ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
if (SE == 0)
return false;
// Only unroll loops with a computable trip count and the trip count needs
// to be an int value (allowing a pointer type is a TODO item)
const SCEV *BECount = SE->getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(BECount) || !BECount->getType()->isIntegerTy())
return false;
// Add 1 since the backedge count doesn't include the first loop iteration
const SCEV *TripCountSC =
SE->getAddExpr(BECount, SE->getConstant(BECount->getType(), 1));
if (isa<SCEVCouldNotCompute>(TripCountSC))
return false;
// We only handle cases when the unroll factor is a power of 2.
// Count is the loop unroll factor, the number of extra copies added + 1.
if ((Count & (Count-1)) != 0)
return false;
// If this loop is nested, then the loop unroller changes the code in
// parent loop, so the Scalar Evolution pass needs to be run again
if (Loop *ParentLoop = L->getParentLoop())
SE->forgetLoop(ParentLoop);
BasicBlock *PH = L->getLoopPreheader();
BasicBlock *Header = L->getHeader();
BasicBlock *Latch = L->getLoopLatch();
// It helps to splits the original preheader twice, one for the end of the
// prolog code and one for a new loop preheader
BasicBlock *PEnd = SplitEdge(PH, Header, LPM->getAsPass());
BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), LPM->getAsPass());
BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
// Compute the number of extra iterations required, which is:
// extra iterations = run-time trip count % (loop unroll factor + 1)
SCEVExpander Expander(*SE, "loop-unroll");
Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
PreHeaderBR);
Type *CountTy = TripCount->getType();
BinaryOperator *ModVal =
BinaryOperator::CreateURem(TripCount,
ConstantInt::get(CountTy, Count),
"xtraiter");
ModVal->insertBefore(PreHeaderBR);
// Check if for no extra iterations, then jump to unrolled loop
Value *BranchVal = new ICmpInst(PreHeaderBR,
ICmpInst::ICMP_NE, ModVal,
ConstantInt::get(CountTy, 0), "lcmp");
// Branch to either the extra iterations or the unrolled loop
// We will fix up the true branch label when adding loop body copies
BranchInst::Create(PEnd, PEnd, BranchVal, PreHeaderBR);
assert(PreHeaderBR->isUnconditional() &&
PreHeaderBR->getSuccessor(0) == PEnd &&
"CFG edges in Preheader are not correct");
PreHeaderBR->eraseFromParent();
ValueToValueMapTy LVMap;
Function *F = Header->getParent();
// These variables are used to update the CFG links in each iteration
BasicBlock *CompareBB = 0;
BasicBlock *LastLoopBB = PH;
// Get an ordered list of blocks in the loop to help with the ordering of the
// cloned blocks in the prolog code
LoopBlocksDFS LoopBlocks(L);
LoopBlocks.perform(LI);
//
// For each extra loop iteration, create a copy of the loop's basic blocks
// and generate a condition that branches to the copy depending on the
// number of 'left over' iterations.
//
for (unsigned leftOverIters = Count-1; leftOverIters > 0; --leftOverIters) {
std::vector<BasicBlock*> NewBlocks;
ValueToValueMapTy VMap;
// Clone all the basic blocks in the loop, but we don't clone the loop
// This function adds the appropriate CFG connections.
CloneLoopBlocks(L, (leftOverIters == Count-1), LastLoopBB, PEnd, NewBlocks,
LoopBlocks, VMap, LVMap, LI);
LastLoopBB = cast<BasicBlock>(VMap[Latch]);
// Insert the cloned blocks into function just before the original loop
F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(),
NewBlocks[0], F->end());
// Generate the code for the comparison which determines if the loop
// prolog code needs to be executed.
if (leftOverIters == Count-1) {
// There is no compare block for the fall-thru case when for the last
// left over iteration
CompareBB = NewBlocks[0];
} else {
// Create a new block for the comparison
BasicBlock *NewBB = BasicBlock::Create(CompareBB->getContext(), "unr.cmp",
F, CompareBB);
if (Loop *ParentLoop = L->getParentLoop()) {
// Add the new block to the parent loop, if needed
ParentLoop->addBasicBlockToLoop(NewBB, LI->getBase());
}
// The comparison w/ the extra iteration value and branch
Value *BranchVal = new ICmpInst(*NewBB, ICmpInst::ICMP_EQ, ModVal,
ConstantInt::get(CountTy, leftOverIters),
"un.tmp");
// Branch to either the extra iterations or the unrolled loop
BranchInst::Create(NewBlocks[0], CompareBB,
BranchVal, NewBB);
CompareBB = NewBB;
PH->getTerminator()->setSuccessor(0, NewBB);
VMap[NewPH] = CompareBB;
}
// Rewrite the cloned instruction operands to use the values
// created when the clone is created.
for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
for (BasicBlock::iterator I = NewBlocks[i]->begin(),
E = NewBlocks[i]->end(); I != E; ++I) {
RemapInstruction(I, VMap,
RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
}
}
}
// Connect the prolog code to the original loop and update the
// PHI functions.
ConnectProlog(L, TripCount, Count, LastLoopBB, PEnd, PH, NewPH, LVMap,
LPM->getAsPass());
NumRuntimeUnrolled++;
return true;
}