mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-25 21:46:50 +00:00
1e3557de0d
This will allow classes to implement the AA interface without deriving from the class or referencing an internal enum of some other class as their return types. Also, to a pretty fundamental extent, concepts such as 'NoAlias', 'MayAlias', and 'MustAlias' are first class concepts in LLVM and we aren't saving anything by scoping them heavily. My mild preference would have been to use a scoped enum, but that feature is essentially completely broken AFAICT. I'm extremely disappointed. For example, we cannot through any reasonable[1] means construct an enum class (or analog) which has scoped names but converts to a boolean in order to test for the possibility of aliasing. [1]: Richard Smith came up with a "solution", but it requires class templates, and lots of boilerplate setting up the enumeration multiple times. Something like Boost.PP could potentially bundle this up, but even that would be quite painful and it doesn't seem realistically worth it. The enum class solution would probably work without the need for a bool conversion. Differential Revision: http://reviews.llvm.org/D10495 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240255 91177308-0d34-0410-b5e6-96231b3b80d8 |
||
---|---|---|
.. | ||
_static | ||
_templates | ||
_themes/llvm-theme | ||
CommandGuide | ||
Frontend | ||
HistoricalNotes | ||
TableGen | ||
tutorial | ||
AliasAnalysis.rst | ||
AMDGPUUsage.rst | ||
ARM-BE-bitcastfail.png | ||
ARM-BE-bitcastsuccess.png | ||
ARM-BE-ld1.png | ||
ARM-BE-ldr.png | ||
Atomics.rst | ||
BigEndianNEON.rst | ||
BitCodeFormat.rst | ||
BitSets.rst | ||
BlockFrequencyTerminology.rst | ||
BranchWeightMetadata.rst | ||
Bugpoint.rst | ||
BuildingLLVMWithAutotools.rst | ||
CMake.rst | ||
CMakeLists.txt | ||
CodeGenerator.rst | ||
CodingStandards.rst | ||
CommandLine.rst | ||
CompilerWriterInfo.rst | ||
conf.py | ||
CoverageMappingFormat.rst | ||
DebuggingJITedCode.rst | ||
DeveloperPolicy.rst | ||
doxygen.cfg.in | ||
doxygen.intro | ||
Dummy.html | ||
ExceptionHandling.rst | ||
ExtendedIntegerResults.txt | ||
ExtendingLLVM.rst | ||
Extensions.rst | ||
FAQ.rst | ||
FaultMaps.rst | ||
GarbageCollection.rst | ||
gcc-loops.png | ||
GetElementPtr.rst | ||
GettingStarted.rst | ||
GettingStartedVS.rst | ||
GoldPlugin.rst | ||
HowToAddABuilder.rst | ||
HowToBuildOnARM.rst | ||
HowToCrossCompileLLVM.rst | ||
HowToReleaseLLVM.rst | ||
HowToSetUpLLVMStyleRTTI.rst | ||
HowToSubmitABug.rst | ||
HowToUseAttributes.rst | ||
HowToUseInstrMappings.rst | ||
InAlloca.rst | ||
index.rst | ||
LangRef.rst | ||
Lexicon.rst | ||
LibFuzzer.rst | ||
LinkTimeOptimization.rst | ||
linpack-pc.png | ||
LLVMBuild.rst | ||
LLVMBuild.txt | ||
make.bat | ||
Makefile | ||
Makefile.sphinx | ||
MakefileGuide.rst | ||
MarkedUpDisassembly.rst | ||
MCJIT-creation.png | ||
MCJIT-dyld-load.png | ||
MCJIT-engine-builder.png | ||
MCJIT-load-object.png | ||
MCJIT-load.png | ||
MCJIT-resolve-relocations.png | ||
MCJITDesignAndImplementation.rst | ||
MergeFunctions.rst | ||
NVPTXUsage.rst | ||
Packaging.rst | ||
Passes.rst | ||
Phabricator.rst | ||
ProgrammersManual.rst | ||
Projects.rst | ||
re_format.7 | ||
README.txt | ||
ReleaseNotes.rst | ||
ReleaseProcess.rst | ||
SegmentedStacks.rst | ||
SourceLevelDebugging.rst | ||
SphinxQuickstartTemplate.rst | ||
StackMaps.rst | ||
Statepoints.rst | ||
SystemLibrary.rst | ||
TableGenFundamentals.rst | ||
TestingGuide.rst | ||
TestSuiteMakefileGuide.rst | ||
Vectorizers.rst | ||
WritingAnLLVMBackend.rst | ||
WritingAnLLVMPass.rst | ||
yaml2obj.rst | ||
YamlIO.rst |
LLVM Documentation ================== LLVM's documentation is written in reStructuredText, a lightweight plaintext markup language (file extension `.rst`). While the reStructuredText documentation should be quite readable in source form, it is mostly meant to be processed by the Sphinx documentation generation system to create HTML pages which are hosted on <http://llvm.org/docs/> and updated after every commit. Manpage output is also supported, see below. If you instead would like to generate and view the HTML locally, install Sphinx <http://sphinx-doc.org/> and then do: cd docs/ make -f Makefile.sphinx $BROWSER _build/html/index.html The mapping between reStructuredText files and generated documentation is `docs/Foo.rst` <-> `_build/html/Foo.html` <-> `http://llvm.org/docs/Foo.html`. If you are interested in writing new documentation, you will want to read `SphinxQuickstartTemplate.rst` which will get you writing documentation very fast and includes examples of the most important reStructuredText markup syntax. Manpage Output =============== Building the manpages is similar to building the HTML documentation. The primary difference is to use the `man` makefile target, instead of the default (which is `html`). Sphinx then produces the man pages in the directory `_build/man/`. cd docs/ make -f Makefile.sphinx man man -l _build/man/FileCheck.1 The correspondence between .rst files and man pages is `docs/CommandGuide/Foo.rst` <-> `_build/man/Foo.1`. These .rst files are also included during HTML generation so they are also viewable online (as noted above) at e.g. `http://llvm.org/docs/CommandGuide/Foo.html`. Checking links ============== The reachibility of external links in the documentation can be checked by running: cd docs/ make -f Makefile.sphinx linkcheck