llvm/lib/Transforms/Scalar/Scalarizer.cpp
Hal Finkel 16fd27b2c3 Add scoped-noalias metadata
This commit adds scoped noalias metadata. The primary motivations for this
feature are:
  1. To preserve noalias function attribute information when inlining
  2. To provide the ability to model block-scope C99 restrict pointers

Neither of these two abilities are added here, only the necessary
infrastructure. In fact, there should be no change to existing functionality,
only the addition of new features. The logic that converts noalias function
parameters into this metadata during inlining will come in a follow-up commit.

What is added here is the ability to generally specify noalias memory-access
sets. Regarding the metadata, alias-analysis scopes are defined similar to TBAA
nodes:

!scope0 = metadata !{ metadata !"scope of foo()" }
!scope1 = metadata !{ metadata !"scope 1", metadata !scope0 }
!scope2 = metadata !{ metadata !"scope 2", metadata !scope0 }
!scope3 = metadata !{ metadata !"scope 2.1", metadata !scope2 }
!scope4 = metadata !{ metadata !"scope 2.2", metadata !scope2 }

Loads and stores can be tagged with an alias-analysis scope, and also, with a
noalias tag for a specific scope:

... = load %ptr1, !alias.scope !{ !scope1 }
... = load %ptr2, !alias.scope !{ !scope1, !scope2 }, !noalias !{ !scope1 }

When evaluating an aliasing query, if one of the instructions is associated
with an alias.scope id that is identical to the noalias scope associated with
the other instruction, or is a descendant (in the scope hierarchy) of the
noalias scope associated with the other instruction, then the two memory
accesses are assumed not to alias.

Note that is the first element of the scope metadata is a string, then it can
be combined accross functions and translation units. The string can be replaced
by a self-reference to create globally unqiue scope identifiers.

[Note: This overview is slightly stylized, since the metadata nodes really need
to just be numbers (!0 instead of !scope0), and the scope lists are also global
unnamed metadata.]

Existing noalias metadata in a callee is "cloned" for use by the inlined code.
This is necessary because the aliasing scopes are unique to each call site
(because of possible control dependencies on the aliasing properties). For
example, consider a function: foo(noalias a, noalias b) { *a = *b; } that gets
inlined into bar() { ... if (...) foo(a1, b1); ... if (...) foo(a2, b2); } --
now just because we know that a1 does not alias with b1 at the first call site,
and a2 does not alias with b2 at the second call site, we cannot let inlining
these functons have the metadata imply that a1 does not alias with b2.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213864 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-24 14:25:39 +00:00

666 lines
22 KiB
C++

//===--- Scalarizer.cpp - Scalarize vector operations ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass converts vector operations into scalar operations, in order
// to expose optimization opportunities on the individual scalar operations.
// It is mainly intended for targets that do not have vector units, but it
// may also be useful for revectorizing code to different vector widths.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
#define DEBUG_TYPE "scalarizer"
namespace {
// Used to store the scattered form of a vector.
typedef SmallVector<Value *, 8> ValueVector;
// Used to map a vector Value to its scattered form. We use std::map
// because we want iterators to persist across insertion and because the
// values are relatively large.
typedef std::map<Value *, ValueVector> ScatterMap;
// Lists Instructions that have been replaced with scalar implementations,
// along with a pointer to their scattered forms.
typedef SmallVector<std::pair<Instruction *, ValueVector *>, 16> GatherList;
// Provides a very limited vector-like interface for lazily accessing one
// component of a scattered vector or vector pointer.
class Scatterer {
public:
Scatterer() {}
// Scatter V into Size components. If new instructions are needed,
// insert them before BBI in BB. If Cache is nonnull, use it to cache
// the results.
Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
ValueVector *cachePtr = nullptr);
// Return component I, creating a new Value for it if necessary.
Value *operator[](unsigned I);
// Return the number of components.
unsigned size() const { return Size; }
private:
BasicBlock *BB;
BasicBlock::iterator BBI;
Value *V;
ValueVector *CachePtr;
PointerType *PtrTy;
ValueVector Tmp;
unsigned Size;
};
// FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
// called Name that compares X and Y in the same way as FCI.
struct FCmpSplitter {
FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
const Twine &Name) const {
return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
}
FCmpInst &FCI;
};
// ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
// called Name that compares X and Y in the same way as ICI.
struct ICmpSplitter {
ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
const Twine &Name) const {
return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
}
ICmpInst &ICI;
};
// BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
// a binary operator like BO called Name with operands X and Y.
struct BinarySplitter {
BinarySplitter(BinaryOperator &bo) : BO(bo) {}
Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
const Twine &Name) const {
return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
}
BinaryOperator &BO;
};
// Information about a load or store that we're scalarizing.
struct VectorLayout {
VectorLayout() : VecTy(nullptr), ElemTy(nullptr), VecAlign(0), ElemSize(0) {}
// Return the alignment of element I.
uint64_t getElemAlign(unsigned I) {
return MinAlign(VecAlign, I * ElemSize);
}
// The type of the vector.
VectorType *VecTy;
// The type of each element.
Type *ElemTy;
// The alignment of the vector.
uint64_t VecAlign;
// The size of each element.
uint64_t ElemSize;
};
class Scalarizer : public FunctionPass,
public InstVisitor<Scalarizer, bool> {
public:
static char ID;
Scalarizer() :
FunctionPass(ID) {
initializeScalarizerPass(*PassRegistry::getPassRegistry());
}
bool doInitialization(Module &M) override;
bool runOnFunction(Function &F) override;
// InstVisitor methods. They return true if the instruction was scalarized,
// false if nothing changed.
bool visitInstruction(Instruction &) { return false; }
bool visitSelectInst(SelectInst &SI);
bool visitICmpInst(ICmpInst &);
bool visitFCmpInst(FCmpInst &);
bool visitBinaryOperator(BinaryOperator &);
bool visitGetElementPtrInst(GetElementPtrInst &);
bool visitCastInst(CastInst &);
bool visitBitCastInst(BitCastInst &);
bool visitShuffleVectorInst(ShuffleVectorInst &);
bool visitPHINode(PHINode &);
bool visitLoadInst(LoadInst &);
bool visitStoreInst(StoreInst &);
private:
Scatterer scatter(Instruction *, Value *);
void gather(Instruction *, const ValueVector &);
bool canTransferMetadata(unsigned Kind);
void transferMetadata(Instruction *, const ValueVector &);
bool getVectorLayout(Type *, unsigned, VectorLayout &);
bool finish();
template<typename T> bool splitBinary(Instruction &, const T &);
ScatterMap Scattered;
GatherList Gathered;
unsigned ParallelLoopAccessMDKind;
const DataLayout *DL;
};
char Scalarizer::ID = 0;
} // end anonymous namespace
// This is disabled by default because having separate loads and stores makes
// it more likely that the -combiner-alias-analysis limits will be reached.
static cl::opt<bool> ScalarizeLoadStore
("scalarize-load-store", cl::Hidden, cl::init(false),
cl::desc("Allow the scalarizer pass to scalarize loads and store"));
INITIALIZE_PASS(Scalarizer, "scalarizer", "Scalarize vector operations",
false, false)
Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
ValueVector *cachePtr)
: BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
Type *Ty = V->getType();
PtrTy = dyn_cast<PointerType>(Ty);
if (PtrTy)
Ty = PtrTy->getElementType();
Size = Ty->getVectorNumElements();
if (!CachePtr)
Tmp.resize(Size, nullptr);
else if (CachePtr->empty())
CachePtr->resize(Size, nullptr);
else
assert(Size == CachePtr->size() && "Inconsistent vector sizes");
}
// Return component I, creating a new Value for it if necessary.
Value *Scatterer::operator[](unsigned I) {
ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
// Try to reuse a previous value.
if (CV[I])
return CV[I];
IRBuilder<> Builder(BB, BBI);
if (PtrTy) {
if (!CV[0]) {
Type *Ty =
PointerType::get(PtrTy->getElementType()->getVectorElementType(),
PtrTy->getAddressSpace());
CV[0] = Builder.CreateBitCast(V, Ty, V->getName() + ".i0");
}
if (I != 0)
CV[I] = Builder.CreateConstGEP1_32(CV[0], I,
V->getName() + ".i" + Twine(I));
} else {
// Search through a chain of InsertElementInsts looking for element I.
// Record other elements in the cache. The new V is still suitable
// for all uncached indices.
for (;;) {
InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
if (!Insert)
break;
ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
if (!Idx)
break;
unsigned J = Idx->getZExtValue();
CV[J] = Insert->getOperand(1);
V = Insert->getOperand(0);
if (I == J)
return CV[J];
}
CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
V->getName() + ".i" + Twine(I));
}
return CV[I];
}
bool Scalarizer::doInitialization(Module &M) {
ParallelLoopAccessMDKind =
M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
return false;
}
bool Scalarizer::runOnFunction(Function &F) {
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
DL = DLP ? &DLP->getDataLayout() : nullptr;
for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
BasicBlock *BB = BBI;
for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
Instruction *I = II;
bool Done = visit(I);
++II;
if (Done && I->getType()->isVoidTy())
I->eraseFromParent();
}
}
return finish();
}
// Return a scattered form of V that can be accessed by Point. V must be a
// vector or a pointer to a vector.
Scatterer Scalarizer::scatter(Instruction *Point, Value *V) {
if (Argument *VArg = dyn_cast<Argument>(V)) {
// Put the scattered form of arguments in the entry block,
// so that it can be used everywhere.
Function *F = VArg->getParent();
BasicBlock *BB = &F->getEntryBlock();
return Scatterer(BB, BB->begin(), V, &Scattered[V]);
}
if (Instruction *VOp = dyn_cast<Instruction>(V)) {
// Put the scattered form of an instruction directly after the
// instruction.
BasicBlock *BB = VOp->getParent();
return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
V, &Scattered[V]);
}
// In the fallback case, just put the scattered before Point and
// keep the result local to Point.
return Scatterer(Point->getParent(), Point, V);
}
// Replace Op with the gathered form of the components in CV. Defer the
// deletion of Op and creation of the gathered form to the end of the pass,
// so that we can avoid creating the gathered form if all uses of Op are
// replaced with uses of CV.
void Scalarizer::gather(Instruction *Op, const ValueVector &CV) {
// Since we're not deleting Op yet, stub out its operands, so that it
// doesn't make anything live unnecessarily.
for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I)
Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType()));
transferMetadata(Op, CV);
// If we already have a scattered form of Op (created from ExtractElements
// of Op itself), replace them with the new form.
ValueVector &SV = Scattered[Op];
if (!SV.empty()) {
for (unsigned I = 0, E = SV.size(); I != E; ++I) {
Instruction *Old = cast<Instruction>(SV[I]);
CV[I]->takeName(Old);
Old->replaceAllUsesWith(CV[I]);
Old->eraseFromParent();
}
}
SV = CV;
Gathered.push_back(GatherList::value_type(Op, &SV));
}
// Return true if it is safe to transfer the given metadata tag from
// vector to scalar instructions.
bool Scalarizer::canTransferMetadata(unsigned Tag) {
return (Tag == LLVMContext::MD_tbaa
|| Tag == LLVMContext::MD_fpmath
|| Tag == LLVMContext::MD_tbaa_struct
|| Tag == LLVMContext::MD_invariant_load
|| Tag == LLVMContext::MD_alias_scope
|| Tag == LLVMContext::MD_noalias
|| Tag == ParallelLoopAccessMDKind);
}
// Transfer metadata from Op to the instructions in CV if it is known
// to be safe to do so.
void Scalarizer::transferMetadata(Instruction *Op, const ValueVector &CV) {
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
Op->getAllMetadataOtherThanDebugLoc(MDs);
for (unsigned I = 0, E = CV.size(); I != E; ++I) {
if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
for (SmallVectorImpl<std::pair<unsigned, MDNode *> >::iterator
MI = MDs.begin(), ME = MDs.end(); MI != ME; ++MI)
if (canTransferMetadata(MI->first))
New->setMetadata(MI->first, MI->second);
New->setDebugLoc(Op->getDebugLoc());
}
}
}
// Try to fill in Layout from Ty, returning true on success. Alignment is
// the alignment of the vector, or 0 if the ABI default should be used.
bool Scalarizer::getVectorLayout(Type *Ty, unsigned Alignment,
VectorLayout &Layout) {
if (!DL)
return false;
// Make sure we're dealing with a vector.
Layout.VecTy = dyn_cast<VectorType>(Ty);
if (!Layout.VecTy)
return false;
// Check that we're dealing with full-byte elements.
Layout.ElemTy = Layout.VecTy->getElementType();
if (DL->getTypeSizeInBits(Layout.ElemTy) !=
DL->getTypeStoreSizeInBits(Layout.ElemTy))
return false;
if (Alignment)
Layout.VecAlign = Alignment;
else
Layout.VecAlign = DL->getABITypeAlignment(Layout.VecTy);
Layout.ElemSize = DL->getTypeStoreSize(Layout.ElemTy);
return true;
}
// Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
// to create an instruction like I with operands X and Y and name Name.
template<typename Splitter>
bool Scalarizer::splitBinary(Instruction &I, const Splitter &Split) {
VectorType *VT = dyn_cast<VectorType>(I.getType());
if (!VT)
return false;
unsigned NumElems = VT->getNumElements();
IRBuilder<> Builder(I.getParent(), &I);
Scatterer Op0 = scatter(&I, I.getOperand(0));
Scatterer Op1 = scatter(&I, I.getOperand(1));
assert(Op0.size() == NumElems && "Mismatched binary operation");
assert(Op1.size() == NumElems && "Mismatched binary operation");
ValueVector Res;
Res.resize(NumElems);
for (unsigned Elem = 0; Elem < NumElems; ++Elem)
Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem],
I.getName() + ".i" + Twine(Elem));
gather(&I, Res);
return true;
}
bool Scalarizer::visitSelectInst(SelectInst &SI) {
VectorType *VT = dyn_cast<VectorType>(SI.getType());
if (!VT)
return false;
unsigned NumElems = VT->getNumElements();
IRBuilder<> Builder(SI.getParent(), &SI);
Scatterer Op1 = scatter(&SI, SI.getOperand(1));
Scatterer Op2 = scatter(&SI, SI.getOperand(2));
assert(Op1.size() == NumElems && "Mismatched select");
assert(Op2.size() == NumElems && "Mismatched select");
ValueVector Res;
Res.resize(NumElems);
if (SI.getOperand(0)->getType()->isVectorTy()) {
Scatterer Op0 = scatter(&SI, SI.getOperand(0));
assert(Op0.size() == NumElems && "Mismatched select");
for (unsigned I = 0; I < NumElems; ++I)
Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I],
SI.getName() + ".i" + Twine(I));
} else {
Value *Op0 = SI.getOperand(0);
for (unsigned I = 0; I < NumElems; ++I)
Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I],
SI.getName() + ".i" + Twine(I));
}
gather(&SI, Res);
return true;
}
bool Scalarizer::visitICmpInst(ICmpInst &ICI) {
return splitBinary(ICI, ICmpSplitter(ICI));
}
bool Scalarizer::visitFCmpInst(FCmpInst &FCI) {
return splitBinary(FCI, FCmpSplitter(FCI));
}
bool Scalarizer::visitBinaryOperator(BinaryOperator &BO) {
return splitBinary(BO, BinarySplitter(BO));
}
bool Scalarizer::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
if (!VT)
return false;
IRBuilder<> Builder(GEPI.getParent(), &GEPI);
unsigned NumElems = VT->getNumElements();
unsigned NumIndices = GEPI.getNumIndices();
Scatterer Base = scatter(&GEPI, GEPI.getOperand(0));
SmallVector<Scatterer, 8> Ops;
Ops.resize(NumIndices);
for (unsigned I = 0; I < NumIndices; ++I)
Ops[I] = scatter(&GEPI, GEPI.getOperand(I + 1));
ValueVector Res;
Res.resize(NumElems);
for (unsigned I = 0; I < NumElems; ++I) {
SmallVector<Value *, 8> Indices;
Indices.resize(NumIndices);
for (unsigned J = 0; J < NumIndices; ++J)
Indices[J] = Ops[J][I];
Res[I] = Builder.CreateGEP(Base[I], Indices,
GEPI.getName() + ".i" + Twine(I));
if (GEPI.isInBounds())
if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
NewGEPI->setIsInBounds();
}
gather(&GEPI, Res);
return true;
}
bool Scalarizer::visitCastInst(CastInst &CI) {
VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
if (!VT)
return false;
unsigned NumElems = VT->getNumElements();
IRBuilder<> Builder(CI.getParent(), &CI);
Scatterer Op0 = scatter(&CI, CI.getOperand(0));
assert(Op0.size() == NumElems && "Mismatched cast");
ValueVector Res;
Res.resize(NumElems);
for (unsigned I = 0; I < NumElems; ++I)
Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
CI.getName() + ".i" + Twine(I));
gather(&CI, Res);
return true;
}
bool Scalarizer::visitBitCastInst(BitCastInst &BCI) {
VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
if (!DstVT || !SrcVT)
return false;
unsigned DstNumElems = DstVT->getNumElements();
unsigned SrcNumElems = SrcVT->getNumElements();
IRBuilder<> Builder(BCI.getParent(), &BCI);
Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
ValueVector Res;
Res.resize(DstNumElems);
if (DstNumElems == SrcNumElems) {
for (unsigned I = 0; I < DstNumElems; ++I)
Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
BCI.getName() + ".i" + Twine(I));
} else if (DstNumElems > SrcNumElems) {
// <M x t1> -> <N*M x t2>. Convert each t1 to <N x t2> and copy the
// individual elements to the destination.
unsigned FanOut = DstNumElems / SrcNumElems;
Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut);
unsigned ResI = 0;
for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
Value *V = Op0[Op0I];
Instruction *VI;
// Look through any existing bitcasts before converting to <N x t2>.
// In the best case, the resulting conversion might be a no-op.
while ((VI = dyn_cast<Instruction>(V)) &&
VI->getOpcode() == Instruction::BitCast)
V = VI->getOperand(0);
V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
Scatterer Mid = scatter(&BCI, V);
for (unsigned MidI = 0; MidI < FanOut; ++MidI)
Res[ResI++] = Mid[MidI];
}
} else {
// <N*M x t1> -> <M x t2>. Convert each group of <N x t1> into a t2.
unsigned FanIn = SrcNumElems / DstNumElems;
Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn);
unsigned Op0I = 0;
for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
Value *V = UndefValue::get(MidTy);
for (unsigned MidI = 0; MidI < FanIn; ++MidI)
V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
BCI.getName() + ".i" + Twine(ResI)
+ ".upto" + Twine(MidI));
Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
BCI.getName() + ".i" + Twine(ResI));
}
}
gather(&BCI, Res);
return true;
}
bool Scalarizer::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
VectorType *VT = dyn_cast<VectorType>(SVI.getType());
if (!VT)
return false;
unsigned NumElems = VT->getNumElements();
Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
ValueVector Res;
Res.resize(NumElems);
for (unsigned I = 0; I < NumElems; ++I) {
int Selector = SVI.getMaskValue(I);
if (Selector < 0)
Res[I] = UndefValue::get(VT->getElementType());
else if (unsigned(Selector) < Op0.size())
Res[I] = Op0[Selector];
else
Res[I] = Op1[Selector - Op0.size()];
}
gather(&SVI, Res);
return true;
}
bool Scalarizer::visitPHINode(PHINode &PHI) {
VectorType *VT = dyn_cast<VectorType>(PHI.getType());
if (!VT)
return false;
unsigned NumElems = VT->getNumElements();
IRBuilder<> Builder(PHI.getParent(), &PHI);
ValueVector Res;
Res.resize(NumElems);
unsigned NumOps = PHI.getNumOperands();
for (unsigned I = 0; I < NumElems; ++I)
Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
PHI.getName() + ".i" + Twine(I));
for (unsigned I = 0; I < NumOps; ++I) {
Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
for (unsigned J = 0; J < NumElems; ++J)
cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
}
gather(&PHI, Res);
return true;
}
bool Scalarizer::visitLoadInst(LoadInst &LI) {
if (!ScalarizeLoadStore)
return false;
if (!LI.isSimple())
return false;
VectorLayout Layout;
if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout))
return false;
unsigned NumElems = Layout.VecTy->getNumElements();
IRBuilder<> Builder(LI.getParent(), &LI);
Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
ValueVector Res;
Res.resize(NumElems);
for (unsigned I = 0; I < NumElems; ++I)
Res[I] = Builder.CreateAlignedLoad(Ptr[I], Layout.getElemAlign(I),
LI.getName() + ".i" + Twine(I));
gather(&LI, Res);
return true;
}
bool Scalarizer::visitStoreInst(StoreInst &SI) {
if (!ScalarizeLoadStore)
return false;
if (!SI.isSimple())
return false;
VectorLayout Layout;
Value *FullValue = SI.getValueOperand();
if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout))
return false;
unsigned NumElems = Layout.VecTy->getNumElements();
IRBuilder<> Builder(SI.getParent(), &SI);
Scatterer Ptr = scatter(&SI, SI.getPointerOperand());
Scatterer Val = scatter(&SI, FullValue);
ValueVector Stores;
Stores.resize(NumElems);
for (unsigned I = 0; I < NumElems; ++I) {
unsigned Align = Layout.getElemAlign(I);
Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align);
}
transferMetadata(&SI, Stores);
return true;
}
// Delete the instructions that we scalarized. If a full vector result
// is still needed, recreate it using InsertElements.
bool Scalarizer::finish() {
if (Gathered.empty())
return false;
for (GatherList::iterator GMI = Gathered.begin(), GME = Gathered.end();
GMI != GME; ++GMI) {
Instruction *Op = GMI->first;
ValueVector &CV = *GMI->second;
if (!Op->use_empty()) {
// The value is still needed, so recreate it using a series of
// InsertElements.
Type *Ty = Op->getType();
Value *Res = UndefValue::get(Ty);
BasicBlock *BB = Op->getParent();
unsigned Count = Ty->getVectorNumElements();
IRBuilder<> Builder(BB, Op);
if (isa<PHINode>(Op))
Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
for (unsigned I = 0; I < Count; ++I)
Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
Op->getName() + ".upto" + Twine(I));
Res->takeName(Op);
Op->replaceAllUsesWith(Res);
}
Op->eraseFromParent();
}
Gathered.clear();
Scattered.clear();
return true;
}
FunctionPass *llvm::createScalarizerPass() {
return new Scalarizer();
}