mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-22 10:16:43 +00:00
5d3257e37c
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185226 91177308-0d34-0410-b5e6-96231b3b80d8
151 lines
3.7 KiB
C++
151 lines
3.7 KiB
C++
//====--------------- lib/Support/BlockFrequency.cpp -----------*- C++ -*-====//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements Block Frequency class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Support/BranchProbability.h"
|
|
#include "llvm/Support/BlockFrequency.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
|
|
using namespace llvm;
|
|
|
|
/// Multiply FREQ by N and store result in W array.
|
|
static void mult96bit(uint64_t freq, uint32_t N, uint64_t W[2]) {
|
|
uint64_t u0 = freq & UINT32_MAX;
|
|
uint64_t u1 = freq >> 32;
|
|
|
|
// Represent 96-bit value as w[2]:w[1]:w[0];
|
|
uint32_t w[3] = { 0, 0, 0 };
|
|
|
|
uint64_t t = u0 * N;
|
|
uint64_t k = t >> 32;
|
|
w[0] = t;
|
|
t = u1 * N + k;
|
|
w[1] = t;
|
|
w[2] = t >> 32;
|
|
|
|
// W[1] - higher bits.
|
|
// W[0] - lower bits.
|
|
W[0] = w[0] + ((uint64_t) w[1] << 32);
|
|
W[1] = w[2];
|
|
}
|
|
|
|
|
|
/// Divide 96-bit value stored in W array by D.
|
|
/// Return 64-bit quotient, saturated to UINT64_MAX on overflow.
|
|
static uint64_t div96bit(uint64_t W[2], uint32_t D) {
|
|
uint64_t y = W[0];
|
|
uint64_t x = W[1];
|
|
unsigned i;
|
|
|
|
assert(x != 0 && "This is really a 64-bit division");
|
|
|
|
// This long division algorithm automatically saturates on overflow.
|
|
for (i = 0; i < 64 && x; ++i) {
|
|
uint32_t t = -((x >> 31) & 1); // Splat bit 31 to bits 0-31.
|
|
x = (x << 1) | (y >> 63);
|
|
y = y << 1;
|
|
if ((x | t) >= D) {
|
|
x -= D;
|
|
++y;
|
|
}
|
|
}
|
|
|
|
return y << (64 - i);
|
|
}
|
|
|
|
|
|
void BlockFrequency::scale(uint32_t N, uint32_t D) {
|
|
assert(D != 0 && "Division by zero");
|
|
|
|
// Calculate Frequency * N.
|
|
uint64_t MulLo = (Frequency & UINT32_MAX) * N;
|
|
uint64_t MulHi = (Frequency >> 32) * N;
|
|
uint64_t MulRes = (MulHi << 32) + MulLo;
|
|
|
|
// If the product fits in 64 bits, just use built-in division.
|
|
if (MulHi <= UINT32_MAX && MulRes >= MulLo) {
|
|
Frequency = MulRes / D;
|
|
return;
|
|
}
|
|
|
|
// Product overflowed, use 96-bit operations.
|
|
// 96-bit value represented as W[1]:W[0].
|
|
uint64_t W[2];
|
|
mult96bit(Frequency, N, W);
|
|
Frequency = div96bit(W, D);
|
|
return;
|
|
}
|
|
|
|
BlockFrequency &BlockFrequency::operator*=(const BranchProbability &Prob) {
|
|
scale(Prob.getNumerator(), Prob.getDenominator());
|
|
return *this;
|
|
}
|
|
|
|
const BlockFrequency
|
|
BlockFrequency::operator*(const BranchProbability &Prob) const {
|
|
BlockFrequency Freq(Frequency);
|
|
Freq *= Prob;
|
|
return Freq;
|
|
}
|
|
|
|
BlockFrequency &BlockFrequency::operator/=(const BranchProbability &Prob) {
|
|
scale(Prob.getDenominator(), Prob.getNumerator());
|
|
return *this;
|
|
}
|
|
|
|
BlockFrequency BlockFrequency::operator/(const BranchProbability &Prob) const {
|
|
BlockFrequency Freq(Frequency);
|
|
Freq /= Prob;
|
|
return Freq;
|
|
}
|
|
|
|
BlockFrequency &BlockFrequency::operator+=(const BlockFrequency &Freq) {
|
|
uint64_t Before = Freq.Frequency;
|
|
Frequency += Freq.Frequency;
|
|
|
|
// If overflow, set frequency to the maximum value.
|
|
if (Frequency < Before)
|
|
Frequency = UINT64_MAX;
|
|
|
|
return *this;
|
|
}
|
|
|
|
const BlockFrequency
|
|
BlockFrequency::operator+(const BlockFrequency &Prob) const {
|
|
BlockFrequency Freq(Frequency);
|
|
Freq += Prob;
|
|
return Freq;
|
|
}
|
|
|
|
void BlockFrequency::print(raw_ostream &OS) const {
|
|
// Convert fixed-point number to decimal.
|
|
OS << Frequency / getEntryFrequency() << ".";
|
|
uint64_t Rem = Frequency % getEntryFrequency();
|
|
uint64_t Eps = 1;
|
|
do {
|
|
Rem *= 10;
|
|
Eps *= 10;
|
|
OS << Rem / getEntryFrequency();
|
|
Rem = Rem % getEntryFrequency();
|
|
} while (Rem >= Eps/2);
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const BlockFrequency &Freq) {
|
|
Freq.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
}
|