llvm/support/tools/Burg/table.c
Chris Lattner 633a5b1aac Initial checkin of burg files
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3785 91177308-0d34-0410-b5e6-96231b3b80d8
2002-09-17 23:03:30 +00:00

553 lines
11 KiB
C

char rcsid_table[] = "$Id$";
#include "b.h"
#include <string.h>
#include <stdio.h>
static void growIndex_Map ARGS((Index_Map *));
static Relevant newRelevant ARGS((void));
static Dimension newDimension ARGS((Operator, int));
static void GT_1 ARGS((Table));
static void GT_2_0 ARGS((Table));
static void GT_2_1 ARGS((Table));
static void growTransition ARGS((Table, int));
static Item_Set restrict ARGS((Dimension, Item_Set));
static void addHP_1 ARGS((Table, Item_Set));
static void addHP_2_0 ARGS((Table, Item_Set));
static void addHP_2_1 ARGS((Table, Item_Set));
static void addHyperPlane ARGS((Table, int, Item_Set));
static void
growIndex_Map(r) Index_Map *r;
{
Index_Map new;
new.max_size = r->max_size + STATES_INCR;
new.class = (Item_Set*) zalloc(new.max_size * sizeof(Item_Set));
assert(new.class);
memcpy(new.class, r->class, r->max_size * sizeof(Item_Set));
zfree(r->class);
*r = new;
}
static Relevant
newRelevant()
{
Relevant r = (Relevant) zalloc(max_nonterminal * sizeof(*r));
return r;
}
void
addRelevant(r, nt) Relevant r; NonTerminalNum nt;
{
int i;
for (i = 0; r[i]; i++) {
if (r[i] == nt) {
break;
}
}
if (!r[i]) {
r[i] = nt;
}
}
static Dimension
newDimension(op, index) Operator op; ArityNum index;
{
Dimension d;
List pl;
Relevant r;
assert(op);
assert(index >= 0 && index < op->arity);
d = (Dimension) zalloc(sizeof(struct dimension));
assert(d);
r = d->relevant = newRelevant();
for (pl = rules; pl; pl = pl->next) {
Rule pr = (Rule) pl->x;
if (pr->pat->op == op) {
addRelevant(r, pr->pat->children[index]->num);
}
}
d->index_map.max_size = STATES_INCR;
d->index_map.class = (Item_Set*)
zalloc(d->index_map.max_size * sizeof(Item_Set));
d->map = newMapping(DIM_MAP_SIZE);
d->max_size = TABLE_INCR;
return d;
}
Table
newTable(op) Operator op;
{
Table t;
int i, size;
assert(op);
t = (Table) zalloc(sizeof(struct table));
assert(t);
t->op = op;
for (i = 0; i < op->arity; i++) {
t->dimen[i] = newDimension(op, i);
}
size = 1;
for (i = 0; i < op->arity; i++) {
size *= t->dimen[i]->max_size;
}
t->transition = (Item_Set*) zalloc(size * sizeof(Item_Set));
t->relevant = newRelevant();
assert(t->transition);
return t;
}
static void
GT_1(t) Table t;
{
Item_Set *ts;
ItemSetNum oldsize = t->dimen[0]->max_size;
ItemSetNum newsize = t->dimen[0]->max_size + TABLE_INCR;
t->dimen[0]->max_size = newsize;
ts = (Item_Set*) zalloc(newsize * sizeof(Item_Set));
assert(ts);
memcpy(ts, t->transition, oldsize * sizeof(Item_Set));
zfree(t->transition);
t->transition = ts;
}
static void
GT_2_0(t) Table t;
{
Item_Set *ts;
ItemSetNum oldsize = t->dimen[0]->max_size;
ItemSetNum newsize = t->dimen[0]->max_size + TABLE_INCR;
int size;
t->dimen[0]->max_size = newsize;
size = newsize * t->dimen[1]->max_size;
ts = (Item_Set*) zalloc(size * sizeof(Item_Set));
assert(ts);
memcpy(ts, t->transition, oldsize*t->dimen[1]->max_size * sizeof(Item_Set));
zfree(t->transition);
t->transition = ts;
}
static void
GT_2_1(t) Table t;
{
Item_Set *ts;
ItemSetNum oldsize = t->dimen[1]->max_size;
ItemSetNum newsize = t->dimen[1]->max_size + TABLE_INCR;
int size;
Item_Set *from;
Item_Set *to;
int i1, i2;
t->dimen[1]->max_size = newsize;
size = newsize * t->dimen[0]->max_size;
ts = (Item_Set*) zalloc(size * sizeof(Item_Set));
assert(ts);
from = t->transition;
to = ts;
for (i1 = 0; i1 < t->dimen[0]->max_size; i1++) {
for (i2 = 0; i2 < oldsize; i2++) {
to[i2] = from[i2];
}
to += newsize;
from += oldsize;
}
zfree(t->transition);
t->transition = ts;
}
static void
growTransition(t, dim) Table t; ArityNum dim;
{
assert(t);
assert(t->op);
assert(dim < t->op->arity);
switch (t->op->arity) {
default:
assert(0);
break;
case 1:
GT_1(t);
return;
case 2:
switch (dim) {
default:
assert(0);
break;
case 0:
GT_2_0(t);
return;
case 1:
GT_2_1(t);
return;
}
}
}
static Item_Set
restrict(d, ts) Dimension d; Item_Set ts;
{
DeltaCost base;
Item_Set r;
int found;
register Relevant r_ptr = d->relevant;
register Item *ts_current = ts->closed;
register Item *r_current;
register int i;
register int nt;
ZEROCOST(base);
found = 0;
r = newItem_Set(d->relevant);
r_current = r->virgin;
for (i = 0; (nt = r_ptr[i]) != 0; i++) {
if (ts_current[nt].rule) {
r_current[nt].rule = &stub_rule;
if (!found) {
found = 1;
ASSIGNCOST(base, ts_current[nt].delta);
} else {
if (LESSCOST(ts_current[nt].delta, base)) {
ASSIGNCOST(base, ts_current[nt].delta);
}
}
}
}
/* zero align */
for (i = 0; (nt = r_ptr[i]) != 0; i++) {
if (r_current[nt].rule) {
ASSIGNCOST(r_current[nt].delta, ts_current[nt].delta);
MINUSCOST(r_current[nt].delta, base);
}
}
assert(!r->closed);
r->representative = ts;
return r;
}
static void
addHP_1(t, ts) Table t; Item_Set ts;
{
List pl;
Item_Set e;
Item_Set tmp;
int new;
e = newItem_Set(t->relevant);
assert(e);
e->kids[0] = ts->representative;
for (pl = t->rules; pl; pl = pl->next) {
Rule p = (Rule) pl->x;
if (t->op == p->pat->op && ts->virgin[p->pat->children[0]->num].rule) {
DeltaCost dc;
ASSIGNCOST(dc, ts->virgin[p->pat->children[0]->num].delta);
ADDCOST(dc, p->delta);
if (!e->virgin[p->lhs->num].rule || LESSCOST(dc, e->virgin[p->lhs->num].delta)) {
e->virgin[p->lhs->num].rule = p;
ASSIGNCOST(e->virgin[p->lhs->num].delta, dc);
e->op = t->op;
}
}
}
trim(e);
zero(e);
tmp = encode(globalMap, e, &new);
assert(ts->num < t->dimen[0]->map->max_size);
t->transition[ts->num] = tmp;
if (new) {
closure(e);
addQ(globalQ, tmp);
} else {
freeItem_Set(e);
}
}
static void
addHP_2_0(t, ts) Table t; Item_Set ts;
{
List pl;
register Item_Set e;
Item_Set tmp;
int new;
int i2;
assert(t->dimen[1]->map->count <= t->dimen[1]->map->max_size);
for (i2 = 0; i2 < t->dimen[1]->map->count; i2++) {
e = newItem_Set(t->relevant);
assert(e);
e->kids[0] = ts->representative;
e->kids[1] = t->dimen[1]->map->set[i2]->representative;
for (pl = t->rules; pl; pl = pl->next) {
register Rule p = (Rule) pl->x;
if (t->op == p->pat->op
&& ts->virgin[p->pat->children[0]->num].rule
&& t->dimen[1]->map->set[i2]->virgin[p->pat->children[1]->num].rule){
DeltaCost dc;
ASSIGNCOST(dc, p->delta);
ADDCOST(dc, ts->virgin[p->pat->children[0]->num].delta);
ADDCOST(dc, t->dimen[1]->map->set[i2]->virgin[p->pat->children[1]->num].delta);
if (!e->virgin[p->lhs->num].rule || LESSCOST(dc, e->virgin[p->lhs->num].delta)) {
e->virgin[p->lhs->num].rule = p;
ASSIGNCOST(e->virgin[p->lhs->num].delta, dc);
e->op = t->op;
}
}
}
trim(e);
zero(e);
tmp = encode(globalMap, e, &new);
assert(ts->num < t->dimen[0]->map->max_size);
t->transition[ts->num * t->dimen[1]->max_size + i2] = tmp;
if (new) {
closure(e);
addQ(globalQ, tmp);
} else {
freeItem_Set(e);
}
}
}
static void
addHP_2_1(t, ts) Table t; Item_Set ts;
{
List pl;
register Item_Set e;
Item_Set tmp;
int new;
int i1;
assert(t->dimen[0]->map->count <= t->dimen[0]->map->max_size);
for (i1 = 0; i1 < t->dimen[0]->map->count; i1++) {
e = newItem_Set(t->relevant);
assert(e);
e->kids[0] = t->dimen[0]->map->set[i1]->representative;
e->kids[1] = ts->representative;
for (pl = t->rules; pl; pl = pl->next) {
register Rule p = (Rule) pl->x;
if (t->op == p->pat->op
&& ts->virgin[p->pat->children[1]->num].rule
&& t->dimen[0]->map->set[i1]->virgin[p->pat->children[0]->num].rule){
DeltaCost dc;
ASSIGNCOST(dc, p->delta );
ADDCOST(dc, ts->virgin[p->pat->children[1]->num].delta);
ADDCOST(dc, t->dimen[0]->map->set[i1]->virgin[p->pat->children[0]->num].delta);
if (!e->virgin[p->lhs->num].rule || LESSCOST(dc, e->virgin[p->lhs->num].delta)) {
e->virgin[p->lhs->num].rule = p;
ASSIGNCOST(e->virgin[p->lhs->num].delta, dc);
e->op = t->op;
}
}
}
trim(e);
zero(e);
tmp = encode(globalMap, e, &new);
assert(ts->num < t->dimen[1]->map->max_size);
t->transition[i1 * t->dimen[1]->max_size + ts->num] = tmp;
if (new) {
closure(e);
addQ(globalQ, tmp);
} else {
freeItem_Set(e);
}
}
}
static void
addHyperPlane(t, i, ts) Table t; ArityNum i; Item_Set ts;
{
switch (t->op->arity) {
default:
assert(0);
break;
case 1:
addHP_1(t, ts);
return;
case 2:
switch (i) {
default:
assert(0);
break;
case 0:
addHP_2_0(t, ts);
return;
case 1:
addHP_2_1(t, ts);
return;
}
}
}
void
addToTable(t, ts) Table t; Item_Set ts;
{
ArityNum i;
assert(t);
assert(ts);
assert(t->op);
for (i = 0; i < t->op->arity; i++) {
Item_Set r;
Item_Set tmp;
int new;
r = restrict(t->dimen[i], ts);
tmp = encode(t->dimen[i]->map, r, &new);
if (t->dimen[i]->index_map.max_size <= ts->num) {
growIndex_Map(&t->dimen[i]->index_map);
}
assert(ts->num < t->dimen[i]->index_map.max_size);
t->dimen[i]->index_map.class[ts->num] = tmp;
if (new) {
if (t->dimen[i]->max_size <= r->num) {
growTransition(t, i);
}
addHyperPlane(t, i, r);
} else {
freeItem_Set(r);
}
}
}
Item_Set *
transLval(t, row, col) Table t; int row; int col;
{
switch (t->op->arity) {
case 0:
assert(row == 0);
assert(col == 0);
return t->transition;
case 1:
assert(col == 0);
return t->transition + row;
case 2:
return t->transition + row * t->dimen[1]->max_size + col;
default:
assert(0);
}
return 0;
}
void
dumpRelevant(r) Relevant r;
{
for (; *r; r++) {
printf("%4d", *r);
}
}
void
dumpIndex_Map(r) Index_Map *r;
{
int i;
printf("BEGIN Index_Map: MaxSize (%d)\n", r->max_size);
for (i = 0; i < globalMap->count; i++) {
printf("\t#%d: -> %d\n", i, r->class[i]->num);
}
printf("END Index_Map:\n");
}
void
dumpDimension(d) Dimension d;
{
printf("BEGIN Dimension:\n");
printf("Relevant: ");
dumpRelevant(d->relevant);
printf("\n");
dumpIndex_Map(&d->index_map);
dumpMapping(d->map);
printf("MaxSize of dimension = %d\n", d->max_size);
printf("END Dimension\n");
}
void
dumpTable(t, full) Table t; int full;
{
int i;
if (!t) {
printf("NO Table yet.\n");
return;
}
printf("BEGIN Table:\n");
if (full) {
dumpOperator(t->op, 0);
}
for (i = 0; i < t->op->arity; i++) {
printf("BEGIN dimension(%d)\n", i);
dumpDimension(t->dimen[i]);
printf("END dimension(%d)\n", i);
}
dumpTransition(t);
printf("END Table:\n");
}
void
dumpTransition(t) Table t;
{
int i,j;
switch (t->op->arity) {
case 0:
printf("{ %d }", t->transition[0]->num);
break;
case 1:
printf("{");
for (i = 0; i < t->dimen[0]->map->count; i++) {
if (i > 0) {
printf(",");
}
printf("%5d", t->transition[i]->num);
}
printf("}");
break;
case 2:
printf("{");
for (i = 0; i < t->dimen[0]->map->count; i++) {
if (i > 0) {
printf(",");
}
printf("\n");
printf("{");
for (j = 0; j < t->dimen[1]->map->count; j++) {
Item_Set *ts = transLval(t, i, j);
if (j > 0) {
printf(",");
}
printf("%5d", (*ts)->num);
}
printf("}");
}
printf("\n}\n");
break;
default:
assert(0);
}
}