llvm/lib/Target/ARM/Thumb2InstrInfo.cpp
Jakob Stoklund Olesen ac27366700 Replace copyRegToReg with copyPhysReg for ARM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108078 91177308-0d34-0410-b5e6-96231b3b80d8
2010-07-11 06:33:54 +00:00

641 lines
21 KiB
C++

//===- Thumb2InstrInfo.cpp - Thumb-2 Instruction Information ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the Thumb-2 implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "Thumb2InstrInfo.h"
#include "ARM.h"
#include "ARMConstantPoolValue.h"
#include "ARMAddressingModes.h"
#include "ARMGenInstrInfo.inc"
#include "ARMMachineFunctionInfo.h"
#include "Thumb2HazardRecognizer.h"
#include "Thumb2InstrInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
static cl::opt<unsigned>
IfCvtLimit("thumb2-ifcvt-limit", cl::Hidden,
cl::desc("Thumb2 if-conversion limit (default 3)"),
cl::init(3));
static cl::opt<unsigned>
IfCvtDiamondLimit("thumb2-ifcvt-diamond-limit", cl::Hidden,
cl::desc("Thumb2 diamond if-conversion limit (default 3)"),
cl::init(3));
Thumb2InstrInfo::Thumb2InstrInfo(const ARMSubtarget &STI)
: ARMBaseInstrInfo(STI), RI(*this, STI) {
}
unsigned Thumb2InstrInfo::getUnindexedOpcode(unsigned Opc) const {
// FIXME
return 0;
}
void
Thumb2InstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
MachineBasicBlock *NewDest) const {
MachineBasicBlock *MBB = Tail->getParent();
ARMFunctionInfo *AFI = MBB->getParent()->getInfo<ARMFunctionInfo>();
if (!AFI->hasITBlocks()) {
TargetInstrInfoImpl::ReplaceTailWithBranchTo(Tail, NewDest);
return;
}
// If the first instruction of Tail is predicated, we may have to update
// the IT instruction.
unsigned PredReg = 0;
ARMCC::CondCodes CC = llvm::getInstrPredicate(Tail, PredReg);
MachineBasicBlock::iterator MBBI = Tail;
if (CC != ARMCC::AL)
// Expecting at least the t2IT instruction before it.
--MBBI;
// Actually replace the tail.
TargetInstrInfoImpl::ReplaceTailWithBranchTo(Tail, NewDest);
// Fix up IT.
if (CC != ARMCC::AL) {
MachineBasicBlock::iterator E = MBB->begin();
unsigned Count = 4; // At most 4 instructions in an IT block.
while (Count && MBBI != E) {
if (MBBI->isDebugValue()) {
--MBBI;
continue;
}
if (MBBI->getOpcode() == ARM::t2IT) {
unsigned Mask = MBBI->getOperand(1).getImm();
if (Count == 4)
MBBI->eraseFromParent();
else {
unsigned MaskOn = 1 << Count;
unsigned MaskOff = ~(MaskOn - 1);
MBBI->getOperand(1).setImm((Mask & MaskOff) | MaskOn);
}
return;
}
--MBBI;
--Count;
}
// Ctrl flow can reach here if branch folding is run before IT block
// formation pass.
}
}
bool
Thumb2InstrInfo::isLegalToSplitMBBAt(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI) const {
unsigned PredReg = 0;
return llvm::getITInstrPredicate(MBBI, PredReg) == ARMCC::AL;
}
bool Thumb2InstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
unsigned NumInstrs) const {
return NumInstrs && NumInstrs <= IfCvtLimit;
}
bool Thumb2InstrInfo::
isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumT,
MachineBasicBlock &FMBB, unsigned NumF) const {
// FIXME: Catch optimization such as:
// r0 = movne
// r0 = moveq
return NumT && NumF &&
NumT <= (IfCvtDiamondLimit) && NumF <= (IfCvtDiamondLimit);
}
void Thumb2InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
// Handle SPR, DPR, and QPR copies.
if (!ARM::GPRRegClass.contains(DestReg, SrcReg))
return ARMBaseInstrInfo::copyPhysReg(MBB, I, DL, DestReg, SrcReg, KillSrc);
bool tDest = ARM::tGPRRegClass.contains(DestReg);
bool tSrc = ARM::tGPRRegClass.contains(SrcReg);
unsigned Opc = ARM::tMOVgpr2gpr;
if (tDest && tSrc)
Opc = ARM::tMOVr;
else if (tSrc)
Opc = ARM::tMOVtgpr2gpr;
else if (tDest)
Opc = ARM::tMOVgpr2tgpr;
BuildMI(MBB, I, DL, get(Opc), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
}
void Thumb2InstrInfo::
storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
unsigned SrcReg, bool isKill, int FI,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
if (RC == ARM::GPRRegisterClass || RC == ARM::tGPRRegisterClass ||
RC == ARM::tcGPRRegisterClass) {
DebugLoc DL;
if (I != MBB.end()) DL = I->getDebugLoc();
MachineFunction &MF = *MBB.getParent();
MachineFrameInfo &MFI = *MF.getFrameInfo();
MachineMemOperand *MMO =
MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FI),
MachineMemOperand::MOStore, 0,
MFI.getObjectSize(FI),
MFI.getObjectAlignment(FI));
AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::t2STRi12))
.addReg(SrcReg, getKillRegState(isKill))
.addFrameIndex(FI).addImm(0).addMemOperand(MMO));
return;
}
ARMBaseInstrInfo::storeRegToStackSlot(MBB, I, SrcReg, isKill, FI, RC, TRI);
}
void Thumb2InstrInfo::
loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
unsigned DestReg, int FI,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
if (RC == ARM::GPRRegisterClass || RC == ARM::tGPRRegisterClass ||
RC == ARM::tcGPRRegisterClass) {
DebugLoc DL;
if (I != MBB.end()) DL = I->getDebugLoc();
MachineFunction &MF = *MBB.getParent();
MachineFrameInfo &MFI = *MF.getFrameInfo();
MachineMemOperand *MMO =
MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FI),
MachineMemOperand::MOLoad, 0,
MFI.getObjectSize(FI),
MFI.getObjectAlignment(FI));
AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::t2LDRi12), DestReg)
.addFrameIndex(FI).addImm(0).addMemOperand(MMO));
return;
}
ARMBaseInstrInfo::loadRegFromStackSlot(MBB, I, DestReg, FI, RC, TRI);
}
ScheduleHazardRecognizer *Thumb2InstrInfo::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData &II) const {
return (ScheduleHazardRecognizer *)new Thumb2HazardRecognizer(II);
}
void llvm::emitT2RegPlusImmediate(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI, DebugLoc dl,
unsigned DestReg, unsigned BaseReg, int NumBytes,
ARMCC::CondCodes Pred, unsigned PredReg,
const ARMBaseInstrInfo &TII) {
bool isSub = NumBytes < 0;
if (isSub) NumBytes = -NumBytes;
// If profitable, use a movw or movt to materialize the offset.
// FIXME: Use the scavenger to grab a scratch register.
if (DestReg != ARM::SP && DestReg != BaseReg &&
NumBytes >= 4096 &&
ARM_AM::getT2SOImmVal(NumBytes) == -1) {
bool Fits = false;
if (NumBytes < 65536) {
// Use a movw to materialize the 16-bit constant.
BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), DestReg)
.addImm(NumBytes)
.addImm((unsigned)Pred).addReg(PredReg);
Fits = true;
} else if ((NumBytes & 0xffff) == 0) {
// Use a movt to materialize the 32-bit constant.
BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), DestReg)
.addReg(DestReg)
.addImm(NumBytes >> 16)
.addImm((unsigned)Pred).addReg(PredReg);
Fits = true;
}
if (Fits) {
if (isSub) {
BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), DestReg)
.addReg(BaseReg, RegState::Kill)
.addReg(DestReg, RegState::Kill)
.addImm((unsigned)Pred).addReg(PredReg).addReg(0);
} else {
BuildMI(MBB, MBBI, dl, TII.get(ARM::t2ADDrr), DestReg)
.addReg(DestReg, RegState::Kill)
.addReg(BaseReg, RegState::Kill)
.addImm((unsigned)Pred).addReg(PredReg).addReg(0);
}
return;
}
}
while (NumBytes) {
unsigned ThisVal = NumBytes;
unsigned Opc = 0;
if (DestReg == ARM::SP && BaseReg != ARM::SP) {
// mov sp, rn. Note t2MOVr cannot be used.
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVgpr2gpr),DestReg).addReg(BaseReg);
BaseReg = ARM::SP;
continue;
}
bool HasCCOut = true;
if (BaseReg == ARM::SP) {
// sub sp, sp, #imm7
if (DestReg == ARM::SP && (ThisVal < ((1 << 7)-1) * 4)) {
assert((ThisVal & 3) == 0 && "Stack update is not multiple of 4?");
Opc = isSub ? ARM::tSUBspi : ARM::tADDspi;
// FIXME: Fix Thumb1 immediate encoding.
BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
.addReg(BaseReg).addImm(ThisVal/4);
NumBytes = 0;
continue;
}
// sub rd, sp, so_imm
Opc = isSub ? ARM::t2SUBrSPi : ARM::t2ADDrSPi;
if (ARM_AM::getT2SOImmVal(NumBytes) != -1) {
NumBytes = 0;
} else {
// FIXME: Move this to ARMAddressingModes.h?
unsigned RotAmt = CountLeadingZeros_32(ThisVal);
ThisVal = ThisVal & ARM_AM::rotr32(0xff000000U, RotAmt);
NumBytes &= ~ThisVal;
assert(ARM_AM::getT2SOImmVal(ThisVal) != -1 &&
"Bit extraction didn't work?");
}
} else {
assert(DestReg != ARM::SP && BaseReg != ARM::SP);
Opc = isSub ? ARM::t2SUBri : ARM::t2ADDri;
if (ARM_AM::getT2SOImmVal(NumBytes) != -1) {
NumBytes = 0;
} else if (ThisVal < 4096) {
Opc = isSub ? ARM::t2SUBri12 : ARM::t2ADDri12;
HasCCOut = false;
NumBytes = 0;
} else {
// FIXME: Move this to ARMAddressingModes.h?
unsigned RotAmt = CountLeadingZeros_32(ThisVal);
ThisVal = ThisVal & ARM_AM::rotr32(0xff000000U, RotAmt);
NumBytes &= ~ThisVal;
assert(ARM_AM::getT2SOImmVal(ThisVal) != -1 &&
"Bit extraction didn't work?");
}
}
// Build the new ADD / SUB.
MachineInstrBuilder MIB =
AddDefaultPred(BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
.addReg(BaseReg, RegState::Kill)
.addImm(ThisVal));
if (HasCCOut)
AddDefaultCC(MIB);
BaseReg = DestReg;
}
}
static unsigned
negativeOffsetOpcode(unsigned opcode)
{
switch (opcode) {
case ARM::t2LDRi12: return ARM::t2LDRi8;
case ARM::t2LDRHi12: return ARM::t2LDRHi8;
case ARM::t2LDRBi12: return ARM::t2LDRBi8;
case ARM::t2LDRSHi12: return ARM::t2LDRSHi8;
case ARM::t2LDRSBi12: return ARM::t2LDRSBi8;
case ARM::t2STRi12: return ARM::t2STRi8;
case ARM::t2STRBi12: return ARM::t2STRBi8;
case ARM::t2STRHi12: return ARM::t2STRHi8;
case ARM::t2LDRi8:
case ARM::t2LDRHi8:
case ARM::t2LDRBi8:
case ARM::t2LDRSHi8:
case ARM::t2LDRSBi8:
case ARM::t2STRi8:
case ARM::t2STRBi8:
case ARM::t2STRHi8:
return opcode;
default:
break;
}
return 0;
}
static unsigned
positiveOffsetOpcode(unsigned opcode)
{
switch (opcode) {
case ARM::t2LDRi8: return ARM::t2LDRi12;
case ARM::t2LDRHi8: return ARM::t2LDRHi12;
case ARM::t2LDRBi8: return ARM::t2LDRBi12;
case ARM::t2LDRSHi8: return ARM::t2LDRSHi12;
case ARM::t2LDRSBi8: return ARM::t2LDRSBi12;
case ARM::t2STRi8: return ARM::t2STRi12;
case ARM::t2STRBi8: return ARM::t2STRBi12;
case ARM::t2STRHi8: return ARM::t2STRHi12;
case ARM::t2LDRi12:
case ARM::t2LDRHi12:
case ARM::t2LDRBi12:
case ARM::t2LDRSHi12:
case ARM::t2LDRSBi12:
case ARM::t2STRi12:
case ARM::t2STRBi12:
case ARM::t2STRHi12:
return opcode;
default:
break;
}
return 0;
}
static unsigned
immediateOffsetOpcode(unsigned opcode)
{
switch (opcode) {
case ARM::t2LDRs: return ARM::t2LDRi12;
case ARM::t2LDRHs: return ARM::t2LDRHi12;
case ARM::t2LDRBs: return ARM::t2LDRBi12;
case ARM::t2LDRSHs: return ARM::t2LDRSHi12;
case ARM::t2LDRSBs: return ARM::t2LDRSBi12;
case ARM::t2STRs: return ARM::t2STRi12;
case ARM::t2STRBs: return ARM::t2STRBi12;
case ARM::t2STRHs: return ARM::t2STRHi12;
case ARM::t2LDRi12:
case ARM::t2LDRHi12:
case ARM::t2LDRBi12:
case ARM::t2LDRSHi12:
case ARM::t2LDRSBi12:
case ARM::t2STRi12:
case ARM::t2STRBi12:
case ARM::t2STRHi12:
case ARM::t2LDRi8:
case ARM::t2LDRHi8:
case ARM::t2LDRBi8:
case ARM::t2LDRSHi8:
case ARM::t2LDRSBi8:
case ARM::t2STRi8:
case ARM::t2STRBi8:
case ARM::t2STRHi8:
return opcode;
default:
break;
}
return 0;
}
bool llvm::rewriteT2FrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
unsigned FrameReg, int &Offset,
const ARMBaseInstrInfo &TII) {
unsigned Opcode = MI.getOpcode();
const TargetInstrDesc &Desc = MI.getDesc();
unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
bool isSub = false;
// Memory operands in inline assembly always use AddrModeT2_i12.
if (Opcode == ARM::INLINEASM)
AddrMode = ARMII::AddrModeT2_i12; // FIXME. mode for thumb2?
if (Opcode == ARM::t2ADDri || Opcode == ARM::t2ADDri12) {
Offset += MI.getOperand(FrameRegIdx+1).getImm();
unsigned PredReg;
if (Offset == 0 && getInstrPredicate(&MI, PredReg) == ARMCC::AL) {
// Turn it into a move.
MI.setDesc(TII.get(ARM::tMOVgpr2gpr));
MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
// Remove offset and remaining explicit predicate operands.
do MI.RemoveOperand(FrameRegIdx+1);
while (MI.getNumOperands() > FrameRegIdx+1 &&
(!MI.getOperand(FrameRegIdx+1).isReg() ||
!MI.getOperand(FrameRegIdx+1).isImm()));
return true;
}
bool isSP = FrameReg == ARM::SP;
bool HasCCOut = Opcode != ARM::t2ADDri12;
if (Offset < 0) {
Offset = -Offset;
isSub = true;
MI.setDesc(TII.get(isSP ? ARM::t2SUBrSPi : ARM::t2SUBri));
} else {
MI.setDesc(TII.get(isSP ? ARM::t2ADDrSPi : ARM::t2ADDri));
}
// Common case: small offset, fits into instruction.
if (ARM_AM::getT2SOImmVal(Offset) != -1) {
MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
// Add cc_out operand if the original instruction did not have one.
if (!HasCCOut)
MI.addOperand(MachineOperand::CreateReg(0, false));
Offset = 0;
return true;
}
// Another common case: imm12.
if (Offset < 4096 &&
(!HasCCOut || MI.getOperand(MI.getNumOperands()-1).getReg() == 0)) {
unsigned NewOpc = isSP
? (isSub ? ARM::t2SUBrSPi12 : ARM::t2ADDrSPi12)
: (isSub ? ARM::t2SUBri12 : ARM::t2ADDri12);
MI.setDesc(TII.get(NewOpc));
MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
// Remove the cc_out operand.
if (HasCCOut)
MI.RemoveOperand(MI.getNumOperands()-1);
Offset = 0;
return true;
}
// Otherwise, extract 8 adjacent bits from the immediate into this
// t2ADDri/t2SUBri.
unsigned RotAmt = CountLeadingZeros_32(Offset);
unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xff000000U, RotAmt);
// We will handle these bits from offset, clear them.
Offset &= ~ThisImmVal;
assert(ARM_AM::getT2SOImmVal(ThisImmVal) != -1 &&
"Bit extraction didn't work?");
MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
// Add cc_out operand if the original instruction did not have one.
if (!HasCCOut)
MI.addOperand(MachineOperand::CreateReg(0, false));
} else {
// AddrMode4 and AddrMode6 cannot handle any offset.
if (AddrMode == ARMII::AddrMode4 || AddrMode == ARMII::AddrMode6)
return false;
// AddrModeT2_so cannot handle any offset. If there is no offset
// register then we change to an immediate version.
unsigned NewOpc = Opcode;
if (AddrMode == ARMII::AddrModeT2_so) {
unsigned OffsetReg = MI.getOperand(FrameRegIdx+1).getReg();
if (OffsetReg != 0) {
MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
return Offset == 0;
}
MI.RemoveOperand(FrameRegIdx+1);
MI.getOperand(FrameRegIdx+1).ChangeToImmediate(0);
NewOpc = immediateOffsetOpcode(Opcode);
AddrMode = ARMII::AddrModeT2_i12;
}
unsigned NumBits = 0;
unsigned Scale = 1;
if (AddrMode == ARMII::AddrModeT2_i8 || AddrMode == ARMII::AddrModeT2_i12) {
// i8 supports only negative, and i12 supports only positive, so
// based on Offset sign convert Opcode to the appropriate
// instruction
Offset += MI.getOperand(FrameRegIdx+1).getImm();
if (Offset < 0) {
NewOpc = negativeOffsetOpcode(Opcode);
NumBits = 8;
isSub = true;
Offset = -Offset;
} else {
NewOpc = positiveOffsetOpcode(Opcode);
NumBits = 12;
}
} else if (AddrMode == ARMII::AddrMode5) {
// VFP address mode.
const MachineOperand &OffOp = MI.getOperand(FrameRegIdx+1);
int InstrOffs = ARM_AM::getAM5Offset(OffOp.getImm());
if (ARM_AM::getAM5Op(OffOp.getImm()) == ARM_AM::sub)
InstrOffs *= -1;
NumBits = 8;
Scale = 4;
Offset += InstrOffs * 4;
assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
if (Offset < 0) {
Offset = -Offset;
isSub = true;
}
} else {
llvm_unreachable("Unsupported addressing mode!");
}
if (NewOpc != Opcode)
MI.setDesc(TII.get(NewOpc));
MachineOperand &ImmOp = MI.getOperand(FrameRegIdx+1);
// Attempt to fold address computation
// Common case: small offset, fits into instruction.
int ImmedOffset = Offset / Scale;
unsigned Mask = (1 << NumBits) - 1;
if ((unsigned)Offset <= Mask * Scale) {
// Replace the FrameIndex with fp/sp
MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
if (isSub) {
if (AddrMode == ARMII::AddrMode5)
// FIXME: Not consistent.
ImmedOffset |= 1 << NumBits;
else
ImmedOffset = -ImmedOffset;
}
ImmOp.ChangeToImmediate(ImmedOffset);
Offset = 0;
return true;
}
// Otherwise, offset doesn't fit. Pull in what we can to simplify
ImmedOffset = ImmedOffset & Mask;
if (isSub) {
if (AddrMode == ARMII::AddrMode5)
// FIXME: Not consistent.
ImmedOffset |= 1 << NumBits;
else {
ImmedOffset = -ImmedOffset;
if (ImmedOffset == 0)
// Change the opcode back if the encoded offset is zero.
MI.setDesc(TII.get(positiveOffsetOpcode(NewOpc)));
}
}
ImmOp.ChangeToImmediate(ImmedOffset);
Offset &= ~(Mask*Scale);
}
Offset = (isSub) ? -Offset : Offset;
return Offset == 0;
}
/// scheduleTwoAddrSource - Schedule the copy / re-mat of the source of the
/// two-addrss instruction inserted by two-address pass.
void
Thumb2InstrInfo::scheduleTwoAddrSource(MachineInstr *SrcMI,
MachineInstr *UseMI,
const TargetRegisterInfo &TRI) const {
if (SrcMI->getOpcode() != ARM::tMOVgpr2gpr ||
SrcMI->getOperand(1).isKill())
return;
unsigned PredReg = 0;
ARMCC::CondCodes CC = llvm::getInstrPredicate(UseMI, PredReg);
if (CC == ARMCC::AL || PredReg != ARM::CPSR)
return;
// Schedule the copy so it doesn't come between previous instructions
// and UseMI which can form an IT block.
unsigned SrcReg = SrcMI->getOperand(1).getReg();
ARMCC::CondCodes OCC = ARMCC::getOppositeCondition(CC);
MachineBasicBlock *MBB = UseMI->getParent();
MachineBasicBlock::iterator MBBI = SrcMI;
unsigned NumInsts = 0;
while (--MBBI != MBB->begin()) {
if (MBBI->isDebugValue())
continue;
MachineInstr *NMI = &*MBBI;
ARMCC::CondCodes NCC = llvm::getInstrPredicate(NMI, PredReg);
if (!(NCC == CC || NCC == OCC) ||
NMI->modifiesRegister(SrcReg, &TRI) ||
NMI->definesRegister(ARM::CPSR))
break;
if (++NumInsts == 4)
// Too many in a row!
return;
}
if (NumInsts) {
MBB->remove(SrcMI);
MBB->insert(++MBBI, SrcMI);
}
}
ARMCC::CondCodes
llvm::getITInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
unsigned Opc = MI->getOpcode();
if (Opc == ARM::tBcc || Opc == ARM::t2Bcc)
return ARMCC::AL;
return llvm::getInstrPredicate(MI, PredReg);
}