Merge branch 'bpm-work' into 'master'

BPM algorithm work - improved beat analysis routine and added individual beat detection

See merge request soundtouch/soundtouch!1
This commit is contained in:
Olli 2018-05-16 16:04:33 +00:00
commit 8f6f91f9b3
8 changed files with 532 additions and 128 deletions

View File

@ -13,8 +13,8 @@
</head>
<body class="normal">
<hr>
<h1>SoundTouch audio processing library v2.0.1pre</h1>
<p class="normal">SoundTouch library Copyright &copy Olli Parviainen 2001-2017</p>
<h1>SoundTouch audio processing library v2.1pre</h1>
<p class="normal">SoundTouch library Copyright © Olli Parviainen 2001-2018</p>
<hr>
<h2>1. Introduction </h2>
<p>SoundTouch is an open-source audio processing library that allows
@ -573,7 +573,7 @@ this corresponds to lowering the pitch by -0.318 semitones:</p>
<hr>
<h2>5. Change History</h2>
<h3>5.1. SoundTouch library Change History </h3>
<p><b>2.0.1pre:</b></p>
<p><b>2.1pre:</b></p>
<ul>
<li>Refactored C# interface example</li>
<li>Disable anti-alias filter when switch
@ -581,7 +581,10 @@ this corresponds to lowering the pitch by -0.318 semitones:</p>
filter cause slight click if the rate change crosses zero during
processing</li>
<li>Added script for building SoundTouchDll dynamic-link-library for GNU platforms</li>
<li>Added BPM functions to SoundTouchDll API</li>
<li>Rewrote Beats-per-Minute analysis algorithm for more reliable BPM
detection</li>
<li>Added BPM functions to SoundTouchDll API</li>
<li>Migrated Visual Studio project files to MSVC 201x format</li>
</ul>
<p><b>2.0:</b></p>
<ul>
@ -901,6 +904,8 @@ General Public License for more details.</p>
<p>You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA</p>
<p>---</p>
<p>commercial license alternative also available, contact author for details.</p>
<hr>
<p><i>README.html file updated in May-2018</i></p>
</body>

View File

@ -50,102 +50,232 @@
#ifndef _BPMDetect_H_
#define _BPMDetect_H_
#include <vector>
#include "STTypes.h"
#include "FIFOSampleBuffer.h"
namespace soundtouch
{
/// Minimum allowed BPM rate. Used to restrict accepted result above a reasonable limit.
#define MIN_BPM 29
/// Minimum allowed BPM rate. Used to restrict accepted result above a reasonable limit.
#define MIN_BPM 45
/// Maximum allowed BPM rate. Used to restrict accepted result below a reasonable limit.
#define MAX_BPM 200
/// Maximum allowed BPM rate range. Used for calculating algorithm parametrs
#define MAX_BPM_RANGE 200
/// Maximum allowed BPM rate range. Used to restrict accepted result below a reasonable limit.
#define MAX_BPM_VALID 190
/// Class for calculating BPM rate for audio data.
class BPMDetect
////////////////////////////////////////////////////////////////////////////////
/*
class BeatCollection
{
protected:
/// Auto-correlation accumulator bins.
float *xcorr;
/// Sample average counter.
int decimateCount;
private:
/// Sample average accumulator for FIFO-like decimation.
soundtouch::LONG_SAMPLETYPE decimateSum;
int size;
/// Decimate sound by this coefficient to reach approx. 500 Hz.
int decimateBy;
/// Auto-correlation window length
int windowLen;
/// Number of channels (1 = mono, 2 = stereo)
int channels;
/// sample rate
int sampleRate;
/// Beginning of auto-correlation window: Autocorrelation isn't being updated for
/// the first these many correlation bins.
int windowStart;
/// FIFO-buffer for decimated processing samples.
soundtouch::FIFOSampleBuffer *buffer;
/// Updates auto-correlation function for given number of decimated samples that
/// are read from the internal 'buffer' pipe (samples aren't removed from the pipe
/// though).
void updateXCorr(int process_samples /// How many samples are processed.
);
/// Decimates samples to approx. 500 Hz.
///
/// \return Number of output samples.
int decimate(soundtouch::SAMPLETYPE *dest, ///< Destination buffer
const soundtouch::SAMPLETYPE *src, ///< Source sample buffer
int numsamples ///< Number of source samples.
);
/// Calculates amplitude envelope for the buffer of samples.
/// Result is output to 'samples'.
void calcEnvelope(soundtouch::SAMPLETYPE *samples, ///< Pointer to input/output data buffer
int numsamples ///< Number of samples in buffer
);
/// remove constant bias from xcorr data
void removeBias();
// Ensure there's enough capacity in arrays
void EnsureCapacity(int newCapacity)
{
if (newCapacity > size)
{
// enlarge arrays
int oldSize = size;
float *beatPosOld = beatPos;
float *beatValuesOld = beatValues;
while (size < newCapacity) size *= 2;
printf("Alloc more %d\n", size);
beatPos = new float[size];
beatValues = new float[size];
if ((beatPos == NULL) || (beatValues == NULL))
{
ST_THROW_RT_ERROR("can't allocate memory");
}
// copy old arrays to new arrays
memcpy(beatPos, beatPosOld, sizeof(float)*oldSize);
memcpy(beatValues, beatValuesOld, sizeof(float)*oldSize);
// free old arrays
delete[] beatPosOld;
delete[] beatValuesOld;
}
}
public:
/// Constructor.
BPMDetect(int numChannels, ///< Number of channels in sample data.
int sampleRate ///< Sample rate in Hz.
);
// beat position array
float *beatPos;
/// Destructor.
virtual ~BPMDetect();
// beat values array
float *beatValues;
/// Inputs a block of samples for analyzing: Envelopes the samples and then
/// updates the autocorrelation estimation. When whole song data has been input
/// in smaller blocks using this function, read the resulting bpm with 'getBpm'
/// function.
///
/// Notice that data in 'samples' array can be disrupted in processing.
void inputSamples(const soundtouch::SAMPLETYPE *samples, ///< Pointer to input/working data buffer
int numSamples ///< Number of samples in buffer
);
// number of beats in arrays
int numBeats;
// constructor
BeatCollection()
{
numBeats = 0;
size = 1024;
beatPos = new float[size];
beatValues = new float[size];
}
/// Analyzes the results and returns the BPM rate. Use this function to read result
/// after whole song data has been input to the class by consecutive calls of
/// 'inputSamples' function.
///
/// \return Beats-per-minute rate, or zero if detection failed.
float getBpm();
// destructor
~BeatCollection()
{
delete[] beatPos;
delete[] beatValues;
}
// add new beat position into array
void Add(float pos, float value)
{
EnsureCapacity(numBeats + 1);
beatPos[numBeats] = pos;
beatValues[numBeats] = value;
numBeats++;
}
};
*/
typedef struct
{
float pos;
float strength;
} BEAT;
class IIR2_filter
{
double coeffs[5];
double prev[5];
public:
IIR2_filter(const double *lpf_coeffs);
float update(float x);
};
/// Class for calculating BPM rate for audio data.
class BPMDetect
{
protected:
/// Auto-correlation accumulator bins.
float *xcorr;
/// Sample average counter.
int decimateCount;
/// Sample average accumulator for FIFO-like decimation.
soundtouch::LONG_SAMPLETYPE decimateSum;
/// Decimate sound by this coefficient to reach approx. 500 Hz.
int decimateBy;
/// Auto-correlation window length
int windowLen;
/// Number of channels (1 = mono, 2 = stereo)
int channels;
/// sample rate
int sampleRate;
/// Beginning of auto-correlation window: Autocorrelation isn't being updated for
/// the first these many correlation bins.
int windowStart;
/// window functions for data preconditioning
float *hamw;
float *hamw2;
// beat detection variables
int pos;
int peakPos;
int beatcorr_ringbuffpos;
int init_scaler;
float peakVal;
float *beatcorr_ringbuff;
/// FIFO-buffer for decimated processing samples.
soundtouch::FIFOSampleBuffer *buffer;
/// Collection of detected beat positions
//BeatCollection beats;
std::vector<BEAT> beats;
// 2nd order low-pass-filter
IIR2_filter beat_lpf;
/// Updates auto-correlation function for given number of decimated samples that
/// are read from the internal 'buffer' pipe (samples aren't removed from the pipe
/// though).
void updateXCorr(int process_samples /// How many samples are processed.
);
/// Decimates samples to approx. 500 Hz.
///
/// \return Number of output samples.
int decimate(soundtouch::SAMPLETYPE *dest, ///< Destination buffer
const soundtouch::SAMPLETYPE *src, ///< Source sample buffer
int numsamples ///< Number of source samples.
);
/// Calculates amplitude envelope for the buffer of samples.
/// Result is output to 'samples'.
void calcEnvelope(soundtouch::SAMPLETYPE *samples, ///< Pointer to input/output data buffer
int numsamples ///< Number of samples in buffer
);
/// remove constant bias from xcorr data
void removeBias();
// Detect individual beat positions
void updateBeatPos(int process_samples);
public:
/// Constructor.
BPMDetect(int numChannels, ///< Number of channels in sample data.
int sampleRate ///< Sample rate in Hz.
);
/// Destructor.
virtual ~BPMDetect();
/// Inputs a block of samples for analyzing: Envelopes the samples and then
/// updates the autocorrelation estimation. When whole song data has been input
/// in smaller blocks using this function, read the resulting bpm with 'getBpm'
/// function.
///
/// Notice that data in 'samples' array can be disrupted in processing.
void inputSamples(const soundtouch::SAMPLETYPE *samples, ///< Pointer to input/working data buffer
int numSamples ///< Number of samples in buffer
);
/// Analyzes the results and returns the BPM rate. Use this function to read result
/// after whole song data has been input to the class by consecutive calls of
/// 'inputSamples' function.
///
/// \return Beats-per-minute rate, or zero if detection failed.
float getBpm();
/// Get beat position arrays. Note: The array includes also really low beat detection values
/// in absence of clear strong beats. Consumer may wish to filter low values away.
/// - "pos" receive array of beat positions
/// - "values" receive array of beat detection strengths
/// - max_num indicates max.size of "pos" and "values" array.
///
/// You can query a suitable array sized by calling this with NULL in "pos" & "values".
///
/// \return number of beats in the arrays.
int getBeats(float *pos, float *strength, int max_num);
};
}
#endif // _BPMDetect_H_

View File

@ -72,10 +72,10 @@ namespace soundtouch
{
/// Soundtouch library version string
#define SOUNDTOUCH_VERSION "2.0.1pre"
#define SOUNDTOUCH_VERSION "2.1pre"
/// SoundTouch library version id
#define SOUNDTOUCH_VERSION_ID (20001)
#define SOUNDTOUCH_VERSION_ID (20009)
//
// Available setting IDs for the 'setSetting' & 'get_setting' functions:

View File

@ -58,8 +58,8 @@ using namespace std;
static const char _helloText[] =
"\n"
" SoundStretch v%s - Copyright (c) Olli Parviainen 2001 - 2017\n"
"==================================================================\n"
" SoundStretch v%s - Copyright (c) Olli Parviainen\n"
"=========================================================\n"
"author e-mail: <oparviai"
"@"
"iki.fi> - WWW: http://www.surina.net/soundtouch\n"

View File

@ -47,6 +47,8 @@
//
////////////////////////////////////////////////////////////////////////////////
#define _USE_MATH_DEFINES
#include <math.h>
#include <assert.h>
#include <string.h>
@ -57,40 +59,49 @@
using namespace soundtouch;
#define INPUT_BLOCK_SAMPLES 2048
#define DECIMATED_BLOCK_SAMPLES 256
// algorithm input sample block size
static const int INPUT_BLOCK_SIZE = 2048;
// decimated sample block size
static const int DECIMATED_BLOCK_SIZE = 256;
/// Target sample rate after decimation
const int target_srate = 1000;
static const int TARGET_SRATE = 1000;
/// XCorr update sequence size, update in about 200msec chunks
const int xcorr_update_sequence = 200;
static const int XCORR_UPDATE_SEQUENCE = (int)(TARGET_SRATE / 5);
/// Moving average N size
static const int MOVING_AVERAGE_N = 15;
/// XCorr decay time constant, decay to half in 30 seconds
/// If it's desired to have the system adapt quicker to beat rate
/// changes within a continuing music stream, then the
/// 'xcorr_decay_time_constant' value can be reduced, yet that
/// can increase possibility of glitches in bpm detection.
const double xcorr_decay_time_constant = 30.0;
static const double XCORR_DECAY_TIME_CONSTANT = 30.0;
/// Data overlap factor for beat detection algorithm
static const int OVERLAP_FACTOR = 4;
static const double TWOPI = (2 * M_PI);
////////////////////////////////////////////////////////////////////////////////
// Enable following define to create bpm analysis file:
// #define _CREATE_BPM_DEBUG_FILE
//#define _CREATE_BPM_DEBUG_FILE
#ifdef _CREATE_BPM_DEBUG_FILE
#define DEBUGFILE_NAME "c:\\temp\\soundtouch-bpm-debug.txt"
static void _SaveDebugData(const float *data, int minpos, int maxpos, double coeff)
static void _SaveDebugData(const char *name, const float *data, int minpos, int maxpos, double coeff)
{
FILE *fptr = fopen(DEBUGFILE_NAME, "wt");
FILE *fptr = fopen(name, "wt");
int i;
if (fptr)
{
printf("\n\nWriting BPM debug data into file " DEBUGFILE_NAME "\n\n");
printf("\nWriting BPM debug data into file %s\n", name);
for (i = minpos; i < maxpos; i ++)
{
fprintf(fptr, "%d\t%.1lf\t%f\n", i, coeff / (double)i, data[i]);
@ -98,15 +109,74 @@ const double xcorr_decay_time_constant = 30.0;
fclose(fptr);
}
}
void _SaveDebugBeatPos(const char *name, const std::vector<BEAT> &beats)
{
printf("\nWriting beat detections data into file %s\n", name);
FILE *fptr = fopen(name, "wt");
if (fptr)
{
for (uint i = 0; i < beats.size(); i++)
{
BEAT b = beats[i];
fprintf(fptr, "%lf\t%lf\n", b.pos, b.strength);
}
fclose(fptr);
}
}
#else
#define _SaveDebugData(a,b,c,d)
#define _SaveDebugData(name, a,b,c,d)
#define _SaveDebugBeatPos(name, b)
#endif
// Hamming window
void hamming(float *w, int N)
{
for (int i = 0; i < N; i++)
{
w[i] = (float)(0.54 - 0.46 * cos(TWOPI * i / (N - 1)));
}
}
////////////////////////////////////////////////////////////////////////////////
//
// IIR2_filter - 2nd order IIR filter
IIR2_filter::IIR2_filter(const double *lpf_coeffs)
{
memcpy(coeffs, lpf_coeffs, 5 * sizeof(double));
memset(prev, 0, sizeof(prev));
}
float IIR2_filter::update(float x)
{
prev[0] = x;
double y = x * coeffs[0];
for (int i = 4; i >= 1; i--)
{
y += coeffs[i] * prev[i];
prev[i] = prev[i - 1];
}
prev[3] = y;
return (float)y;
}
// IIR low-pass filter coefficients, calculated with matlab/octave cheby2(2,40,0.05)
const double _LPF_coeffs[5] = { 0.00996655391939, -0.01944529148401, 0.00996655391939, 1.96867605796247, -0.96916387431724 };
////////////////////////////////////////////////////////////////////////////////
BPMDetect::BPMDetect(int numChannels, int aSampleRate)
BPMDetect::BPMDetect(int numChannels, int aSampleRate) :
beat_lpf(_LPF_coeffs)
{
beats.reserve(250); // initial reservation to prevent frequent reallocation
this->sampleRate = aSampleRate;
this->channels = numChannels;
@ -114,13 +184,13 @@ BPMDetect::BPMDetect(int numChannels, int aSampleRate)
decimateCount = 0;
// choose decimation factor so that result is approx. 1000 Hz
decimateBy = sampleRate / target_srate;
decimateBy = sampleRate / TARGET_SRATE;
assert(decimateBy > 0);
assert(INPUT_BLOCK_SAMPLES < decimateBy * DECIMATED_BLOCK_SAMPLES);
assert(INPUT_BLOCK_SIZE < decimateBy * DECIMATED_BLOCK_SIZE);
// Calculate window length & starting item according to desired min & max bpms
windowLen = (60 * sampleRate) / (decimateBy * MIN_BPM);
windowStart = (60 * sampleRate) / (decimateBy * MAX_BPM);
windowStart = (60 * sampleRate) / (decimateBy * MAX_BPM_RANGE);
assert(windowLen > windowStart);
@ -128,23 +198,38 @@ BPMDetect::BPMDetect(int numChannels, int aSampleRate)
xcorr = new float[windowLen];
memset(xcorr, 0, windowLen * sizeof(float));
pos = 0;
peakPos = 0;
peakVal = 0;
init_scaler = 1;
beatcorr_ringbuffpos = 0;
beatcorr_ringbuff = new float[windowLen];
memset(beatcorr_ringbuff, 0, windowLen * sizeof(float));
// allocate processing buffer
buffer = new FIFOSampleBuffer();
// we do processing in mono mode
buffer->setChannels(1);
buffer->clear();
}
// calculate hamming windows
hamw = new float[XCORR_UPDATE_SEQUENCE];
hamming(hamw, XCORR_UPDATE_SEQUENCE);
hamw2 = new float[XCORR_UPDATE_SEQUENCE / 2];
hamming(hamw2, XCORR_UPDATE_SEQUENCE / 2);
}
BPMDetect::~BPMDetect()
{
delete[] xcorr;
delete[] beatcorr_ringbuff;
delete[] hamw;
delete[] hamw2;
delete buffer;
}
/// convert to mono, low-pass filter & decimate to about 500 Hz.
/// return number of outputted samples.
///
@ -201,7 +286,6 @@ int BPMDetect::decimate(SAMPLETYPE *dest, const SAMPLETYPE *src, int numsamples)
}
// Calculates autocorrelation function of the sample history buffer
void BPMDetect::updateXCorr(int process_samples)
{
@ -209,22 +293,30 @@ void BPMDetect::updateXCorr(int process_samples)
SAMPLETYPE *pBuffer;
assert(buffer->numSamples() >= (uint)(process_samples + windowLen));
assert(process_samples == XCORR_UPDATE_SEQUENCE);
pBuffer = buffer->ptrBegin();
// calculate decay factor for xcorr filtering
float xcorr_decay = (float)pow(0.5, 1.0 / (xcorr_decay_time_constant * target_srate / process_samples));
float xcorr_decay = (float)pow(0.5, 1.0 / (XCORR_DECAY_TIME_CONSTANT * TARGET_SRATE / process_samples));
// prescale pbuffer
float tmp[XCORR_UPDATE_SEQUENCE];
for (int i = 0; i < process_samples; i++)
{
tmp[i] = hamw[i] * hamw[i] * pBuffer[i];
}
#pragma omp parallel for
for (offs = windowStart; offs < windowLen; offs ++)
{
LONG_SAMPLETYPE sum;
double sum;
int i;
sum = 0;
for (i = 0; i < process_samples; i ++)
{
sum += pBuffer[i] * pBuffer[i + offs]; // scaling the sub-result shouldn't be necessary
sum += tmp[i] * pBuffer[i + offs]; // scaling the sub-result shouldn't be necessary
}
xcorr[offs] *= xcorr_decay; // decay 'xcorr' here with suitable time constant.
@ -233,10 +325,92 @@ void BPMDetect::updateXCorr(int process_samples)
}
// Detect individual beat positions
void BPMDetect::updateBeatPos(int process_samples)
{
SAMPLETYPE *pBuffer;
assert(buffer->numSamples() >= (uint)(process_samples + windowLen));
pBuffer = buffer->ptrBegin();
assert(process_samples == XCORR_UPDATE_SEQUENCE / 2);
// static double thr = 0.0003;
double posScale = (double)this->decimateBy / (double)this->sampleRate;
int resetDur = (int)(0.12 / posScale + 0.5);
double corrScale = 1.0 / (double)(windowLen - windowStart);
// prescale pbuffer
float tmp[XCORR_UPDATE_SEQUENCE / 2];
for (int i = 0; i < process_samples; i++)
{
tmp[i] = hamw2[i] * hamw2[i] * pBuffer[i];
}
#pragma omp parallel for
for (int offs = windowStart; offs < windowLen; offs++)
{
double sum = 0;
for (int i = 0; i < process_samples; i++)
{
sum += tmp[i] * pBuffer[offs + i];
}
beatcorr_ringbuff[(beatcorr_ringbuffpos + offs) % windowLen] += (float)((sum > 0) ? sum : 0); // accumulate only positive correlations
}
int skipstep = XCORR_UPDATE_SEQUENCE / OVERLAP_FACTOR;
// compensate empty buffer at beginning by scaling coefficient
float scale = (float)windowLen / (float)(skipstep * init_scaler);
if (scale > 1.0f)
{
init_scaler++;
}
else
{
scale = 1.0f;
}
// detect beats
for (int i = 0; i < skipstep; i++)
{
LONG_SAMPLETYPE max = 0;
float sum = beatcorr_ringbuff[beatcorr_ringbuffpos];
sum -= beat_lpf.update(sum);
if (sum > peakVal)
{
// found new local largest value
peakVal = sum;
peakPos = pos;
}
if (pos > peakPos + resetDur)
{
// largest value not updated for 200msec => accept as beat
peakPos += skipstep;
if (peakVal > 0)
{
// add detected beat to end of "beats" vector
beats.push_back({ (float)(peakPos * posScale), (float)(peakVal * scale) });
}
peakVal = 0;
peakPos = pos;
}
beatcorr_ringbuff[beatcorr_ringbuffpos] = 0;
pos++;
beatcorr_ringbuffpos = (beatcorr_ringbuffpos + 1) % windowLen;
}
}
#define max(x,y) ((x) > (y) ? (x) : (y))
void BPMDetect::inputSamples(const SAMPLETYPE *samples, int numSamples)
{
SAMPLETYPE decimated[DECIMATED_BLOCK_SAMPLES];
SAMPLETYPE decimated[DECIMATED_BLOCK_SIZE];
// iterate so that max INPUT_BLOCK_SAMPLES processed per iteration
while (numSamples > 0)
@ -244,7 +418,7 @@ void BPMDetect::inputSamples(const SAMPLETYPE *samples, int numSamples)
int block;
int decSamples;
block = (numSamples > INPUT_BLOCK_SAMPLES) ? INPUT_BLOCK_SAMPLES : numSamples;
block = (numSamples > INPUT_BLOCK_SIZE) ? INPUT_BLOCK_SIZE : numSamples;
// decimate. note that converts to mono at the same time
decSamples = decimate(decimated, samples, block);
@ -254,31 +428,60 @@ void BPMDetect::inputSamples(const SAMPLETYPE *samples, int numSamples)
buffer->putSamples(decimated, decSamples);
}
// when the buffer has enough samples for processing...
while ((int)buffer->numSamples() >= windowLen + xcorr_update_sequence)
// when the buffer has enought samples for processing...
int req = max(windowLen + XCORR_UPDATE_SEQUENCE, 2 * XCORR_UPDATE_SEQUENCE);
while ((int)buffer->numSamples() >= req)
{
// ... calculate autocorrelations for oldest samples...
updateXCorr(xcorr_update_sequence);
// ... and remove these from the buffer
buffer->receiveSamples(xcorr_update_sequence);
// ... update autocorrelations...
updateXCorr(XCORR_UPDATE_SEQUENCE);
// ...update beat position calculation...
updateBeatPos(XCORR_UPDATE_SEQUENCE / 2);
// ... and remove proceessed samples from the buffer
int n = XCORR_UPDATE_SEQUENCE / OVERLAP_FACTOR;
buffer->receiveSamples(n);
}
}
void BPMDetect::removeBias()
{
int i;
float minval = 1e12f; // arbitrary large number
// Remove linear bias: calculate linear regression coefficient
// 1. calc mean of 'xcorr' and 'i'
double mean_i = 0;
double mean_x = 0;
for (i = windowStart; i < windowLen; i++)
{
mean_x += xcorr[i];
}
mean_x /= (windowLen - windowStart);
mean_i = 0.5 * (windowLen - 1 + windowStart);
// 2. calculate linear regression coefficient
double b = 0;
double div = 0;
for (i = windowStart; i < windowLen; i++)
{
double xt = xcorr[i] - mean_x;
double xi = i - mean_i;
b += xt * xi;
div += xi * xi;
}
b /= div;
// subtract linear regression and resolve min. value bias
float minval = FLT_MAX; // arbitrary large number
for (i = windowStart; i < windowLen; i ++)
{
xcorr[i] -= (float)(b * i);
if (xcorr[i] < minval)
{
minval = xcorr[i];
}
}
// subtract min.value
for (i = windowStart; i < windowLen; i ++)
{
xcorr[i] -= minval;
@ -286,26 +489,82 @@ void BPMDetect::removeBias()
}
// Calculate N-point moving average for "source" values
void MAFilter(float *dest, const float *source, int start, int end, int N)
{
for (int i = start; i < end; i++)
{
int i1 = i - N / 2;
int i2 = i + N / 2 + 1;
if (i1 < start) i1 = start;
if (i2 > end) i2 = end;
double sum = 0;
for (int j = i1; j < i2; j ++)
{
sum += source[j];
}
dest[i] = (float)(sum / (i2 - i1));
}
}
float BPMDetect::getBpm()
{
double peakPos;
double coeff;
PeakFinder peakFinder;
coeff = 60.0 * ((double)sampleRate / (double)decimateBy);
// save bpm debug analysis data if debug data enabled
_SaveDebugData(xcorr, windowStart, windowLen, coeff);
// remove bias from xcorr data
removeBias();
coeff = 60.0 * ((double)sampleRate / (double)decimateBy);
// save bpm debug data if debug data writing enabled
_SaveDebugData("soundtouch-bpm-xcorr.txt", xcorr, windowStart, windowLen, coeff);
// Smoothen by N-point moving-average
float *data = new float[windowLen];
memset(data, 0, sizeof(float) * windowLen);
MAFilter(data, xcorr, windowStart, windowLen, MOVING_AVERAGE_N);
// find peak position
peakPos = peakFinder.detectPeak(xcorr, windowStart, windowLen);
peakPos = peakFinder.detectPeak(data, windowStart, windowLen);
// save bpm debug data if debug data writing enabled
_SaveDebugData("soundtouch-bpm-smoothed.txt", data, windowStart, windowLen, coeff);
delete[] data;
assert(decimateBy != 0);
if (peakPos < 1e-9) return 0.0; // detection failed.
_SaveDebugBeatPos("soundtouch-detected-beats.txt", beats);
// calculate BPM
return (float) (coeff / peakPos);
float bpm = (float)(coeff / peakPos);
return (bpm >= MIN_BPM && bpm <= MAX_BPM_VALID) ? bpm : 0;
}
/// Get beat position arrays. Note: The array includes also really low beat detection values
/// in absence of clear strong beats. Consumer may wish to filter low values away.
/// - "pos" receive array of beat positions
/// - "values" receive array of beat detection strengths
/// - max_num indicates max.size of "pos" and "values" array.
///
/// You can query a suitable array sized by calling this with NULL in "pos" & "values".
///
/// \return number of beats in the arrays.
int BPMDetect::getBeats(float *pos, float *values, int max_num)
{
int num = beats.size();
if ((!pos) || (!values)) return num; // pos or values NULL, return just size
for (int i = 0; (i < num) && (i < max_num); i++)
{
pos[i] = beats[i].pos;
values[i] = beats[i].strength;
}
return num;
}

View File

@ -242,12 +242,12 @@ double PeakFinder::detectPeak(const float *data, int aminPos, int amaxPos)
// - sometimes the highest peak can be Nth harmonic of the true base peak yet
// just a slightly higher than the true base
for (i = 3; i < 10; i ++)
for (i = 1; i < 3; i ++)
{
double peaktmp, harmonic;
int i1,i2;
harmonic = (double)i * 0.5;
harmonic = (double)pow(2.0, i);
peakpos = (int)(highPeak / harmonic + 0.5f);
if (peakpos < minPos) break;
peakpos = findTop(data, peakpos); // seek true local maximum index

View File

@ -252,7 +252,12 @@ copy $(OutDir)$(TargetName)$(TargetExt) ..\..\lib</Command>
<Optimization Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">MaxSpeed</Optimization>
<Optimization Condition="'$(Configuration)|$(Platform)'=='Release|x64'">MaxSpeed</Optimization>
</ClCompile>
<ClCompile Include="BPMDetect.cpp" />
<ClCompile Include="BPMDetect.cpp">
<DisableSpecificWarnings Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">4996</DisableSpecificWarnings>
<DisableSpecificWarnings Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">4996</DisableSpecificWarnings>
<DisableSpecificWarnings Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">4996</DisableSpecificWarnings>
<DisableSpecificWarnings Condition="'$(Configuration)|$(Platform)'=='Release|x64'">4996</DisableSpecificWarnings>
</ClCompile>
<ClCompile Include="cpu_detect_x86.cpp" />
<ClCompile Include="FIFOSampleBuffer.cpp">
<Optimization Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">Disabled</Optimization>

View File

@ -390,4 +390,9 @@ uint FIRFilterMMX::evaluateFilterStereo(short *dest, const short *src, uint numS
return (numSamples & 0xfffffffe) - length;
}
#else
// workaround to not complain about empty module
bool _dontcomplain_mmx_empty;
#endif // SOUNDTOUCH_ALLOW_MMX