SPIRV-Tools/source/text.cpp
David Neto fadbf6220e Assembler test for ExecutionScope, with OpGroupIAdd
Use spvOperandTypeStr to generalize the error message
for failure to parse an ID.
Extend spvOperandTypeStr to cover SPV_OPERAND_TYPE_EXECUTION_SCOPE.
2015-10-26 12:55:33 -04:00

917 lines
30 KiB
C++

// Copyright (c) 2015 The Khronos Group Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and/or associated documentation files (the
// "Materials"), to deal in the Materials without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Materials, and to
// permit persons to whom the Materials are furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Materials.
//
// MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS
// KHRONOS STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS
// SPECIFICATIONS AND HEADER INFORMATION ARE LOCATED AT
// https://www.khronos.org/registry/
//
// THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
// MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
#include <libspirv/libspirv.h>
#include "bitwisecast.h"
#include "binary.h"
#include "diagnostic.h"
#include "ext_inst.h"
#include "opcode.h"
#include "operand.h"
#include "text.h"
#include <assert.h>
#include <stdio.h>
#include <cstdlib>
#include <string.h>
#include <string>
#include <vector>
#include <unordered_map>
using spvutils::BitwiseCast;
// Structures
struct spv_named_id_table_t {
std::unordered_map<std::string, uint32_t> namedIds;
};
// Text API
std::string spvGetWord(const char *str) {
size_t index = 0;
while (true) {
switch (str[index]) {
case '\0':
case '\t':
case '\v':
case '\r':
case '\n':
case ' ':
return std::string(str, str + index);
default:
index++;
}
}
assert(0 && "Unreachable");
return ""; // Make certain compilers happy.
}
spv_named_id_table spvNamedIdTableCreate() {
return new spv_named_id_table_t();
}
void spvNamedIdTableDestory(spv_named_id_table table) { delete table; }
uint32_t spvNamedIdAssignOrGet(spv_named_id_table table, const char *textValue,
uint32_t *pBound) {
if (table->namedIds.end() == table->namedIds.find(textValue)) {
table->namedIds[textValue] = *pBound;
}
return table->namedIds[textValue];
}
int32_t spvTextIsNamedId(const char *textValue) {
// TODO: Strengthen the parsing of textValue to only include allow names that
// match: ([a-z]|[A-Z])(_|[a-z]|[A-Z]|[0-9])*
switch (textValue[0]) {
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
return false;
default:
break;
}
return true;
}
spv_result_t spvTextAdvanceLine(const spv_text text, spv_position position) {
while (true) {
switch (text->str[position->index]) {
case '\0':
return SPV_END_OF_STREAM;
case '\n':
position->column = 0;
position->line++;
position->index++;
return SPV_SUCCESS;
default:
position->column++;
position->index++;
break;
}
}
}
spv_result_t spvTextAdvance(const spv_text text, spv_position position) {
// NOTE: Consume white space, otherwise don't advance.
switch (text->str[position->index]) {
case '\0':
return SPV_END_OF_STREAM;
case ';':
if (spv_result_t error = spvTextAdvanceLine(text, position)) return error;
return spvTextAdvance(text, position);
case ' ':
case '\t':
position->column++;
position->index++;
return spvTextAdvance(text, position);
case '\n':
position->column = 0;
position->line++;
position->index++;
return spvTextAdvance(text, position);
default:
break;
}
return SPV_SUCCESS;
}
spv_result_t spvTextWordGet(const spv_text text,
const spv_position startPosition, std::string &word,
spv_position endPosition) {
if (!text->str || !text->length) return SPV_ERROR_INVALID_TEXT;
if (!startPosition || !endPosition) return SPV_ERROR_INVALID_POINTER;
*endPosition = *startPosition;
bool quoting = false;
bool escaping = false;
// NOTE: Assumes first character is not white space!
while (true) {
const char ch = text->str[endPosition->index];
if (ch == '\\')
escaping = !escaping;
else {
switch (ch) {
case '"':
if (!escaping) quoting = !quoting;
break;
case ' ':
case ';':
case '\t':
case '\n':
if (escaping || quoting) break;
// Fall through.
case '\0': { // NOTE: End of word found!
word.assign(text->str + startPosition->index,
(size_t)(endPosition->index - startPosition->index));
return SPV_SUCCESS;
}
default:
break;
}
escaping = false;
}
endPosition->column++;
endPosition->index++;
}
}
namespace {
// Returns true if the string at the given position in text starts with "Op".
bool spvStartsWithOp(const spv_text text, const spv_position position) {
if (text->length < position->index + 3) return false;
char ch0 = text->str[position->index];
char ch1 = text->str[position->index + 1];
char ch2 = text->str[position->index + 2];
return ('O' == ch0 && 'p' == ch1 && ('A' <= ch2 && ch2 <= 'Z'));
}
} // anonymous namespace
// Returns true if a new instruction begins at the given position in text.
bool spvTextIsStartOfNewInst(const spv_text text, const spv_position position) {
spv_position_t nextPosition = *position;
if (spvTextAdvance(text, &nextPosition)) return false;
if (spvStartsWithOp(text, &nextPosition)) return true;
std::string word;
spv_position_t startPosition = *position;
if (spvTextWordGet(text, &startPosition, word, &nextPosition)) return false;
if ('%' != word.front()) return false;
if (spvTextAdvance(text, &nextPosition)) return false;
startPosition = nextPosition;
if (spvTextWordGet(text, &startPosition, word, &nextPosition)) return false;
if ("=" != word) return false;
if (spvTextAdvance(text, &nextPosition)) return false;
startPosition = nextPosition;
if (spvStartsWithOp(text, &startPosition)) return true;
return false;
}
spv_result_t spvTextStringGet(const spv_text text,
const spv_position startPosition,
std::string &string, spv_position endPosition) {
if (!text->str || !text->length) return SPV_ERROR_INVALID_TEXT;
if (!startPosition || !endPosition) return SPV_ERROR_INVALID_POINTER;
if ('"' != text->str[startPosition->index]) return SPV_ERROR_INVALID_TEXT;
*endPosition = *startPosition;
// NOTE: Assumes first character is not white space
while (true) {
endPosition->column++;
endPosition->index++;
switch (text->str[endPosition->index]) {
case '"': {
endPosition->column++;
endPosition->index++;
string.assign(text->str + startPosition->index,
(size_t)(endPosition->index - startPosition->index));
return SPV_SUCCESS;
}
case '\n':
case '\0':
return SPV_ERROR_INVALID_TEXT;
default:
break;
}
}
}
spv_result_t spvTextToUInt32(const char *textValue, uint32_t *pValue) {
char *endPtr = nullptr;
*pValue = strtoul(textValue, &endPtr, 0);
if (0 == *pValue && textValue == endPtr) {
return SPV_ERROR_INVALID_TEXT;
}
return SPV_SUCCESS;
}
spv_result_t spvTextToLiteral(const char *textValue, spv_literal_t *pLiteral) {
bool isSigned = false;
int numPeriods = 0;
bool isString = false;
const size_t len = strlen(textValue);
if (len == 0) return SPV_FAILED_MATCH;
for (uint64_t index = 0; index < len; ++index) {
switch (textValue[index]) {
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
break;
case '.':
numPeriods++;
break;
case '-':
if (index == 0) {
isSigned = true;
} else {
isString = true;
}
break;
default:
isString = true;
index = len; // break out of the loop too.
break;
}
}
pLiteral->type = spv_literal_type_t(99);
if (isString || numPeriods > 1 || (isSigned && len == 1)) {
// TODO(dneto): Allow escaping.
if (len < 2 || textValue[0] != '"' || textValue[len - 1] != '"')
return SPV_FAILED_MATCH;
pLiteral->type = SPV_LITERAL_TYPE_STRING;
// Need room for the null-terminator.
if (len >= sizeof(pLiteral->value.str)) return SPV_ERROR_OUT_OF_MEMORY;
strncpy(pLiteral->value.str, textValue + 1, len - 2);
pLiteral->value.str[len - 2] = 0;
} else if (numPeriods == 1) {
double d = std::strtod(textValue, nullptr);
float f = (float)d;
if (d == (double)f) {
pLiteral->type = SPV_LITERAL_TYPE_FLOAT_32;
pLiteral->value.f = f;
} else {
pLiteral->type = SPV_LITERAL_TYPE_FLOAT_64;
pLiteral->value.d = d;
}
} else if (isSigned) {
int64_t i64 = strtoll(textValue, nullptr, 10);
int32_t i32 = (int32_t)i64;
if (i64 == (int64_t)i32) {
pLiteral->type = SPV_LITERAL_TYPE_INT_32;
pLiteral->value.i32 = i32;
} else {
pLiteral->type = SPV_LITERAL_TYPE_INT_64;
pLiteral->value.i64 = i64;
}
} else {
uint64_t u64 = strtoull(textValue, nullptr, 10);
uint32_t u32 = (uint32_t)u64;
if (u64 == (uint64_t)u32) {
pLiteral->type = SPV_LITERAL_TYPE_UINT_32;
pLiteral->value.u32 = u32;
} else {
pLiteral->type = SPV_LITERAL_TYPE_UINT_64;
pLiteral->value.u64 = u64;
}
}
return SPV_SUCCESS;
}
spv_result_t spvTextEncodeOperand(
const spv_operand_type_t type, const char *textValue,
const spv_operand_table operandTable, const spv_ext_inst_table extInstTable,
spv_named_id_table namedIdTable, spv_instruction_t *pInst,
spv_operand_pattern_t *pExpectedOperands, uint32_t *pBound,
const spv_position position, spv_diagnostic *pDiagnostic) {
// NOTE: Handle immediate int in the stream
if ('!' == textValue[0]) {
const char *begin = textValue + 1;
char *end = nullptr;
uint32_t immediateInt = strtoul(begin, &end, 0);
size_t size = strlen(textValue);
size_t length = (end - begin);
if (size - 1 != length) {
DIAGNOSTIC << "Invalid immediate integer '" << textValue << "'.";
return SPV_ERROR_INVALID_TEXT;
}
position->column += size;
position->index += size;
pInst->words[pInst->wordCount] = immediateInt;
pInst->wordCount += 1;
return SPV_SUCCESS;
}
switch (type) {
case SPV_OPERAND_TYPE_ID:
case SPV_OPERAND_TYPE_ID_IN_OPTIONAL_TUPLE:
case SPV_OPERAND_TYPE_OPTIONAL_ID:
case SPV_OPERAND_TYPE_RESULT_ID:
case SPV_OPERAND_TYPE_EXECUTION_SCOPE: {
if ('%' == textValue[0]) {
textValue++;
}
// TODO: Force all ID's to be prefixed with '%'.
uint32_t id = 0;
if (spvTextIsNamedId(textValue)) {
id = spvNamedIdAssignOrGet(namedIdTable, textValue, pBound);
} else {
if (spvTextToUInt32(textValue, &id) != SPV_SUCCESS) {
if (spvOperandIsOptional(type)) {
return SPV_FAILED_MATCH;
} else {
DIAGNOSTIC << "Invalid " << spvOperandTypeStr(type) << " '"
<< textValue << "'.";
return SPV_ERROR_INVALID_TEXT;
}
}
}
pInst->words[pInst->wordCount++] = id;
if (*pBound <= id) {
*pBound = id + 1;
}
} break;
case SPV_OPERAND_TYPE_LITERAL_NUMBER: {
// NOTE: Special case for extension instruction lookup
if (OpExtInst == pInst->opcode) {
spv_ext_inst_desc extInst;
if (spvExtInstTableNameLookup(extInstTable, pInst->extInstType,
textValue, &extInst)) {
DIAGNOSTIC << "Invalid extended instruction name '" << textValue
<< "'.";
return SPV_ERROR_INVALID_TEXT;
}
pInst->words[pInst->wordCount++] = extInst->ext_inst;
// Prepare to parse the operands for the extended instructions.
spvPrependOperandTypes(extInst->operandTypes, pExpectedOperands);
return SPV_SUCCESS;
}
// TODO: Literal numbers can be any number up to 64 bits wide. This
// includes integers and floating point numbers.
// TODO(dneto): Suggest using spvTextToLiteral and looking for an
// appropriate result type.
if (spvTextToUInt32(textValue, &pInst->words[pInst->wordCount++])) {
DIAGNOSTIC << "Invalid literal number '" << textValue << "'.";
return SPV_ERROR_INVALID_TEXT;
}
} break;
case SPV_OPERAND_TYPE_LITERAL:
case SPV_OPERAND_TYPE_LITERAL_IN_OPTIONAL_TUPLE:
case SPV_OPERAND_TYPE_OPTIONAL_LITERAL: {
spv_literal_t literal = {};
if (spvTextToLiteral(textValue, &literal) != SPV_SUCCESS) {
if (spvOperandIsOptional(type)) {
return SPV_FAILED_MATCH;
} else {
DIAGNOSTIC << "Invalid literal '" << textValue << "'.";
return SPV_ERROR_INVALID_TEXT;
}
}
switch (literal.type) {
// We do not have to print diagnostics here because spvBinaryEncode*
// prints diagnostic messages on failure.
case SPV_LITERAL_TYPE_INT_32:
if (spvBinaryEncodeU32(BitwiseCast<uint32_t>(literal.value.i32),
pInst, position, pDiagnostic))
return SPV_ERROR_INVALID_TEXT;
break;
case SPV_LITERAL_TYPE_INT_64: {
if (spvBinaryEncodeU64(BitwiseCast<uint64_t>(literal.value.i64),
pInst, position, pDiagnostic))
return SPV_ERROR_INVALID_TEXT;
} break;
case SPV_LITERAL_TYPE_UINT_32: {
if (spvBinaryEncodeU32(literal.value.u32, pInst, position,
pDiagnostic))
return SPV_ERROR_INVALID_TEXT;
} break;
case SPV_LITERAL_TYPE_UINT_64: {
if (spvBinaryEncodeU64(BitwiseCast<uint64_t>(literal.value.u64),
pInst, position, pDiagnostic))
return SPV_ERROR_INVALID_TEXT;
} break;
case SPV_LITERAL_TYPE_FLOAT_32: {
if (spvBinaryEncodeU32(BitwiseCast<uint32_t>(literal.value.f), pInst,
position, pDiagnostic))
return SPV_ERROR_INVALID_TEXT;
} break;
case SPV_LITERAL_TYPE_FLOAT_64: {
if (spvBinaryEncodeU64(BitwiseCast<uint64_t>(literal.value.d), pInst,
position, pDiagnostic))
return SPV_ERROR_INVALID_TEXT;
} break;
case SPV_LITERAL_TYPE_STRING: {
if (spvBinaryEncodeString(literal.value.str, pInst, position,
pDiagnostic))
return SPV_ERROR_INVALID_TEXT;
} break;
default:
DIAGNOSTIC << "Invalid literal '" << textValue << "'";
return SPV_ERROR_INVALID_TEXT;
}
} break;
case SPV_OPERAND_TYPE_LITERAL_STRING:
case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING: {
size_t len = strlen(textValue);
if ('"' != textValue[0] && '"' != textValue[len - 1]) {
if (spvOperandIsOptional(type)) return SPV_FAILED_MATCH;
DIAGNOSTIC << "Invalid literal string '" << textValue
<< "', expected quotes.";
return SPV_ERROR_INVALID_TEXT;
}
// NOTE: Strip quotes
std::string text(textValue + 1, len - 2);
// NOTE: Special case for extended instruction library import
if (OpExtInstImport == pInst->opcode) {
pInst->extInstType = spvExtInstImportTypeGet(text.c_str());
}
if (spvBinaryEncodeString(text.c_str(), pInst, position, pDiagnostic))
return SPV_ERROR_INVALID_TEXT;
} break;
case SPV_OPERAND_TYPE_OPTIONAL_IMAGE:
assert(0 && " Handle optional optional image operands");
break;
default: {
// NOTE: All non literal operands are handled here using the operand
// table.
spv_operand_desc entry;
if (spvOperandTableNameLookup(operandTable, type, textValue, &entry)) {
DIAGNOSTIC << "Invalid " << spvOperandTypeStr(type) << " '" << textValue
<< "'.";
return SPV_ERROR_INVALID_TEXT;
}
if (spvBinaryEncodeU32(entry->value, pInst, position, pDiagnostic)) {
DIAGNOSTIC << "Invalid " << spvOperandTypeStr(type) << " '" << textValue
<< "'.";
return SPV_ERROR_INVALID_TEXT;
}
// Prepare to parse the operands for this logical operand.
spvPrependOperandTypes(entry->operandTypes, pExpectedOperands);
} break;
}
return SPV_SUCCESS;
}
namespace {
/// Encodes an instruction started by !<integer> at the given position in text.
///
/// Puts the encoded words into *pInst. If successful, moves position past the
/// instruction and returns SPV_SUCCESS. Otherwise, returns an error code and
/// leaves position pointing to the error in text.
spv_result_t encodeInstructionStartingWithImmediate(
const spv_text text, const spv_operand_table operandTable,
const spv_ext_inst_table extInstTable, spv_named_id_table namedIdTable,
uint32_t *pBound, spv_instruction_t *pInst, spv_position position,
spv_diagnostic *pDiagnostic) {
std::string firstWord;
spv_position_t nextPosition = {};
auto error = spvTextWordGet(text, position, firstWord, &nextPosition);
if (error) {
DIAGNOSTIC << "Internal Error";
return error;
}
assert(firstWord[0] == '!');
const char *begin = firstWord.data() + 1;
char *end = nullptr;
uint32_t immediateInt = strtoul(begin, &end, 0);
if ((begin + firstWord.size() - 1) != end) {
DIAGNOSTIC << "Invalid immediate integer '" << firstWord << "'.";
return SPV_ERROR_INVALID_TEXT;
}
position->column += firstWord.size();
position->index += firstWord.size();
pInst->words[0] = immediateInt;
pInst->wordCount = 1;
while (spvTextAdvance(text, position) != SPV_END_OF_STREAM) {
// A beginning of a new instruction means we're done.
if (spvTextIsStartOfNewInst(text, position)) return SPV_SUCCESS;
// Otherwise, there must be an operand that's either a literal, an ID, or
// an immediate.
std::string operandValue;
if ((error = spvTextWordGet(text, position, operandValue, &nextPosition))) {
DIAGNOSTIC << "Internal Error";
return error;
}
// Needed to pass to spvTextEncodeOpcode(), but it shouldn't ever be
// expanded.
spv_operand_pattern_t dummyExpectedOperands;
error = spvTextEncodeOperand(
SPV_OPERAND_TYPE_OPTIONAL_LITERAL, operandValue.c_str(), operandTable,
extInstTable, namedIdTable, pInst, &dummyExpectedOperands, pBound,
position, pDiagnostic);
if (error == SPV_FAILED_MATCH) {
// It's not a literal -- is it an ID?
error = spvTextEncodeOperand(
SPV_OPERAND_TYPE_OPTIONAL_ID, operandValue.c_str(), operandTable,
extInstTable, namedIdTable, pInst, &dummyExpectedOperands, pBound,
position, pDiagnostic);
if (error) {
DIAGNOSTIC << "Invalid word following " << firstWord << ": "
<< operandValue;
}
}
if (error) return error;
*position = nextPosition;
}
return SPV_SUCCESS;
}
} // anonymous namespace
spv_result_t spvTextEncodeOpcode(
const spv_text text, spv_assembly_syntax_format_t format,
const spv_opcode_table opcodeTable, const spv_operand_table operandTable,
const spv_ext_inst_table extInstTable, spv_named_id_table namedIdTable,
uint32_t *pBound, spv_instruction_t *pInst, spv_position position,
spv_diagnostic *pDiagnostic) {
// Check for !<integer> first.
if ('!' == text->str[position->index]) {
return encodeInstructionStartingWithImmediate(
text, operandTable, extInstTable, namedIdTable, pBound, pInst, position,
pDiagnostic);
}
// An assembly instruction has two possible formats:
// 1(CAF): <opcode> <operand>..., e.g., "OpTypeVoid %void".
// 2(AAF): <result-id> = <opcode> <operand>..., e.g., "%void = OpTypeVoid".
if ('!' == text->str[position->index]) {
return encodeInstructionStartingWithImmediate(
text, operandTable, extInstTable, namedIdTable, pBound, pInst, position,
pDiagnostic);
}
std::string firstWord;
spv_position_t nextPosition = {};
spv_result_t error = spvTextWordGet(text, position, firstWord, &nextPosition);
if (error) {
DIAGNOSTIC << "Internal Error";
return error;
}
std::string opcodeName;
std::string result_id;
spv_position_t result_id_position = {};
if (spvStartsWithOp(text, position)) {
opcodeName = firstWord;
} else {
// If the first word of this instruction is not an opcode, we must be
// processing AAF now.
if (SPV_ASSEMBLY_SYNTAX_FORMAT_ASSIGNMENT != format) {
DIAGNOSTIC
<< "Expected <opcode> at the beginning of an instruction, found '"
<< firstWord << "'.";
return SPV_ERROR_INVALID_TEXT;
}
result_id = firstWord;
if ('%' != result_id.front()) {
DIAGNOSTIC << "Expected <opcode> or <result-id> at the beginning "
"of an instruction, found '"
<< result_id << "'.";
return SPV_ERROR_INVALID_TEXT;
}
result_id_position = *position;
// The '=' sign.
*position = nextPosition;
if (spvTextAdvance(text, position)) {
DIAGNOSTIC << "Expected '=', found end of stream.";
return SPV_ERROR_INVALID_TEXT;
}
std::string equal_sign;
error = spvTextWordGet(text, position, equal_sign, &nextPosition);
if ("=" != equal_sign) {
DIAGNOSTIC << "'=' expected after result id.";
return SPV_ERROR_INVALID_TEXT;
}
// The <opcode> after the '=' sign.
*position = nextPosition;
if (spvTextAdvance(text, position)) {
DIAGNOSTIC << "Expected opcode, found end of stream.";
return SPV_ERROR_INVALID_TEXT;
}
error = spvTextWordGet(text, position, opcodeName, &nextPosition);
if (error) {
DIAGNOSTIC << "Internal Error";
return error;
}
if (!spvStartsWithOp(text, position)) {
DIAGNOSTIC << "Invalid Opcode prefix '" << opcodeName << "'.";
return SPV_ERROR_INVALID_TEXT;
}
}
// NOTE: The table contains Opcode names without the "Op" prefix.
const char *pInstName = opcodeName.data() + 2;
spv_opcode_desc opcodeEntry;
error = spvOpcodeTableNameLookup(opcodeTable, pInstName, &opcodeEntry);
if (error) {
DIAGNOSTIC << "Invalid Opcode name '"
<< spvGetWord(text->str + position->index) << "'";
return error;
}
if (SPV_ASSEMBLY_SYNTAX_FORMAT_ASSIGNMENT == format) {
// If this instruction has <result-id>, check it follows AAF.
if (opcodeEntry->hasResult && result_id.empty()) {
DIAGNOSTIC << "Expected <result-id> at the beginning of an "
"instruction, found '"
<< firstWord << "'.";
return SPV_ERROR_INVALID_TEXT;
}
}
pInst->opcode = opcodeEntry->opcode;
*position = nextPosition;
pInst->wordCount++;
// Maintains the ordered list of expected operand types.
// For many instructions we only need the {numTypes, operandTypes}
// entries in opcodeEntry. However, sometimes we need to modify
// the list as we parse the operands. This occurs when an operand
// has its own logical operands (such as the LocalSize operand for
// ExecutionMode), or for extended instructions that may have their
// own operands depending on the selected extended instruction.
spv_operand_pattern_t expectedOperands(
opcodeEntry->operandTypes,
opcodeEntry->operandTypes + opcodeEntry->numTypes);
while (!expectedOperands.empty()) {
const spv_operand_type_t type = expectedOperands.front();
expectedOperands.pop_front();
// Expand optional tuples lazily.
if (spvExpandOperandSequenceOnce(type, &expectedOperands)) continue;
if (type == SPV_OPERAND_TYPE_RESULT_ID && !result_id.empty()) {
// Handle the <result-id> for value generating instructions.
// We've already consumed it from the text stream. Here
// we inject its words into the instruction.
error = spvTextEncodeOperand(SPV_OPERAND_TYPE_RESULT_ID,
result_id.c_str(), operandTable,
extInstTable, namedIdTable, pInst, nullptr,
pBound, &result_id_position, pDiagnostic);
if (error) return error;
} else {
// Find the next word.
error = spvTextAdvance(text, position);
if (error == SPV_END_OF_STREAM) {
if (spvOperandIsOptional(type)) {
// This would have been the last potential operand for the
// instruction,
// and we didn't find one. We're finished parsing this instruction.
break;
} else {
DIAGNOSTIC << "Expected operand, found end of stream.";
return SPV_ERROR_INVALID_TEXT;
}
}
assert(error == SPV_SUCCESS && "Somebody added another way to fail");
if (spvTextIsStartOfNewInst(text, position)) {
if (spvOperandIsOptional(type)) {
break;
} else {
DIAGNOSTIC << "Expected operand, found next instruction instead.";
return SPV_ERROR_INVALID_TEXT;
}
}
std::string operandValue;
error = spvTextWordGet(text, position, operandValue, &nextPosition);
if (error) {
DIAGNOSTIC << "Internal Error";
return error;
}
error = spvTextEncodeOperand(
type, operandValue.c_str(), operandTable, extInstTable, namedIdTable,
pInst, &expectedOperands, pBound, position, pDiagnostic);
if (error == SPV_FAILED_MATCH && spvOperandIsOptional(type))
return SPV_SUCCESS;
if (error) return error;
*position = nextPosition;
}
}
pInst->words[0] = spvOpcodeMake(pInst->wordCount, opcodeEntry->opcode);
return SPV_SUCCESS;
}
namespace {
// Translates a given assembly language module into binary form.
// If a diagnostic is generated, it is not yet marked as being
// for a text-based input.
spv_result_t spvTextToBinaryInternal(const spv_text text,
spv_assembly_syntax_format_t format,
const spv_opcode_table opcodeTable,
const spv_operand_table operandTable,
const spv_ext_inst_table extInstTable,
spv_binary *pBinary,
spv_diagnostic *pDiagnostic) {
spv_position_t position = {};
if (!text->str || !text->length) {
DIAGNOSTIC << "Text stream is empty.";
return SPV_ERROR_INVALID_TEXT;
}
if (!opcodeTable || !operandTable || !extInstTable)
return SPV_ERROR_INVALID_TABLE;
if (!pBinary) return SPV_ERROR_INVALID_POINTER;
if (!pDiagnostic) return SPV_ERROR_INVALID_DIAGNOSTIC;
// NOTE: Ensure diagnostic is zero initialised
*pDiagnostic = {};
uint32_t bound = 1;
std::vector<spv_instruction_t> instructions;
if (spvTextAdvance(text, &position)) {
DIAGNOSTIC << "Text stream is empty.";
return SPV_ERROR_INVALID_TEXT;
}
spv_named_id_table namedIdTable = spvNamedIdTableCreate();
if (!namedIdTable) return SPV_ERROR_OUT_OF_MEMORY;
spv_ext_inst_type_t extInstType = SPV_EXT_INST_TYPE_NONE;
while (text->length > position.index) {
spv_instruction_t inst = {};
inst.extInstType = extInstType;
if (spvTextEncodeOpcode(text, format, opcodeTable, operandTable,
extInstTable, namedIdTable, &bound, &inst,
&position, pDiagnostic)) {
spvNamedIdTableDestory(namedIdTable);
return SPV_ERROR_INVALID_TEXT;
}
extInstType = inst.extInstType;
instructions.push_back(inst);
if (spvTextAdvance(text, &position)) break;
}
spvNamedIdTableDestory(namedIdTable);
size_t totalSize = SPV_INDEX_INSTRUCTION;
for (auto &inst : instructions) {
totalSize += inst.wordCount;
}
uint32_t *data = new uint32_t[totalSize];
if (!data) return SPV_ERROR_OUT_OF_MEMORY;
uint64_t currentIndex = SPV_INDEX_INSTRUCTION;
for (auto &inst : instructions) {
memcpy(data + currentIndex, inst.words, sizeof(uint32_t) * inst.wordCount);
currentIndex += inst.wordCount;
}
spv_binary binary = new spv_binary_t();
if (!binary) {
delete[] data;
return SPV_ERROR_OUT_OF_MEMORY;
}
binary->code = data;
binary->wordCount = totalSize;
spv_result_t error = spvBinaryHeaderSet(binary, bound);
if (error) {
spvBinaryDestroy(binary);
return error;
}
*pBinary = binary;
return SPV_SUCCESS;
}
} // anonymous namespace
spv_result_t spvTextToBinary(const char *input_text,
const uint64_t input_text_size,
const spv_opcode_table opcodeTable,
const spv_operand_table operandTable,
const spv_ext_inst_table extInstTable,
spv_binary *pBinary, spv_diagnostic *pDiagnostic) {
return spvTextWithFormatToBinary(
input_text, input_text_size, SPV_ASSEMBLY_SYNTAX_FORMAT_DEFAULT,
opcodeTable, operandTable, extInstTable, pBinary, pDiagnostic);
}
spv_result_t spvTextWithFormatToBinary(
const char *input_text, const uint64_t input_text_size,
spv_assembly_syntax_format_t format, const spv_opcode_table opcodeTable,
const spv_operand_table operandTable, const spv_ext_inst_table extInstTable,
spv_binary *pBinary, spv_diagnostic *pDiagnostic) {
spv_text_t text = {input_text, input_text_size};
spv_result_t result =
spvTextToBinaryInternal(&text, format, opcodeTable, operandTable,
extInstTable, pBinary, pDiagnostic);
if (pDiagnostic && *pDiagnostic) (*pDiagnostic)->isTextSource = true;
return result;
}
void spvTextDestroy(spv_text text) {
if (!text) return;
if (text->str) {
delete[] text->str;
}
delete text;
}