// Copyright (c) 2015 The Khronos Group Inc. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and/or associated documentation files (the // "Materials"), to deal in the Materials without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Materials, and to // permit persons to whom the Materials are furnished to do so, subject to // the following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Materials. // // MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS // KHRONOS STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS // SPECIFICATIONS AND HEADER INFORMATION ARE LOCATED AT // https://www.khronos.org/registry/ // // THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. // IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY // CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE // MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS. #include #include "binary.h" #include "diagnostic.h" #include "ext_inst.h" #include "opcode.h" #include "operand.h" #include #include #include // Binary API enum { I32_ENDIAN_LITTLE = 0x03020100ul, I32_ENDIAN_BIG = 0x00010203ul, }; static const union { unsigned char bytes[4]; uint32_t value; } o32_host_order = {{0, 1, 2, 3}}; #define I32_ENDIAN_HOST (o32_host_order.value) spv_result_t spvBinaryEndianness(const spv_binary binary, spv_endianness_t *pEndian) { spvCheck(!binary->code || !binary->wordCount, return SPV_ERROR_INVALID_BINARY); spvCheck(!pEndian, return SPV_ERROR_INVALID_POINTER); uint8_t bytes[4]; memcpy(bytes, binary->code, sizeof(uint32_t)); if (0x03 == bytes[0] && 0x02 == bytes[1] && 0x23 == bytes[2] && 0x07 == bytes[3]) { *pEndian = SPV_ENDIANNESS_LITTLE; return SPV_SUCCESS; } if (0x07 == bytes[0] && 0x23 == bytes[1] && 0x02 == bytes[2] && 0x03 == bytes[3]) { *pEndian = SPV_ENDIANNESS_BIG; return SPV_SUCCESS; } return SPV_ERROR_INVALID_BINARY; } uint32_t spvFixWord(const uint32_t word, const spv_endianness_t endian) { if ((SPV_ENDIANNESS_LITTLE == endian && I32_ENDIAN_HOST == I32_ENDIAN_BIG) || (SPV_ENDIANNESS_BIG == endian && I32_ENDIAN_HOST == I32_ENDIAN_LITTLE)) { return (word & 0x000000ff) << 24 | (word & 0x0000ff00) << 8 | (word & 0x00ff0000) >> 8 | (word & 0xff000000) >> 24; } return word; } spv_result_t spvBinaryHeaderGet(const spv_binary binary, const spv_endianness_t endian, spv_header_t *pHeader) { spvCheck(!binary->code || !binary->wordCount, return SPV_ERROR_INVALID_BINARY); spvCheck(!pHeader, return SPV_ERROR_INVALID_POINTER); // TODO: Validation checking? pHeader->magic = spvFixWord(binary->code[SPV_INDEX_MAGIC_NUMBER], endian); pHeader->version = spvFixWord(binary->code[SPV_INDEX_VERSION_NUMBER], endian); pHeader->generator = spvFixWord(binary->code[SPV_INDEX_GENERATOR_NUMBER], endian); pHeader->bound = spvFixWord(binary->code[SPV_INDEX_BOUND], endian); pHeader->schema = spvFixWord(binary->code[SPV_INDEX_SCHEMA], endian); pHeader->instructions = &binary->code[SPV_INDEX_INSTRUCTION]; return SPV_SUCCESS; } spv_result_t spvBinaryHeaderSet(spv_binary_t *binary, const uint32_t bound) { spvCheck(!binary, return SPV_ERROR_INVALID_BINARY); spvCheck(!binary->code || !binary->wordCount, return SPV_ERROR_INVALID_BINARY); binary->code[SPV_INDEX_MAGIC_NUMBER] = SPV_MAGIC_NUMBER; binary->code[SPV_INDEX_VERSION_NUMBER] = SPV_VERSION_NUMBER; binary->code[SPV_INDEX_GENERATOR_NUMBER] = SPV_GENERATOR_KHRONOS; binary->code[SPV_INDEX_BOUND] = bound; binary->code[SPV_INDEX_SCHEMA] = 0; // NOTE: Reserved return SPV_SUCCESS; } spv_result_t spvBinaryEncodeU32(const uint32_t value, spv_instruction_t *pInst, const spv_position position, spv_diagnostic *pDiagnostic) { spvCheck(pInst->wordCount + 1 > SPV_LIMIT_INSTRUCTION_WORD_COUNT_MAX, DIAGNOSTIC << "Instruction word count '" << SPV_LIMIT_INSTRUCTION_WORD_COUNT_MAX << "' exceeded."; return SPV_ERROR_INVALID_TEXT); pInst->words[pInst->wordCount++] = (uint32_t)value; return SPV_SUCCESS; } spv_result_t spvBinaryEncodeU64(const uint64_t value, spv_instruction_t *pInst, const spv_position position, spv_diagnostic *pDiagnostic) { spvCheck(pInst->wordCount + 2 > SPV_LIMIT_INSTRUCTION_WORD_COUNT_MAX, DIAGNOSTIC << "Instruction word count '" << SPV_LIMIT_INSTRUCTION_WORD_COUNT_MAX << "' exceeded."; return SPV_ERROR_INVALID_TEXT); uint32_t low = (uint32_t)(0x00000000ffffffff & value); uint32_t high = (uint32_t)((0xffffffff00000000 & value) >> 32); pInst->words[pInst->wordCount++] = low; pInst->words[pInst->wordCount++] = high; return SPV_SUCCESS; } spv_result_t spvBinaryEncodeString(const char *str, spv_instruction_t *pInst, const spv_position position, spv_diagnostic *pDiagnostic) { size_t length = strlen(str); size_t wordCount = (length / 4) + 1; spvCheck((sizeof(uint32_t) * pInst->wordCount) + length > sizeof(uint32_t) * SPV_LIMIT_INSTRUCTION_WORD_COUNT_MAX, DIAGNOSTIC << "Instruction word count '" << SPV_LIMIT_INSTRUCTION_WORD_COUNT_MAX << "'exceeded."; return SPV_ERROR_INVALID_TEXT); char *dest = (char *)&pInst->words[pInst->wordCount]; strncpy(dest, str, length); pInst->wordCount += (uint16_t)wordCount; return SPV_SUCCESS; } // TODO(dneto): This API is not powerful enough in the case that the // number and type of operands are not known until partway through parsing // the operation. This happens when enum operands might have different number // of operands, or with extended instructions. spv_operand_type_t spvBinaryOperandInfo(const uint32_t word, const uint16_t operandIndex, const spv_opcode_desc opcodeEntry, const spv_operand_table operandTable, spv_operand_desc *pOperandEntry) { spv_operand_type_t type; if (operandIndex < opcodeEntry->numTypes) { // NOTE: Do operand table lookup to set operandEntry if successful uint16_t index = operandIndex - 1; type = opcodeEntry->operandTypes[index]; spv_operand_desc entry = nullptr; if (!spvOperandTableValueLookup(operandTable, type, word, &entry)) { if (SPV_OPERAND_TYPE_NONE != entry->operandTypes[0]) { *pOperandEntry = entry; } } } else if (*pOperandEntry) { // NOTE: Use specified operand entry operand type for this word uint16_t index = operandIndex - opcodeEntry->numTypes; type = (*pOperandEntry)->operandTypes[index]; } else if (OpSwitch == opcodeEntry->opcode) { // NOTE: OpSwitch is a special case which expects a list of paired extra // operands assert(0 && "This case is previously untested, remove this assert and ensure it " "is behaving correctly!"); uint16_t lastIndex = opcodeEntry->numTypes - 1; uint16_t index = lastIndex + ((operandIndex - lastIndex) % 2); type = opcodeEntry->operandTypes[index]; } else { // NOTE: Default to last operand type in opcode entry uint16_t index = opcodeEntry->numTypes - 1; type = opcodeEntry->operandTypes[index]; } return type; } spv_result_t spvBinaryDecodeOperand( const Op opcode, const spv_operand_type_t type, const uint32_t *words, const spv_endianness_t endian, const uint32_t options, const spv_operand_table operandTable, const spv_ext_inst_table extInstTable, spv_operand_pattern_t *pExpectedOperands, spv_ext_inst_type_t *pExtInstType, out_stream &stream, spv_position position, spv_diagnostic *pDiagnostic) { spvCheck(!words || !position, return SPV_ERROR_INVALID_POINTER); spvCheck(!pDiagnostic, return SPV_ERROR_INVALID_DIAGNOSTIC); bool print = spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_PRINT, options); bool color = print && spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_COLOR, options); uint64_t index = 0; switch (type) { case SPV_OPERAND_TYPE_ID: case SPV_OPERAND_TYPE_RESULT_ID: case SPV_OPERAND_TYPE_OPTIONAL_ID: case SPV_OPERAND_TYPE_ID_IN_OPTIONAL_TUPLE: { if (color) { if (type == SPV_OPERAND_TYPE_RESULT_ID) { stream.get() << clr::blue(); } else { stream.get() << clr::yellow(); } } stream.get() << "%" << spvFixWord(words[index], endian); stream.get() << ((color) ? clr::reset() : ""); index++; position->index++; } break; case SPV_OPERAND_TYPE_LITERAL: case SPV_OPERAND_TYPE_OPTIONAL_LITERAL: case SPV_OPERAND_TYPE_LITERAL_IN_OPTIONAL_TUPLE: { // TODO: Need to support multiple word literals stream.get() << (color ? clr::red() : ""); stream.get() << spvFixWord(words[index], endian); stream.get() << (color ? clr::reset() : ""); index++; position->index++; } break; case SPV_OPERAND_TYPE_LITERAL_NUMBER: { // NOTE: Special case for extended instruction use if (OpExtInst == opcode) { spv_ext_inst_desc extInst; spvCheck(spvExtInstTableValueLookup(extInstTable, *pExtInstType, words[0], &extInst), DIAGNOSTIC << "Invalid extended instruction '" << words[0] << "'."; return SPV_ERROR_INVALID_BINARY); spvPrependOperandTypes(extInst->operandTypes, pExpectedOperands); stream.get() << (color ? clr::red() : ""); stream.get() << extInst->name; stream.get() << (color ? clr::reset() : ""); } else { stream.get() << (color ? clr::red() : ""); stream.get() << spvFixWord(words[index], endian); stream.get() << (color ? clr::reset() : ""); } index++; position->index++; } break; case SPV_OPERAND_TYPE_LITERAL_STRING: case SPV_OPERAND_TYPE_OPTIONAL_LITERAL_STRING: { const char *string = (const char *)&words[index]; uint64_t stringOperandCount = (strlen(string) / 4) + 1; // NOTE: Special case for extended instruction import if (OpExtInstImport == opcode) { *pExtInstType = spvExtInstImportTypeGet(string); spvCheck(SPV_EXT_INST_TYPE_NONE == *pExtInstType, DIAGNOSTIC << "Invalid extended instruction import'" << string << "'."; return SPV_ERROR_INVALID_BINARY); } stream.get() << "\""; stream.get() << (color ? clr::green() : ""); stream.get() << string; stream.get() << (color ? clr::reset() : ""); stream.get() << "\""; index += stringOperandCount; position->index += stringOperandCount; } break; case SPV_OPERAND_TYPE_CAPABILITY: case SPV_OPERAND_TYPE_SOURCE_LANGUAGE: case SPV_OPERAND_TYPE_EXECUTION_MODEL: case SPV_OPERAND_TYPE_ADDRESSING_MODEL: case SPV_OPERAND_TYPE_MEMORY_MODEL: case SPV_OPERAND_TYPE_EXECUTION_MODE: case SPV_OPERAND_TYPE_OPTIONAL_EXECUTION_MODE: case SPV_OPERAND_TYPE_STORAGE_CLASS: case SPV_OPERAND_TYPE_DIMENSIONALITY: case SPV_OPERAND_TYPE_SAMPLER_ADDRESSING_MODE: case SPV_OPERAND_TYPE_SAMPLER_FILTER_MODE: case SPV_OPERAND_TYPE_FP_FAST_MATH_MODE: case SPV_OPERAND_TYPE_FP_ROUNDING_MODE: case SPV_OPERAND_TYPE_LINKAGE_TYPE: case SPV_OPERAND_TYPE_ACCESS_QUALIFIER: case SPV_OPERAND_TYPE_FUNCTION_PARAMETER_ATTRIBUTE: case SPV_OPERAND_TYPE_DECORATION: case SPV_OPERAND_TYPE_BUILT_IN: case SPV_OPERAND_TYPE_SELECTION_CONTROL: case SPV_OPERAND_TYPE_LOOP_CONTROL: case SPV_OPERAND_TYPE_FUNCTION_CONTROL: case SPV_OPERAND_TYPE_MEMORY_SEMANTICS: case SPV_OPERAND_TYPE_OPTIONAL_MEMORY_ACCESS: case SPV_OPERAND_TYPE_EXECUTION_SCOPE: case SPV_OPERAND_TYPE_GROUP_OPERATION: case SPV_OPERAND_TYPE_KERNEL_ENQ_FLAGS: case SPV_OPERAND_TYPE_KERNEL_PROFILING_INFO: { spv_operand_desc entry; spvCheck( spvOperandTableValueLookup(operandTable, type, spvFixWord(words[index], endian), &entry), DIAGNOSTIC << "Invalid " << spvOperandTypeStr(type) << " operand '" << words[index] << "'."; return SPV_ERROR_INVALID_TEXT); stream.get() << entry->name; // Prepare to accept operands to this operand, if needed. spvPrependOperandTypes(entry->operandTypes, pExpectedOperands); index++; position->index++; } break; default: { DIAGNOSTIC << "Invalid binary operand '" << type << "'"; return SPV_ERROR_INVALID_BINARY; } } return SPV_SUCCESS; } spv_result_t spvBinaryDecodeOpcode( spv_instruction_t *pInst, const spv_endianness_t endian, const uint32_t options, const spv_opcode_table opcodeTable, const spv_operand_table operandTable, const spv_ext_inst_table extInstTable, out_stream &stream, spv_position position, spv_diagnostic *pDiagnostic) { spvCheck(!pInst || !position, return SPV_ERROR_INVALID_POINTER); spvCheck(!opcodeTable || !operandTable || !extInstTable, return SPV_ERROR_INVALID_TABLE); spvCheck(!pDiagnostic, return SPV_ERROR_INVALID_DIAGNOSTIC); spv_position_t instructionStart = *position; uint16_t wordCount; Op opcode; spvOpcodeSplit(spvFixWord(pInst->words[0], endian), &wordCount, &opcode); spv_opcode_desc opcodeEntry; spvCheck(spvOpcodeTableValueLookup(opcodeTable, opcode, &opcodeEntry), DIAGNOSTIC << "Invalid Opcode '" << opcode << "'."; return SPV_ERROR_INVALID_BINARY); // See if there are enough required words. // Some operands in the operand types are optional or could be zero length. // The optional and zero length opeands must be at the end of the list. if (opcodeEntry->numTypes > wordCount && !spvOperandIsOptional(opcodeEntry->operandTypes[wordCount])) { uint16_t numRequired; for (numRequired = 0; numRequired < opcodeEntry->numTypes && !spvOperandIsOptional(opcodeEntry->operandTypes[numRequired]); numRequired++) ; DIAGNOSTIC << "Invalid instruction Op" << opcodeEntry->name << " word count '" << wordCount << "', expected at least '" << numRequired << "'."; return SPV_ERROR_INVALID_BINARY; } std::stringstream no_result_id_strstream; out_stream no_result_id_stream(no_result_id_strstream); const int16_t result_id_index = spvOpcodeResultIdIndex(opcodeEntry); no_result_id_stream.get() << "Op" << opcodeEntry->name; position->index++; // Maintains the ordered list of expected operand types. // For many instructions we only need the {numTypes, operandTypes} // entries in opcodeEntry. However, sometimes we need to modify // the list as we parse the operands. This occurs when an operand // has its own logical operands (such as the LocalSize operand for // ExecutionMode), or for extended instructions that may have their // own operands depending on the selected extended instruction. spv_operand_pattern_t expectedOperands( opcodeEntry->operandTypes, opcodeEntry->operandTypes + opcodeEntry->numTypes); for (uint16_t index = 1; index < wordCount; ++index) { const uint64_t currentPosIndex = position->index; spvCheck(expectedOperands.empty(), DIAGNOSTIC << "Invalid instruction Op" << opcodeEntry->name << " starting at word " << instructionStart.index << ": " << " expected no more operands after " << index << " words, but word count is " << wordCount << "."; return SPV_ERROR_INVALID_BINARY;); spv_operand_type_t type = spvTakeFirstMatchableOperand(&expectedOperands); if (result_id_index != index - 1) no_result_id_strstream << " "; spvCheck( spvBinaryDecodeOperand( opcodeEntry->opcode, type, pInst->words + index, endian, options, operandTable, extInstTable, &expectedOperands, &pInst->extInstType, (result_id_index == index - 1 ? stream : no_result_id_stream), position, pDiagnostic), DIAGNOSTIC << "UNEXPLAINED ERROR"; return SPV_ERROR_INVALID_BINARY); if (result_id_index == index - 1) stream.get() << " = "; index += (uint16_t)(position->index - currentPosIndex - 1); } // TODO(dneto): There's an opportunity for a more informative message. spvCheck(!expectedOperands.empty() && !spvOperandIsOptional(expectedOperands.front()), DIAGNOSTIC << "Invalid instruction Op" << opcodeEntry->name << " starting at word " << instructionStart.index << ": " << " expected more operands after " << wordCount << " words."; return SPV_ERROR_INVALID_BINARY;); stream.get() << no_result_id_strstream.str(); return SPV_SUCCESS; } spv_result_t spvBinaryToText(uint32_t *code, const uint64_t wordCount, const uint32_t options, const spv_opcode_table opcodeTable, const spv_operand_table operandTable, const spv_ext_inst_table extInstTable, spv_text *pText, spv_diagnostic *pDiagnostic) { spv_binary_t binary = {code, wordCount}; spv_position_t position = {}; spvCheck(!binary.code || !binary.wordCount, DIAGNOSTIC << "Binary stream is empty."; return SPV_ERROR_INVALID_BINARY); spvCheck(!opcodeTable || !operandTable || !extInstTable, return SPV_ERROR_INVALID_TABLE); spvCheck(pText && spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_PRINT, options), return SPV_ERROR_INVALID_POINTER); spvCheck(!pText && !spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_PRINT, options), return SPV_ERROR_INVALID_POINTER); spvCheck(!pDiagnostic, return SPV_ERROR_INVALID_DIAGNOSTIC); spv_endianness_t endian; spvCheck(spvBinaryEndianness(&binary, &endian), DIAGNOSTIC << "Invalid SPIR-V magic number '" << std::hex << binary.code[0] << "'."; return SPV_ERROR_INVALID_BINARY); spv_header_t header; spvCheck(spvBinaryHeaderGet(&binary, endian, &header), DIAGNOSTIC << "Invalid SPIR-V header."; return SPV_ERROR_INVALID_BINARY); bool print = spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_PRINT, options); bool color = print && spvIsInBitfield(SPV_BINARY_TO_TEXT_OPTION_COLOR, options); std::stringstream sstream; out_stream stream(sstream); if (print) { stream = out_stream(); } if (color) { stream.get() << clr::grey(); } stream.get() << "; SPIR-V\n" << "; Version: " << header.version << "\n" << "; Generator: " << spvGeneratorStr(header.generator) << "\n" << "; Bound: " << header.bound << "\n" << "; Schema: " << header.schema << "\n"; if (color) { stream.get() << clr::reset(); } const uint32_t *words = binary.code; position.index = SPV_INDEX_INSTRUCTION; spv_ext_inst_type_t extInstType = SPV_EXT_INST_TYPE_NONE; while (position.index < binary.wordCount) { uint64_t index = position.index; uint16_t wordCount; Op opcode; spvOpcodeSplit(spvFixWord(words[position.index], endian), &wordCount, &opcode); spv_instruction_t inst = {}; inst.extInstType = extInstType; spvInstructionCopy(&words[position.index], opcode, wordCount, endian, &inst); spvCheck( spvBinaryDecodeOpcode(&inst, endian, options, opcodeTable, operandTable, extInstTable, stream, &position, pDiagnostic), return SPV_ERROR_INVALID_BINARY); extInstType = inst.extInstType; spvCheck((index + wordCount) != position.index, DIAGNOSTIC << "Invalid word count."; return SPV_ERROR_INVALID_BINARY); stream.get() << "\n"; } if (!print) { size_t length = sstream.str().size(); char *str = new char[length + 1]; spvCheck(!str, return SPV_ERROR_OUT_OF_MEMORY); strncpy(str, sstream.str().c_str(), length + 1); spv_text text = new spv_text_t(); spvCheck(!text, return SPV_ERROR_OUT_OF_MEMORY); text->str = str; text->length = length; *pText = text; } return SPV_SUCCESS; } void spvBinaryDestroy(spv_binary binary) { spvCheck(!binary, return ); if (binary->code) { delete[] binary->code; } delete binary; }