Summary:
We don’t actually use LegalizerInfo in Legalizer pass, it’s just passed
as an argument.
In order to check if an instruction is legal or not, we need to get LegalizerInfo
by calling `MI.getParent()->getParent()->getSubtarget().getLegalizerInfo()`.
Instead, make LegalizerInfo accessible in LegalizerHelper.
Reviewers: qcolombet, aditya_nandakumar, dsanders, ab, t.p.northover, kristof.beyls
Reviewed By: qcolombet
Subscribers: dberris, llvm-commits, rovka
Differential Revision: https://reviews.llvm.org/D30838
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297491 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This will allow future patches to inspect the details of the LLT. The implementation is now split between
the Support and CodeGen libraries to allow TableGen to use this class without introducing layering concerns.
Thanks to Ahmed Bougacha for finding a reasonable way to avoid the layering issue and providing the version of this patch without that problem.
The problem with the previous commit appears to have been that TableGen was including CodeGen/LowLevelType.h instead of Support/LowLevelTypeImpl.h.
Reviewers: t.p.northover, qcolombet, rovka, aditya_nandakumar, ab, javed.absar
Subscribers: arsenm, nhaehnle, mgorny, dberris, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30046
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297241 91177308-0d34-0410-b5e6-96231b3b80d8
More module problems. This time it only showed up in the stage 2 compile of
clang-x86_64-linux-selfhost-modules-2 but not the stage 1 compile.
Somehow, this change causes the build to need Attributes.gen before it's been
generated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297188 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This will allow future patches to inspect the details of the LLT. The implementation is now split between
the Support and CodeGen libraries to allow TableGen to use this class without introducing layering concerns.
Thanks to Ahmed Bougacha for finding a reasonable way to avoid the layering issue and providing the version of this patch without that problem.
Reviewers: t.p.northover, qcolombet, rovka, aditya_nandakumar, ab, javed.absar
Subscribers: arsenm, nhaehnle, mgorny, dberris, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30046
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297177 91177308-0d34-0410-b5e6-96231b3b80d8
A bit more painful than G_INSERT because it was more widely used, but this
should simplify the handling of extract operations in most locations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297100 91177308-0d34-0410-b5e6-96231b3b80d8
Fixed the asan bot failure which led to the last commit of the outliner being reverted.
The change is in lib/CodeGen/MachineOutliner.cpp in the SuffixTree's constructor. LeafVector
is no longer initialized using reserve but just a standard constructor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297081 91177308-0d34-0410-b5e6-96231b3b80d8
Before, we were producing G_INSERT instructions that were actually closer to a
cast or even a COPY when both input and output sizes are the same. This doesn't
really make sense and means that everything interpreting a G_INSERT also has to
handle all these kinds of casts.
So now we detect these degenerate cases and emit real casts instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297051 91177308-0d34-0410-b5e6-96231b3b80d8
Now that G_INSERT instructions can only insert one register, this code was
overly general. In another direction it didn't handle registers that crossed
split boundaries properly, which needed to be fixed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297042 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Functions with the "xray-log-args" attribute will have a special XRay sled kind
emitted, for compiler-rt to copy any call arguments to your logging handler.
For practical and performance reasons, only the first argument is supported, and
only up to 64 bits.
Reviewers: dberris
Reviewed By: dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29702
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296998 91177308-0d34-0410-b5e6-96231b3b80d8
It's much easier to reason about single-value inserts and no-one was actually
using the variadic variants before.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296923 91177308-0d34-0410-b5e6-96231b3b80d8
These are simplified variants of the current G_SEQUENCE and G_EXTRACT, which
assume the individual parts will be contiguous, homogeneous, and occupy the
entirity of the larger register. This makes reasoning about them much easer
since you only have to look at the first register being merged and the result
to know what the instruction is doing.
I intend to gradually replace all uses of the more complicated sequence/extract
with these (or single-element insert/extracts), and then remove the older
variants. For now we start with legalization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296921 91177308-0d34-0410-b5e6-96231b3b80d8
If dominator tree is not calculated or is invalidated, set corresponding
pointer in the pass state to nullptr. Such pointer value will indicate
that operations with dominator tree are not allowed. In particular, it
allows to skip verification for such pass state. The dominator tree is
not calculated if the machine dominator pass was skipped, it occures in
the case of entities with linkage available_externally.
The change fixes some test fails observed when expensive checks
are enabled.
Differential Revision: https://reviews.llvm.org/D29280
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296742 91177308-0d34-0410-b5e6-96231b3b80d8
Surprisingly, one of the three interference checks in LiveRegMatrix was
using the main live range instead of the apropriate subregister range
resulting in unnecessarily conservative results.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296722 91177308-0d34-0410-b5e6-96231b3b80d8
Until now, we've had to use -global-isel to enable GISel. But using
that on other targets that don't support it will result in an abort, as we
can't build a full pipeline.
Additionally, we want to experiment with enabling GISel by default for
some targets: we can't just enable GISel by default, even among those
target that do have some support, because the level of support varies.
This first step adds an override for the target to explicitly define its
level of support. For AArch64, do that using
a new command-line option (I know..):
-aarch64-enable-global-isel-at-O=<N>
Where N is the opt-level below which GISel should be used.
Default that to -1, so that we still don't enable GISel anywhere.
We're not there yet!
While there, remove a couple LLVM_UNLIKELYs. Building the pipeline is
such a cold path that in practice that shouldn't matter at all.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296710 91177308-0d34-0410-b5e6-96231b3b80d8
- We only need the information from the base class, not the additional
details in the LiveInterval class.
- Spread more `const`
- Some code cleanup
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296684 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Avoids tons of prologue boilerplate when arguments are passed in memory
and left in memory. This can happen in a debug build or in a release
build when an argument alloca is escaped. This will dramatically affect
the code size of x86 debug builds, because X86 fast isel doesn't handle
arguments passed in memory at all. It only handles the x86_64 case of up
to 6 basic register parameters.
This is implemented by analyzing the entry block before ISel to identify
copy elision candidates. A copy elision candidate is an argument that is
used to fully initialize an alloca before any other possibly escaping
uses of that alloca. If an argument is a copy elision candidate, we set
a flag on the InputArg. If the the target generates loads from a fixed
stack object that matches the size and alignment requirements of the
alloca, the SelectionDAG builder will delete the stack object created
for the alloca and replace it with the fixed stack object. The load is
left behind to satisfy any remaining uses of the argument value. The
store is now dead and is therefore elided. The fixed stack object is
also marked as mutable, as it may now be modified by the user, and it
would be invalid to rematerialize the initial load from it.
Supersedes D28388
Fixes PR26328
Reviewers: chandlerc, MatzeB, qcolombet, inglorion, hans
Subscribers: igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D29668
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296683 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This will allow future patches to inspect the details of the LLT. The implementation is now split between
the Support and CodeGen libraries to allow TableGen to use this class without introducing layering concerns.
Thanks to Ahmed Bougacha for finding a reasonable way to avoid the layering issue and providing the version of this patch without that problem.
Reviewers: t.p.northover, qcolombet, rovka, aditya_nandakumar, ab, javed.absar
Subscribers: arsenm, nhaehnle, mgorny, dberris, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30046
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296474 91177308-0d34-0410-b5e6-96231b3b80d8
This is a patch for the outliner described in the RFC at:
http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
The outliner is a code-size reduction pass which works by finding
repeated sequences of instructions in a program, and replacing them with
calls to functions. This is useful to people working in low-memory
environments, where sacrificing performance for space is acceptable.
This adds an interprocedural outliner directly before printing assembly.
For reference on how this would work, this patch also includes X86
target hooks and an X86 test.
The outliner is run like so:
clang -mno-red-zone -mllvm -enable-machine-outliner file.c
Patch by Jessica Paquette<jpaquette@apple.com>!
rdar://29166825
Differential Revision: https://reviews.llvm.org/D26872
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296418 91177308-0d34-0410-b5e6-96231b3b80d8
With the "wasm32-unknown-unknown-wasm" triple, this allows writing out
simple wasm object files, and is another step in a larger series toward
migrating from ELF to general wasm object support. Note that this code
and the binary format itself is still experimental.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296190 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r296009. It broke one out of tree target and also
does not account for all partial lines added or removed when calculating
PressureDiff.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296182 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This isn't testable for AArch64 by itself so this patch also adds
support for constant immediates in the pattern and physical
register uses in the result.
The new IntOperandMatcher matches the constant in patterns such as
'(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold
immediates into an instruction so this is the first rule that will match
across multiple BB's.
The Renderer hierarchy is responsible for adding operands to the result
instruction. Renderers can copy operands (CopyRenderer) or add physical
registers (in particular %wzr and %xzr) to the result instruction
in any order (OperandMatchers now import the operand names from
SelectionDAG to allow renderers to access any operand). This allows us to
emit the result instruction for:
%1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0
%1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0
although the latter is untested since the matcher/importer has not been
taught about commutativity yet.
Added BuildMIAction which can build new instructions and mutate them where
possible. W.r.t the mutation aspect, MatchActions are now told the name of
an instruction they can recycle and BuildMIAction will emit mutation code
when the renderers are appropriate. They are appropriate when all operands
are rendered using CopyRenderer and the indices are the same as the matcher.
This currently assumes that all operands have at least one matcher.
Finally, this change also fixes a crash in
AArch64InstructionSelector::select() caused by an immediate operand
passing isImm() rather than isCImm(). This was uncovered by the other
changes and was detected by existing tests.
Depends on D29711
Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar
Reviewed By: rovka
Subscribers: aemerson, dberris, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D29712
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296131 91177308-0d34-0410-b5e6-96231b3b80d8
Add an optimization remark to asm-printer that summarizes the number
of instructions emitted per function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296053 91177308-0d34-0410-b5e6-96231b3b80d8
DiagnosticInfo switched from DebugLoc to DiagnosticLocation in
r295519, update these subclasses to match.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296052 91177308-0d34-0410-b5e6-96231b3b80d8
Having more fine-grained information on the specific construct that
caused us to fallback is valuable for large-scale data collection.
We still have the fallback warning, that's also used for FastISel.
We still need to remove the fallback warning, and teach FastISel to also
emit remarks (it currently has a combination of the warning, stats, and
debug prints: the remarks could unify all three).
The abort-on-fallback path could also be better handled using remarks:
one could imagine a "-Rpass-error", analoguous to "-Werror", which would
promote missed/failed remarks to errors. It's not clear whether that
would be useful for other remarks though, so we're not there yet.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296013 91177308-0d34-0410-b5e6-96231b3b80d8
If a subreg is used in an instruction it counts as a whole superreg
for the purpose of register pressure calculation. This patch corrects
improper register pressure calculation by examining operand's lane mask.
Differential Revision: https://reviews.llvm.org/D29835
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296009 91177308-0d34-0410-b5e6-96231b3b80d8
Since LoopInfo is not available in machine passes as universally as in IR
passes, using the same approach for OptimizationRemarkEmitter as we did for IR
will run LoopInfo and DominatorTree unnecessarily. (LoopInfo is not used
lazily by ORE.)
To fix this, I am modifying the approach I took in D29836. LazyMachineBFI now
uses its client passes including MachineBFI itself that are available or
otherwise compute them on the fly.
So for example GreedyRegAlloc, since it's already using MBFI, will reuse that
instance. On the other hand, AsmPrinter in Justin's patch will generate DT,
LI and finally BFI on the fly.
(I am of course wondering now if the simplicity of this approach is even
preferable in IR. I will do some experiments.)
Testing is provided by an updated version of D29837 which requires Justin's
patch to bring ORE to the AsmPrinter.
Differential Revision: https://reviews.llvm.org/D30128
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@295996 91177308-0d34-0410-b5e6-96231b3b80d8