Recommiting with compiler time improvements
Recommitting after fixup of 32-bit aliasing sign offset bug in DAGCombiner.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297695 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds tail call support to the MachineOutliner pass. This allows
the outliner to insert jumps rather than calls in areas where tail calling is
possible. Outlined tail calls include the return or terminator of the basic
block being outlined from.
Tail call support allows the outliner to take returns and terminators into
consideration while finding candidates to outline. It also allows the outliner
to save more instructions. For example, in the X86-64 outliner, a tail called
outlined function saves one instruction since no return has to be inserted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297653 91177308-0d34-0410-b5e6-96231b3b80d8
Currently we don't enforce that ISD::ANY_EXTEND, ZERO_EXTEND, SIGN_EXTEND, TRUNC, FP_ROUND, FP_EXTEND have the same number of elements(including scalar) between their input and output. Though we have them documented as such. Up until a few months ago x86 created nodes that violated this rule. That's all been fixed now, and we should enforce the rule going forward.
In order to do this we need to allow SDTCisSameNumEltsAs to support scalar types and not enforce being a vector. If one type is scalar we will force the other type to also be scalar.
Differential Revision: https://reviews.llvm.org/D30878
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297648 91177308-0d34-0410-b5e6-96231b3b80d8
A bit more painful than G_INSERT because it was more widely used, but this
should simplify the handling of extract operations in most locations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297100 91177308-0d34-0410-b5e6-96231b3b80d8
Fixed the asan bot failure which led to the last commit of the outliner being reverted.
The change is in lib/CodeGen/MachineOutliner.cpp in the SuffixTree's constructor. LeafVector
is no longer initialized using reserve but just a standard constructor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297081 91177308-0d34-0410-b5e6-96231b3b80d8
As described on PR31712, we miss a variety of legalization combines because we lower these to X86ISD::VSEXT/VZEXT despite them having the same functionality. This patch makes 128-bit (SSE41) SIGN/ZERO_EXTEND_VECTOR_IN_REG ops legal, adds the necessary tablegen plumbing and uses a helper 'getExtendInVec' to decide when to use SIGN/ZERO_EXTEND_VECTOR_IN_REG or VSEXT/VZEXT.
We're missing a couple of shuffle combines that will be added in a future patch for review.
Later patches can then support the AVX2 cases as a mixture of SIGN/ZERO_EXTEND and SIGN/ZERO_EXTEND_VECTOR_IN_REG, and then finally deal with the AVX512 cases.
Differential Revision: https://reviews.llvm.org/D30549
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296985 91177308-0d34-0410-b5e6-96231b3b80d8
select Cond, C +/- 1, C --> add(ext Cond), C -- with a target hook.
This is part of the ongoing process to obsolete D24480. The motivation is to
canonicalize to select IR in InstCombine whenever possible, so we need to have a way to
undo that easily in codegen.
PowerPC is an obvious winner for this kind of transform because it has fast and complete
bit-twiddling abilities but generally lousy conditional execution perf (although this might
have changed in recent implementations).
x86 also sees some wins, but the effect is limited because these transforms already mostly
exist in its target-specific combineSelectOfTwoConstants(). The fact that we see any x86
changes just shows that that code is a mess of special-case holes. We may be able to remove
some of that logic now.
My guess is that other targets will want to enable this hook for most cases. The likely
follow-ups would be to add value type and/or the constants themselves as parameters for the
hook. As the tests in select_const.ll show, we can transform any select-of-constants to
math/logic, but the general transform for any 2 constants needs one more instruction
(multiply or 'and').
ARM is one target that I think may not want this for most cases. I see infinite loops there
because it wants to use selects to enable conditionally executed instructions.
Differential Revision: https://reviews.llvm.org/D30537
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296977 91177308-0d34-0410-b5e6-96231b3b80d8
It's much easier to reason about single-value inserts and no-one was actually
using the variadic variants before.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296923 91177308-0d34-0410-b5e6-96231b3b80d8
These are simplified variants of the current G_SEQUENCE and G_EXTRACT, which
assume the individual parts will be contiguous, homogeneous, and occupy the
entirity of the larger register. This makes reasoning about them much easer
since you only have to look at the first register being merged and the result
to know what the instruction is doing.
I intend to gradually replace all uses of the more complicated sequence/extract
with these (or single-element insert/extracts), and then remove the older
variants. For now we start with legalization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296921 91177308-0d34-0410-b5e6-96231b3b80d8
This patch causes compile times for some patterns to explode. I have
a (large, unreduced) test case that slows down by more than 20x and
several test cases slow down by 2x. I'm sending some of the test cases
directly to Nirav and following up with more details in the review log,
but this should unblock anyone else hitting this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296862 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Avoids tons of prologue boilerplate when arguments are passed in memory
and left in memory. This can happen in a debug build or in a release
build when an argument alloca is escaped. This will dramatically affect
the code size of x86 debug builds, because X86 fast isel doesn't handle
arguments passed in memory at all. It only handles the x86_64 case of up
to 6 basic register parameters.
This is implemented by analyzing the entry block before ISel to identify
copy elision candidates. A copy elision candidate is an argument that is
used to fully initialize an alloca before any other possibly escaping
uses of that alloca. If an argument is a copy elision candidate, we set
a flag on the InputArg. If the the target generates loads from a fixed
stack object that matches the size and alignment requirements of the
alloca, the SelectionDAG builder will delete the stack object created
for the alloca and replace it with the fixed stack object. The load is
left behind to satisfy any remaining uses of the argument value. The
store is now dead and is therefore elided. The fixed stack object is
also marked as mutable, as it may now be modified by the user, and it
would be invalid to rematerialize the initial load from it.
Supersedes D28388
Fixes PR26328
Reviewers: chandlerc, MatzeB, qcolombet, inglorion, hans
Subscribers: igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D29668
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296683 91177308-0d34-0410-b5e6-96231b3b80d8
Recommiting after fixup of 32-bit aliasing sign offset bug in DAGCombiner.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296476 91177308-0d34-0410-b5e6-96231b3b80d8
This is a patch for the outliner described in the RFC at:
http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
The outliner is a code-size reduction pass which works by finding
repeated sequences of instructions in a program, and replacing them with
calls to functions. This is useful to people working in low-memory
environments, where sacrificing performance for space is acceptable.
This adds an interprocedural outliner directly before printing assembly.
For reference on how this would work, this patch also includes X86
target hooks and an X86 test.
The outliner is run like so:
clang -mno-red-zone -mllvm -enable-machine-outliner file.c
Patch by Jessica Paquette<jpaquette@apple.com>!
rdar://29166825
Differential Revision: https://reviews.llvm.org/D26872
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296418 91177308-0d34-0410-b5e6-96231b3b80d8
Recommiting after fixup of 32-bit aliasing sign offset bug in DAGCombiner.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296252 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r296009. It broke one out of tree target and also
does not account for all partial lines added or removed when calculating
PressureDiff.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296182 91177308-0d34-0410-b5e6-96231b3b80d8
If a subreg is used in an instruction it counts as a whole superreg
for the purpose of register pressure calculation. This patch corrects
improper register pressure calculation by examining operand's lane mask.
Differential Revision: https://reviews.llvm.org/D29835
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296009 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Rework the code that was sinking/duplicating (icmp and, 0) sequences
into blocks where they were being used by conditional branches to form
more tbz instructions on AArch64. The new code is more general in that
it just looks for 'and's that have all icmp 0's as users, with a target
hook used to select which subset of 'and' instructions to consider.
This change also enables 'and' sinking for X86, where it is more widely
beneficial than on AArch64.
The 'and' sinking/duplicating code is moved into the optimizeInst phase
of CodeGenPrepare, where it can take advantage of the fact the
OptimizeCmpExpression has already sunk/duplicated any icmps into the
blocks where they are used. One minor complication from this change is
that optimizeLoadExt needed to be updated to always mark 'and's it has
determined should be in the same block as their feeding load in the
InsertedInsts set to avoid an infinite loop of hoisting and sinking the
same 'and'.
This change fixes a regression on X86 in the tsan runtime caused by
moving GVNHoist to a later place in the optimization pipeline (see
PR31382).
Reviewers: t.p.northover, qcolombet, MatzeB
Subscribers: aemerson, mcrosier, sebpop, llvm-commits
Differential Revision: https://reviews.llvm.org/D28813
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@295746 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts r294348, which removed support for conditional tail calls
due to the PR above. It fixes the PR by marking live registers as
implicitly used and defined by the now predicated tailcall. This is
similar to how IfConversion predicates instructions.
Differential Revision: https://reviews.llvm.org/D29856
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@295262 91177308-0d34-0410-b5e6-96231b3b80d8
Since (say) i128 and [16 x i8] map to the same type in generic MIR, we also
need to attach the required alignment info.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@295254 91177308-0d34-0410-b5e6-96231b3b80d8
This instruction clears the low bits of a pointer without requiring (possibly
dodgy if pointers aren't ints) conversions to and from an integer. Since (as
far as I'm aware) all masks are statically known, the instruction takes an
immediate operand rather than a register to specify the mask.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@295103 91177308-0d34-0410-b5e6-96231b3b80d8
It'll usually be immediately legalized back to a libcall, but occasionally
something can be done with it so we'd just as well enable that flexibility from
the start.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@294530 91177308-0d34-0410-b5e6-96231b3b80d8
AArch64 has specific instructions to multiply two numbers at double the width
and produce the high part of the result. These can be used to implement LLVM's
mul.with.overflow instructions fairly simply. Helps with C++ operator new[].
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@294519 91177308-0d34-0410-b5e6-96231b3b80d8
Because we need to preserve the memory access being performed we need a
separate instruction to represent this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@294492 91177308-0d34-0410-b5e6-96231b3b80d8
It doesn't make any sense to pass in to what is supposed to be parsing
the call, and this can be inferred from the pointer output.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@294412 91177308-0d34-0410-b5e6-96231b3b80d8
They are currently modelled incorrectly (as calls, which clobber
registers, confusing e.g. Machine Copy Propagation).
Reverting until we figure out the proper solution.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@294348 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change allows usage of store instruction for implicit null check.
Memory Aliasing Analisys is not used and change conservatively supposes
that any store and load may access the same memory. As a result
re-ordering of store-store, store-load and load-store is prohibited.
Patch by Serguei Katkov!
Reviewers: reames, sanjoy
Reviewed By: sanjoy
Subscribers: atrick, llvm-commits
Differential Revision: https://reviews.llvm.org/D29400
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@294338 91177308-0d34-0410-b5e6-96231b3b80d8
Recommiting after fixing X86 inc/dec chain bug.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293893 91177308-0d34-0410-b5e6-96231b3b80d8
This patch moves the class for scheduling adjacent instructions,
MacroFusion, to the target.
In AArch64, it also expands the fusion to all instructions pairs in a
scheduling block, beyond just among the predecessors of the branch at the
end.
Differential revision: https://reviews.llvm.org/D28489
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293737 91177308-0d34-0410-b5e6-96231b3b80d8
Most flags were already initialized by the TargetOptions constructor but
we missed out on one. Also, simplify the constructor by using field
initializers when possible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293406 91177308-0d34-0410-b5e6-96231b3b80d8
This change introduces adjustPassManager target callback giving a
target an opportunity to tweak PassManagerBuilder before pass
managers are populated.
This generalizes and replaces addEarlyAsPossiblePasses target
callback. In particular that can be used to add custom passes to
extension points other than EP_EarlyAsPossible.
Differential Revision: https://reviews.llvm.org/D28336
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293189 91177308-0d34-0410-b5e6-96231b3b80d8
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@293184 91177308-0d34-0410-b5e6-96231b3b80d8