With the "wasm32-unknown-unknown-wasm" triple, this allows writing out
simple wasm object files, and is another step in a larger series toward
migrating from ELF to general wasm object support. Note that this code
and the binary format itself is still experimental.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@296190 91177308-0d34-0410-b5e6-96231b3b80d8
Support a new assembler directive, .import_global, to declare imported
global variables (i.e. those with external linkage and no
initializer). The linker turns these into wasm imports.
Patch by Jacob Gravelle
Differential Revision: https://reviews.llvm.org/D26875
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@288296 91177308-0d34-0410-b5e6-96231b3b80d8
This changes locals from being declared by the emitLocal hook in
WebAssemblyTargetStreamer, rather than with an instruction. After exploring
the infastructure in LLVM more, this seems to make more sense since
declaring locals doesn't use an encoded opcode.
This also adds more 0xd opcodes, type encodings, and miscellaneous
binary encoding bits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@285040 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: This patch implements CFI for WebAssembly. It modifies the
LowerTypeTest pass to pre-assign table indexes to functions that are
called indirectly, and lowers type checks to test against the
appropriate table indexes. It also modifies the WebAssembly backend to
support a special ".indidx" assembly directive that propagates the table
index assignments out to the linker.
Patch by Dominic Chen
Differential Revision: https://reviews.llvm.org/D21768
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@277398 91177308-0d34-0410-b5e6-96231b3b80d8
Under emscripten, C code can take the address of a function implemented
in Javascript (which is exposed via an import in wasm). Because imports
do not have linear memory address in wasm, we need to generate a thunk
to be the target of the indirect call; it call the import directly.
To make this possible, LLVM needs to emit the type signatures for these
functions, because they may not be called directly or referred to other
than where the address is taken.
This uses s new .s directive (.functype) which specifies the signature.
Differential Revision: http://reviews.llvm.org/D20891
Re-apply r271599 but instead of bailing with an error when a declared
function has multiple returns, replace it with a pointer argument. Also
add the test case I forgot to 'git add' last time around.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271703 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts r271599, it broke the integration tests.
More places than I expected had nontrival return types in imports, or
else the check was wrong.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271606 91177308-0d34-0410-b5e6-96231b3b80d8
Under emscripten, C code can take the address of a function implemented
in Javascript (which is exposed via an import in wasm). Because imports
do not have linear memory address in wasm, we need to generate a thunk
to be the target of the indirect call; it call the import directly.
To make this possible, LLVM needs to emit the type signatures for these
functions, because they may not be called directly or referred to other
than where the address is taken.
This uses s new .s directive (.functype) which specifies the signature.
Differential Revision: http://reviews.llvm.org/D20891
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@271599 91177308-0d34-0410-b5e6-96231b3b80d8
Refactor .param, .result, .local, and .endfunc, as directives, using the
proper MCTargetStreamer mechanism, rather than fake instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@257511 91177308-0d34-0410-b5e6-96231b3b80d8