The MIR printer dumps a string that describe the register mask of a function.
A static predefined list of register masks matches a static list of strings.
However when the register mask is not from the static predefined list, there is no descriptor string and the printer fails.
This patch adds support to custom register mask printing and dumping.
Also the list of callee saved registers (describing the registers that must be preserved for the caller) might be dynamic.
As such this data needs to be dumped and parsed back to the Machine Register Info.
Differential Revision: https://reviews.llvm.org/D30971
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298207 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds the necessary target hooks for outlining in AArch64. It also
refactors the switch statement used in `getMemOpBaseRegImmOfsWidth` into a
more general function, `getMemOpInfo`. This allows the outliner to share that
code without copying and pasting it.
The AArch64 outliner can be run using -mllvm -enable-machine-outliner, as with
the X86-64 outliner.
The test for this pass verifies that the outliner does, in fact outline
functions, fixes up the stack accesses properly, and can correctly generate a
tail call. In the future, this test should be replaced with a MIR test, so that
we can properly test immediate offset overflows in fixed-up instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298162 91177308-0d34-0410-b5e6-96231b3b80d8
This is an ELF-specific thing that adds SHF_LINK_ORDER to the global's section
pointing to the metadata argument's section. The effect of that is a reverse dependency
between sections for the linker GC.
!associated does not change the behavior of global-dce. The global
may also need to be added to llvm.compiler.used.
Since SHF_LINK_ORDER is per-section, !associated effectively enables
fdata-sections for the affected globals, the same as comdats do.
Differential Revision: https://reviews.llvm.org/D29104
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298157 91177308-0d34-0410-b5e6-96231b3b80d8
Handle TokenFactors more aggressively in
SDValue::reachesChainWithoutSideEffects. This isn't really a
very effective change anymore because of other changes to
chain handling, but it's a cheap check, and the expanded
comments are still useful.
It might be possible to loosen the hasOneUse() requirement with a
deeper analysis, but a naive implementation of that check would be
expensive.
Differential Revision: https://reviews.llvm.org/D29845
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298156 91177308-0d34-0410-b5e6-96231b3b80d8
If the loop condition was an i1 phi with a constantexpr input, this
would add a loop intrinsic fed by a phi dependent on a call to
if.break in the same block. Insert the call in the loop header.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298121 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Use this code pattern when RAX is live, instead of emitting up to 2
billion adjustments:
pushq %rax
movabsq +-$Offset+-8, %rax
addq %rsp, %rax
xchg %rax, (%rsp)
movq (%rsp), %rsp
Try to clean this code up a bit while I'm here. In particular, hoist the
logic that handles the entire adjustment with `movabsq $imm, %rax` out
of the loop.
This negates the offset in the prologue and uses ADD because X86 only
has a two operand subtract which always subtracts from the destination
register, which can no longer be RSP.
Fixes PR31962
Reviewers: majnemer, sdardis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30052
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298116 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Instead of just looking for a load which is mergable with Ext to form ExtLoad, trying to promote Exts as long as the cost is acceptable. This change is not a NFC as it continue promoting Exts even after finding a load during promotions; the change in arm64-codegen-prepare-extload.ll described in 2.b might show the case.
This change was motivated from D26524. Based on this change, I will move the transformation performed in aarch64-type-promotion into CGP.
Reviewers: jmolloy, qcolombet, mcrosier, javed.absar
Reviewed By: qcolombet
Subscribers: rengolin, llvm-commits, aemerson
Differential Revision: https://reviews.llvm.org/D27853
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298114 91177308-0d34-0410-b5e6-96231b3b80d8
As noted in the comment, we might want to account for this case,
but I didn't look at what that would mean for the asm.
I'm also not sure why this only reproduces with avx512, but I'm
putting a conservative fix in for now to avoid the crash.
Also, if both sides of an add are zexted, shouldn't we shrink that add?
https://bugs.llvm.org/show_bug.cgi?id=32316
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298107 91177308-0d34-0410-b5e6-96231b3b80d8
We weren't able to handle isel of the 128/256-bit FMA instructions when AVX512F was enabled but VLX and FMA weren't.
I didn't mask FeatureAVX512 imply FeatureFMA as I wasn't sure I wanted disabling FMA to also disable AVX512. Instead we just can't prevent FMA instructions if AVX512 is enabled.
Another option would be to promote 128/256-bit to 512-bit, do the operation and extract it. But that requires a lot of extra isel patterns. Since no CPUs exist that support AVX512, but not FMA just using the VEX instructions seems better.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298051 91177308-0d34-0410-b5e6-96231b3b80d8
If one of the subregs of the 128 bit reg is undefined when splitMove() splits
a store into two instructions, a use of an undefined physical register
results.
To remedy this, an implicit use of the super register is added onto both new
instructions, along with propagated kill and undef flags.
This was discovered with llvm-stress, and that test case is attached as
test/CodeGen/SystemZ/splitMove_undefReg_mverifier.ll
Thanks to Matthias Braun for helping with a nice explanation.
Review: Ulrich Weigand
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298047 91177308-0d34-0410-b5e6-96231b3b80d8
This bug only exists on the scalar llvm.fma instrinsics. Looks like we don't test the llvm.fma intrinsics very thoroughly. In fact I don't see any tests for the vector versions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298045 91177308-0d34-0410-b5e6-96231b3b80d8
- This fixes a bug where subregister incompatible with the vregs register
class where used.
- Implement the case where multiple copies are necessary to cover a
given lanemask.
Differential Revision: https://reviews.llvm.org/D30438
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298025 91177308-0d34-0410-b5e6-96231b3b80d8
I had ajusted the test case before when testing a chain of length 2, and then
reverted it with rL296845 when I switched to 3 triangles. After running
benchmarks and examining generated code at length 2 I forgot to put the test
back.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@298000 91177308-0d34-0410-b5e6-96231b3b80d8
Earlier stages of GlobalISel always use ConstantInt in G_CONSTANT so that's
what we should check for.
This fixes a crash introduced in r297782.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297968 91177308-0d34-0410-b5e6-96231b3b80d8
Citing http://bugs.llvm.org/show_bug.cgi?id=32288
The DWARF generated by LLVM includes this location:
0x55 0x93 0x04 DW_OP_reg5 DW_OP_piece(4) When GCC's DWARF is simply
0x55 (DW_OP_reg5) without the DW_OP_piece. I believe it's reasonable
to assume the DWARF consumer knows which part of a register
logically holds the value (low bytes, high bytes, how many bytes,
etc) for a primitive value like an integer.
This patch gets rid of the redundant DW_OP_piece when a subregister is
at offset 0. It also adds previously missing subregister masking when
a subregister is followed by another operation.
(This reapplies r297960 with two additional testcase updates).
rdar://problem/31069390
https://reviews.llvm.org/D31010
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297965 91177308-0d34-0410-b5e6-96231b3b80d8
We can mark functions to always inline early in the opt. Since we do not have
call support this early inlining creates opportunities for inter-procedural
optimizations which would not occur otherwise.
Differential Revision: https://reviews.llvm.org/D31016
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297958 91177308-0d34-0410-b5e6-96231b3b80d8
Don't scalarize VSELECT->SETCC when operands/results needs to be widened,
or when the type of the SETCC operands are different from those of the VSELECT.
(VSELECT SETCC) and (VSELECT (AND/OR/XOR (SETCC,SETCC))) are handled.
The previous splitting of VSELECT->SETCC in DAGCombiner::visitVSELECT() is
no longer needed and has been removed.
Updated tests:
test/CodeGen/ARM/vuzp.ll
test/CodeGen/NVPTX/f16x2-instructions.ll
test/CodeGen/X86/2011-10-19-widen_vselect.ll
test/CodeGen/X86/2011-10-21-widen-cmp.ll
test/CodeGen/X86/psubus.ll
test/CodeGen/X86/vselect-pcmp.ll
Review: Eli Friedman, Simon Pilgrim
https://reviews.llvm.org/D29489
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297930 91177308-0d34-0410-b5e6-96231b3b80d8
This produces a 1% speedup on an important internal Google benchmark
(protocol buffers), with no other regressions in google or in the llvm
test-suite. Only 5 targets in the entire llvm test-suite are affected,
and on those 5 targets the size increase is 0.027%
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297925 91177308-0d34-0410-b5e6-96231b3b80d8
Regression test for a target-independent bug keeps failing in the
Hexagon backend due to what appears an unrelated issue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297888 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, we create a G_CONSTANT for every "synthetic" integer
constant operand (for instance, for the G_GEP offset).
Instead, share the G_CONSTANTs we might have created by going through
the ValueToVReg machinery.
When we're emitting synthetic constants, we do need to get Constants from
the context. One could argue that we shouldn't modify the context at
all (for instance, this means that we're going to use a tad more memory
if the constant wasn't used elsewhere), but constants are mostly
harmless. We currently do this for extractvalue and all.
For constant fcmp, this does mean we'll emit an extra COPY, which is not
necessarily more optimal than an extra materialized constant.
But that preserves the current intended design of uniqued G_CONSTANTs,
and the rematerialization problem exists elsewhere and should be
resolved with a single coherent solution.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297875 91177308-0d34-0410-b5e6-96231b3b80d8
computeKnownBits didn't handle fp_to_fp16 to report
the high bits as 0. ARM maps the generic node to an instruction
that does not modify the high bits of the register, so introduce
a target node where the high bits are known 0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297873 91177308-0d34-0410-b5e6-96231b3b80d8
If we got unlucky with register allocation and actual constpool placement, we
could end up producing a tTBB_JT with an index that's already been clobbered.
Technically, we might be able to fix this situation up with a MOV, but I think
the constant islands pass is complex enough without having to deal with more
weird edge-cases.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297871 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we preserve the IR layout, we would end up with all the newly
synthesized switch comparison blocks at the end of the function.
Instead, use a hopefully more reasonable layout, with the comparison
blocks immediately following the switch comparison blocks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297869 91177308-0d34-0410-b5e6-96231b3b80d8
It makes the output function layout more predictable; the layout has
an effect on performance, we don't want it to be at the mercy of the
translator's visitation order and such.
The predictable output is also easier to digest.
getOrCreateBB isn't appropriately named anymore, as it never needs to
create anything. Rename it and extract the MBB creation logic out of it.
A couple tests were sensitive to the order. Update them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@297868 91177308-0d34-0410-b5e6-96231b3b80d8