Files
archived-llvm/include/llvm/ProfileData/Coverage/CoverageMapping.h
Vedant Kumar 16264149cd [Coverage] Remove two overloads of CoverageMapping::load. NFC.
These overloads are essentially dead, and pose a maintenance cost
without adding any benefit. This is coming up now because I'd like to
experiment with changing the way we store coverage mapping data, and
would rather not have to fix up the old overloads while doing so.

Testing: check-{llvm,profile}, build clang.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@306776 91177308-0d34-0410-b5e6-96231b3b80d8
2017-06-30 00:45:26 +00:00

654 lines
22 KiB
C++

//===- CoverageMapping.h - Code coverage mapping support --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Code coverage mapping data is generated by clang and read by
// llvm-cov to show code coverage statistics for a file.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_PROFILEDATA_COVERAGE_COVERAGEMAPPING_H
#define LLVM_PROFILEDATA_COVERAGE_COVERAGEMAPPING_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <memory>
#include <string>
#include <system_error>
#include <tuple>
#include <utility>
#include <vector>
namespace llvm {
class IndexedInstrProfReader;
namespace coverage {
class CoverageMappingReader;
struct CoverageMappingRecord;
enum class coveragemap_error {
success = 0,
eof,
no_data_found,
unsupported_version,
truncated,
malformed
};
const std::error_category &coveragemap_category();
inline std::error_code make_error_code(coveragemap_error E) {
return std::error_code(static_cast<int>(E), coveragemap_category());
}
class CoverageMapError : public ErrorInfo<CoverageMapError> {
public:
CoverageMapError(coveragemap_error Err) : Err(Err) {
assert(Err != coveragemap_error::success && "Not an error");
}
std::string message() const override;
void log(raw_ostream &OS) const override { OS << message(); }
std::error_code convertToErrorCode() const override {
return make_error_code(Err);
}
coveragemap_error get() const { return Err; }
static char ID;
private:
coveragemap_error Err;
};
/// \brief A Counter is an abstract value that describes how to compute the
/// execution count for a region of code using the collected profile count data.
struct Counter {
enum CounterKind { Zero, CounterValueReference, Expression };
static const unsigned EncodingTagBits = 2;
static const unsigned EncodingTagMask = 0x3;
static const unsigned EncodingCounterTagAndExpansionRegionTagBits =
EncodingTagBits + 1;
private:
CounterKind Kind = Zero;
unsigned ID = 0;
Counter(CounterKind Kind, unsigned ID) : Kind(Kind), ID(ID) {}
public:
Counter() = default;
CounterKind getKind() const { return Kind; }
bool isZero() const { return Kind == Zero; }
bool isExpression() const { return Kind == Expression; }
unsigned getCounterID() const { return ID; }
unsigned getExpressionID() const { return ID; }
friend bool operator==(const Counter &LHS, const Counter &RHS) {
return LHS.Kind == RHS.Kind && LHS.ID == RHS.ID;
}
friend bool operator!=(const Counter &LHS, const Counter &RHS) {
return !(LHS == RHS);
}
friend bool operator<(const Counter &LHS, const Counter &RHS) {
return std::tie(LHS.Kind, LHS.ID) < std::tie(RHS.Kind, RHS.ID);
}
/// \brief Return the counter that represents the number zero.
static Counter getZero() { return Counter(); }
/// \brief Return the counter that corresponds to a specific profile counter.
static Counter getCounter(unsigned CounterId) {
return Counter(CounterValueReference, CounterId);
}
/// \brief Return the counter that corresponds to a specific
/// addition counter expression.
static Counter getExpression(unsigned ExpressionId) {
return Counter(Expression, ExpressionId);
}
};
/// \brief A Counter expression is a value that represents an arithmetic
/// operation with two counters.
struct CounterExpression {
enum ExprKind { Subtract, Add };
ExprKind Kind;
Counter LHS, RHS;
CounterExpression(ExprKind Kind, Counter LHS, Counter RHS)
: Kind(Kind), LHS(LHS), RHS(RHS) {}
};
/// \brief A Counter expression builder is used to construct the
/// counter expressions. It avoids unnecessary duplication
/// and simplifies algebraic expressions.
class CounterExpressionBuilder {
/// \brief A list of all the counter expressions
std::vector<CounterExpression> Expressions;
/// \brief A lookup table for the index of a given expression.
DenseMap<CounterExpression, unsigned> ExpressionIndices;
/// \brief Return the counter which corresponds to the given expression.
///
/// If the given expression is already stored in the builder, a counter
/// that references that expression is returned. Otherwise, the given
/// expression is added to the builder's collection of expressions.
Counter get(const CounterExpression &E);
/// Represents a term in a counter expression tree.
struct Term {
unsigned CounterID;
int Factor;
Term(unsigned CounterID, int Factor)
: CounterID(CounterID), Factor(Factor) {}
};
/// \brief Gather the terms of the expression tree for processing.
///
/// This collects each addition and subtraction referenced by the counter into
/// a sequence that can be sorted and combined to build a simplified counter
/// expression.
void extractTerms(Counter C, int Sign, SmallVectorImpl<Term> &Terms);
/// \brief Simplifies the given expression tree
/// by getting rid of algebraically redundant operations.
Counter simplify(Counter ExpressionTree);
public:
ArrayRef<CounterExpression> getExpressions() const { return Expressions; }
/// \brief Return a counter that represents the expression
/// that adds LHS and RHS.
Counter add(Counter LHS, Counter RHS);
/// \brief Return a counter that represents the expression
/// that subtracts RHS from LHS.
Counter subtract(Counter LHS, Counter RHS);
};
/// \brief A Counter mapping region associates a source range with
/// a specific counter.
struct CounterMappingRegion {
enum RegionKind {
/// \brief A CodeRegion associates some code with a counter
CodeRegion,
/// \brief An ExpansionRegion represents a file expansion region that
/// associates a source range with the expansion of a virtual source file,
/// such as for a macro instantiation or #include file.
ExpansionRegion,
/// \brief A SkippedRegion represents a source range with code that
/// was skipped by a preprocessor or similar means.
SkippedRegion
};
Counter Count;
unsigned FileID, ExpandedFileID;
unsigned LineStart, ColumnStart, LineEnd, ColumnEnd;
RegionKind Kind;
CounterMappingRegion(Counter Count, unsigned FileID, unsigned ExpandedFileID,
unsigned LineStart, unsigned ColumnStart,
unsigned LineEnd, unsigned ColumnEnd, RegionKind Kind)
: Count(Count), FileID(FileID), ExpandedFileID(ExpandedFileID),
LineStart(LineStart), ColumnStart(ColumnStart), LineEnd(LineEnd),
ColumnEnd(ColumnEnd), Kind(Kind) {}
static CounterMappingRegion
makeRegion(Counter Count, unsigned FileID, unsigned LineStart,
unsigned ColumnStart, unsigned LineEnd, unsigned ColumnEnd) {
return CounterMappingRegion(Count, FileID, 0, LineStart, ColumnStart,
LineEnd, ColumnEnd, CodeRegion);
}
static CounterMappingRegion
makeExpansion(unsigned FileID, unsigned ExpandedFileID, unsigned LineStart,
unsigned ColumnStart, unsigned LineEnd, unsigned ColumnEnd) {
return CounterMappingRegion(Counter(), FileID, ExpandedFileID, LineStart,
ColumnStart, LineEnd, ColumnEnd,
ExpansionRegion);
}
static CounterMappingRegion
makeSkipped(unsigned FileID, unsigned LineStart, unsigned ColumnStart,
unsigned LineEnd, unsigned ColumnEnd) {
return CounterMappingRegion(Counter(), FileID, 0, LineStart, ColumnStart,
LineEnd, ColumnEnd, SkippedRegion);
}
inline std::pair<unsigned, unsigned> startLoc() const {
return std::pair<unsigned, unsigned>(LineStart, ColumnStart);
}
inline std::pair<unsigned, unsigned> endLoc() const {
return std::pair<unsigned, unsigned>(LineEnd, ColumnEnd);
}
};
/// \brief Associates a source range with an execution count.
struct CountedRegion : public CounterMappingRegion {
uint64_t ExecutionCount;
CountedRegion(const CounterMappingRegion &R, uint64_t ExecutionCount)
: CounterMappingRegion(R), ExecutionCount(ExecutionCount) {}
};
/// \brief A Counter mapping context is used to connect the counters,
/// expressions and the obtained counter values.
class CounterMappingContext {
ArrayRef<CounterExpression> Expressions;
ArrayRef<uint64_t> CounterValues;
public:
CounterMappingContext(ArrayRef<CounterExpression> Expressions,
ArrayRef<uint64_t> CounterValues = None)
: Expressions(Expressions), CounterValues(CounterValues) {}
void setCounts(ArrayRef<uint64_t> Counts) { CounterValues = Counts; }
void dump(const Counter &C, raw_ostream &OS) const;
void dump(const Counter &C) const { dump(C, dbgs()); }
/// \brief Return the number of times that a region of code associated with
/// this counter was executed.
Expected<int64_t> evaluate(const Counter &C) const;
};
/// \brief Code coverage information for a single function.
struct FunctionRecord {
/// \brief Raw function name.
std::string Name;
/// \brief Associated files.
std::vector<std::string> Filenames;
/// \brief Regions in the function along with their counts.
std::vector<CountedRegion> CountedRegions;
/// \brief The number of times this function was executed.
uint64_t ExecutionCount;
FunctionRecord(StringRef Name, ArrayRef<StringRef> Filenames)
: Name(Name), Filenames(Filenames.begin(), Filenames.end()) {}
FunctionRecord(FunctionRecord &&FR) = default;
FunctionRecord &operator=(FunctionRecord &&) = default;
void pushRegion(CounterMappingRegion Region, uint64_t Count) {
if (CountedRegions.empty())
ExecutionCount = Count;
CountedRegions.emplace_back(Region, Count);
}
};
/// \brief Iterator over Functions, optionally filtered to a single file.
class FunctionRecordIterator
: public iterator_facade_base<FunctionRecordIterator,
std::forward_iterator_tag, FunctionRecord> {
ArrayRef<FunctionRecord> Records;
ArrayRef<FunctionRecord>::iterator Current;
StringRef Filename;
/// \brief Skip records whose primary file is not \c Filename.
void skipOtherFiles();
public:
FunctionRecordIterator(ArrayRef<FunctionRecord> Records_,
StringRef Filename = "")
: Records(Records_), Current(Records.begin()), Filename(Filename) {
skipOtherFiles();
}
FunctionRecordIterator() : Current(Records.begin()) {}
bool operator==(const FunctionRecordIterator &RHS) const {
return Current == RHS.Current && Filename == RHS.Filename;
}
const FunctionRecord &operator*() const { return *Current; }
FunctionRecordIterator &operator++() {
assert(Current != Records.end() && "incremented past end");
++Current;
skipOtherFiles();
return *this;
}
};
/// \brief Coverage information for a macro expansion or #included file.
///
/// When covered code has pieces that can be expanded for more detail, such as a
/// preprocessor macro use and its definition, these are represented as
/// expansions whose coverage can be looked up independently.
struct ExpansionRecord {
/// \brief The abstract file this expansion covers.
unsigned FileID;
/// \brief The region that expands to this record.
const CountedRegion &Region;
/// \brief Coverage for the expansion.
const FunctionRecord &Function;
ExpansionRecord(const CountedRegion &Region,
const FunctionRecord &Function)
: FileID(Region.ExpandedFileID), Region(Region), Function(Function) {}
};
/// \brief The execution count information starting at a point in a file.
///
/// A sequence of CoverageSegments gives execution counts for a file in format
/// that's simple to iterate through for processing.
struct CoverageSegment {
/// \brief The line where this segment begins.
unsigned Line;
/// \brief The column where this segment begins.
unsigned Col;
/// \brief The execution count, or zero if no count was recorded.
uint64_t Count;
/// \brief When false, the segment was uninstrumented or skipped.
bool HasCount;
/// \brief Whether this enters a new region or returns to a previous count.
bool IsRegionEntry;
CoverageSegment(unsigned Line, unsigned Col, bool IsRegionEntry)
: Line(Line), Col(Col), Count(0), HasCount(false),
IsRegionEntry(IsRegionEntry) {}
CoverageSegment(unsigned Line, unsigned Col, uint64_t Count,
bool IsRegionEntry)
: Line(Line), Col(Col), Count(Count), HasCount(true),
IsRegionEntry(IsRegionEntry) {}
friend bool operator==(const CoverageSegment &L, const CoverageSegment &R) {
return std::tie(L.Line, L.Col, L.Count, L.HasCount, L.IsRegionEntry) ==
std::tie(R.Line, R.Col, R.Count, R.HasCount, R.IsRegionEntry);
}
};
/// \brief Coverage information to be processed or displayed.
///
/// This represents the coverage of an entire file, expansion, or function. It
/// provides a sequence of CoverageSegments to iterate through, as well as the
/// list of expansions that can be further processed.
class CoverageData {
friend class CoverageMapping;
std::string Filename;
std::vector<CoverageSegment> Segments;
std::vector<ExpansionRecord> Expansions;
public:
CoverageData() = default;
CoverageData(StringRef Filename) : Filename(Filename) {}
/// \brief Get the name of the file this data covers.
StringRef getFilename() const { return Filename; }
std::vector<CoverageSegment>::const_iterator begin() const {
return Segments.begin();
}
std::vector<CoverageSegment>::const_iterator end() const {
return Segments.end();
}
bool empty() const { return Segments.empty(); }
/// \brief Expansions that can be further processed.
ArrayRef<ExpansionRecord> getExpansions() const { return Expansions; }
};
/// \brief The mapping of profile information to coverage data.
///
/// This is the main interface to get coverage information, using a profile to
/// fill out execution counts.
class CoverageMapping {
StringSet<> FunctionNames;
std::vector<FunctionRecord> Functions;
unsigned MismatchedFunctionCount = 0;
CoverageMapping() = default;
/// \brief Add a function record corresponding to \p Record.
Error loadFunctionRecord(const CoverageMappingRecord &Record,
IndexedInstrProfReader &ProfileReader);
public:
CoverageMapping(const CoverageMapping &) = delete;
CoverageMapping &operator=(const CoverageMapping &) = delete;
/// \brief Load the coverage mapping using the given readers.
static Expected<std::unique_ptr<CoverageMapping>>
load(ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
IndexedInstrProfReader &ProfileReader);
static Expected<std::unique_ptr<CoverageMapping>>
load(ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename,
StringRef Arch = StringRef());
/// \brief The number of functions that couldn't have their profiles mapped.
///
/// This is a count of functions whose profile is out of date or otherwise
/// can't be associated with any coverage information.
unsigned getMismatchedCount() { return MismatchedFunctionCount; }
/// \brief Returns a lexicographically sorted, unique list of files that are
/// covered.
std::vector<StringRef> getUniqueSourceFiles() const;
/// \brief Get the coverage for a particular file.
///
/// The given filename must be the name as recorded in the coverage
/// information. That is, only names returned from getUniqueSourceFiles will
/// yield a result.
CoverageData getCoverageForFile(StringRef Filename) const;
/// \brief Gets all of the functions covered by this profile.
iterator_range<FunctionRecordIterator> getCoveredFunctions() const {
return make_range(FunctionRecordIterator(Functions),
FunctionRecordIterator());
}
/// \brief Gets all of the functions in a particular file.
iterator_range<FunctionRecordIterator>
getCoveredFunctions(StringRef Filename) const {
return make_range(FunctionRecordIterator(Functions, Filename),
FunctionRecordIterator());
}
/// \brief Get the list of function instantiations in the file.
///
/// Functions that are instantiated more than once, such as C++ template
/// specializations, have distinct coverage records for each instantiation.
std::vector<const FunctionRecord *>
getInstantiations(StringRef Filename) const;
/// \brief Get the coverage for a particular function.
CoverageData getCoverageForFunction(const FunctionRecord &Function) const;
/// \brief Get the coverage for an expansion within a coverage set.
CoverageData getCoverageForExpansion(const ExpansionRecord &Expansion) const;
};
// Profile coverage map has the following layout:
// [CoverageMapFileHeader]
// [ArrayStart]
// [CovMapFunctionRecord]
// [CovMapFunctionRecord]
// ...
// [ArrayEnd]
// [Encoded Region Mapping Data]
LLVM_PACKED_START
template <class IntPtrT> struct CovMapFunctionRecordV1 {
#define COVMAP_V1
#define COVMAP_FUNC_RECORD(Type, LLVMType, Name, Init) Type Name;
#include "llvm/ProfileData/InstrProfData.inc"
#undef COVMAP_V1
// Return the structural hash associated with the function.
template <support::endianness Endian> uint64_t getFuncHash() const {
return support::endian::byte_swap<uint64_t, Endian>(FuncHash);
}
// Return the coverage map data size for the funciton.
template <support::endianness Endian> uint32_t getDataSize() const {
return support::endian::byte_swap<uint32_t, Endian>(DataSize);
}
// Return function lookup key. The value is consider opaque.
template <support::endianness Endian> IntPtrT getFuncNameRef() const {
return support::endian::byte_swap<IntPtrT, Endian>(NamePtr);
}
// Return the PGO name of the function */
template <support::endianness Endian>
Error getFuncName(InstrProfSymtab &ProfileNames, StringRef &FuncName) const {
IntPtrT NameRef = getFuncNameRef<Endian>();
uint32_t NameS = support::endian::byte_swap<uint32_t, Endian>(NameSize);
FuncName = ProfileNames.getFuncName(NameRef, NameS);
if (NameS && FuncName.empty())
return make_error<CoverageMapError>(coveragemap_error::malformed);
return Error::success();
}
};
struct CovMapFunctionRecord {
#define COVMAP_FUNC_RECORD(Type, LLVMType, Name, Init) Type Name;
#include "llvm/ProfileData/InstrProfData.inc"
// Return the structural hash associated with the function.
template <support::endianness Endian> uint64_t getFuncHash() const {
return support::endian::byte_swap<uint64_t, Endian>(FuncHash);
}
// Return the coverage map data size for the funciton.
template <support::endianness Endian> uint32_t getDataSize() const {
return support::endian::byte_swap<uint32_t, Endian>(DataSize);
}
// Return function lookup key. The value is consider opaque.
template <support::endianness Endian> uint64_t getFuncNameRef() const {
return support::endian::byte_swap<uint64_t, Endian>(NameRef);
}
// Return the PGO name of the function */
template <support::endianness Endian>
Error getFuncName(InstrProfSymtab &ProfileNames, StringRef &FuncName) const {
uint64_t NameRef = getFuncNameRef<Endian>();
FuncName = ProfileNames.getFuncName(NameRef);
return Error::success();
}
};
// Per module coverage mapping data header, i.e. CoverageMapFileHeader
// documented above.
struct CovMapHeader {
#define COVMAP_HEADER(Type, LLVMType, Name, Init) Type Name;
#include "llvm/ProfileData/InstrProfData.inc"
template <support::endianness Endian> uint32_t getNRecords() const {
return support::endian::byte_swap<uint32_t, Endian>(NRecords);
}
template <support::endianness Endian> uint32_t getFilenamesSize() const {
return support::endian::byte_swap<uint32_t, Endian>(FilenamesSize);
}
template <support::endianness Endian> uint32_t getCoverageSize() const {
return support::endian::byte_swap<uint32_t, Endian>(CoverageSize);
}
template <support::endianness Endian> uint32_t getVersion() const {
return support::endian::byte_swap<uint32_t, Endian>(Version);
}
};
LLVM_PACKED_END
enum CovMapVersion {
Version1 = 0,
// Function's name reference from CovMapFuncRecord is changed from raw
// name string pointer to MD5 to support name section compression. Name
// section is also compressed.
Version2 = 1,
// The current version is Version2
CurrentVersion = INSTR_PROF_COVMAP_VERSION
};
template <int CovMapVersion, class IntPtrT> struct CovMapTraits {
using CovMapFuncRecordType = CovMapFunctionRecord;
using NameRefType = uint64_t;
};
template <class IntPtrT> struct CovMapTraits<CovMapVersion::Version1, IntPtrT> {
using CovMapFuncRecordType = CovMapFunctionRecordV1<IntPtrT>;
using NameRefType = IntPtrT;
};
} // end namespace coverage
/// \brief Provide DenseMapInfo for CounterExpression
template<> struct DenseMapInfo<coverage::CounterExpression> {
static inline coverage::CounterExpression getEmptyKey() {
using namespace coverage;
return CounterExpression(CounterExpression::ExprKind::Subtract,
Counter::getCounter(~0U),
Counter::getCounter(~0U));
}
static inline coverage::CounterExpression getTombstoneKey() {
using namespace coverage;
return CounterExpression(CounterExpression::ExprKind::Add,
Counter::getCounter(~0U),
Counter::getCounter(~0U));
}
static unsigned getHashValue(const coverage::CounterExpression &V) {
return static_cast<unsigned>(
hash_combine(V.Kind, V.LHS.getKind(), V.LHS.getCounterID(),
V.RHS.getKind(), V.RHS.getCounterID()));
}
static bool isEqual(const coverage::CounterExpression &LHS,
const coverage::CounterExpression &RHS) {
return LHS.Kind == RHS.Kind && LHS.LHS == RHS.LHS && LHS.RHS == RHS.RHS;
}
};
} // end namespace llvm
#endif // LLVM_PROFILEDATA_COVERAGE_COVERAGEMAPPING_H