mirror of
https://github.com/RPCSX/llvm.git
synced 2026-01-31 01:05:23 +01:00
Summary: This patch implements incremental edge deletions. It also makes DominatorTreeBase store a pointer to the parent function. The parent function is needed to perform full rebuilts during some deletions, but it is also used to verify that inserted and deleted edges come from the same function. Reviewers: dberlin, davide, grosser, sanjoy, brzycki Reviewed By: dberlin Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D35342 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@308062 91177308-0d34-0410-b5e6-96231b3b80d8
804 lines
26 KiB
C++
804 lines
26 KiB
C++
//===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
///
|
|
/// This file defines a set of templates that efficiently compute a dominator
|
|
/// tree over a generic graph. This is used typically in LLVM for fast
|
|
/// dominance queries on the CFG, but is fully generic w.r.t. the underlying
|
|
/// graph types.
|
|
///
|
|
/// Unlike ADT/* graph algorithms, generic dominator tree has more requirements
|
|
/// on the graph's NodeRef. The NodeRef should be a pointer and, depending on
|
|
/// the implementation, e.g. NodeRef->getParent() return the parent node.
|
|
///
|
|
/// FIXME: Maybe GenericDomTree needs a TreeTraits, instead of GraphTraits.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_SUPPORT_GENERICDOMTREE_H
|
|
#define LLVM_SUPPORT_GENERICDOMTREE_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
template <typename NodeT, bool IsPostDom>
|
|
class DominatorTreeBase;
|
|
|
|
namespace DomTreeBuilder {
|
|
template <class DomTreeT>
|
|
struct SemiNCAInfo;
|
|
} // namespace DomTreeBuilder
|
|
|
|
/// \brief Base class for the actual dominator tree node.
|
|
template <class NodeT> class DomTreeNodeBase {
|
|
friend struct PostDominatorTree;
|
|
friend class DominatorTreeBase<NodeT, false>;
|
|
friend class DominatorTreeBase<NodeT, true>;
|
|
friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, false>>;
|
|
friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, true>>;
|
|
|
|
NodeT *TheBB;
|
|
DomTreeNodeBase *IDom;
|
|
unsigned Level;
|
|
std::vector<DomTreeNodeBase *> Children;
|
|
mutable unsigned DFSNumIn = ~0;
|
|
mutable unsigned DFSNumOut = ~0;
|
|
|
|
public:
|
|
DomTreeNodeBase(NodeT *BB, DomTreeNodeBase *iDom)
|
|
: TheBB(BB), IDom(iDom), Level(IDom ? IDom->Level + 1 : 0) {}
|
|
|
|
using iterator = typename std::vector<DomTreeNodeBase *>::iterator;
|
|
using const_iterator =
|
|
typename std::vector<DomTreeNodeBase *>::const_iterator;
|
|
|
|
iterator begin() { return Children.begin(); }
|
|
iterator end() { return Children.end(); }
|
|
const_iterator begin() const { return Children.begin(); }
|
|
const_iterator end() const { return Children.end(); }
|
|
|
|
NodeT *getBlock() const { return TheBB; }
|
|
DomTreeNodeBase *getIDom() const { return IDom; }
|
|
unsigned getLevel() const { return Level; }
|
|
|
|
const std::vector<DomTreeNodeBase *> &getChildren() const { return Children; }
|
|
|
|
std::unique_ptr<DomTreeNodeBase> addChild(
|
|
std::unique_ptr<DomTreeNodeBase> C) {
|
|
Children.push_back(C.get());
|
|
return C;
|
|
}
|
|
|
|
size_t getNumChildren() const { return Children.size(); }
|
|
|
|
void clearAllChildren() { Children.clear(); }
|
|
|
|
bool compare(const DomTreeNodeBase *Other) const {
|
|
if (getNumChildren() != Other->getNumChildren())
|
|
return true;
|
|
|
|
if (Level != Other->Level) return true;
|
|
|
|
SmallPtrSet<const NodeT *, 4> OtherChildren;
|
|
for (const DomTreeNodeBase *I : *Other) {
|
|
const NodeT *Nd = I->getBlock();
|
|
OtherChildren.insert(Nd);
|
|
}
|
|
|
|
for (const DomTreeNodeBase *I : *this) {
|
|
const NodeT *N = I->getBlock();
|
|
if (OtherChildren.count(N) == 0)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void setIDom(DomTreeNodeBase *NewIDom) {
|
|
assert(IDom && "No immediate dominator?");
|
|
if (IDom == NewIDom) return;
|
|
|
|
auto I = find(IDom->Children, this);
|
|
assert(I != IDom->Children.end() &&
|
|
"Not in immediate dominator children set!");
|
|
// I am no longer your child...
|
|
IDom->Children.erase(I);
|
|
|
|
// Switch to new dominator
|
|
IDom = NewIDom;
|
|
IDom->Children.push_back(this);
|
|
|
|
UpdateLevel();
|
|
}
|
|
|
|
/// getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes
|
|
/// in the dominator tree. They are only guaranteed valid if
|
|
/// updateDFSNumbers() has been called.
|
|
unsigned getDFSNumIn() const { return DFSNumIn; }
|
|
unsigned getDFSNumOut() const { return DFSNumOut; }
|
|
|
|
private:
|
|
// Return true if this node is dominated by other. Use this only if DFS info
|
|
// is valid.
|
|
bool DominatedBy(const DomTreeNodeBase *other) const {
|
|
return this->DFSNumIn >= other->DFSNumIn &&
|
|
this->DFSNumOut <= other->DFSNumOut;
|
|
}
|
|
|
|
void UpdateLevel() {
|
|
assert(IDom);
|
|
if (Level == IDom->Level + 1) return;
|
|
|
|
SmallVector<DomTreeNodeBase *, 64> WorkStack = {this};
|
|
|
|
while (!WorkStack.empty()) {
|
|
DomTreeNodeBase *Current = WorkStack.pop_back_val();
|
|
Current->Level = Current->IDom->Level + 1;
|
|
|
|
for (DomTreeNodeBase *C : *Current) {
|
|
assert(C->IDom);
|
|
if (C->Level != C->IDom->Level + 1) WorkStack.push_back(C);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <class NodeT>
|
|
raw_ostream &operator<<(raw_ostream &O, const DomTreeNodeBase<NodeT> *Node) {
|
|
if (Node->getBlock())
|
|
Node->getBlock()->printAsOperand(O, false);
|
|
else
|
|
O << " <<exit node>>";
|
|
|
|
O << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "} ["
|
|
<< Node->getLevel() << "]\n";
|
|
|
|
return O;
|
|
}
|
|
|
|
template <class NodeT>
|
|
void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &O,
|
|
unsigned Lev) {
|
|
O.indent(2 * Lev) << "[" << Lev << "] " << N;
|
|
for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
|
|
E = N->end();
|
|
I != E; ++I)
|
|
PrintDomTree<NodeT>(*I, O, Lev + 1);
|
|
}
|
|
|
|
namespace DomTreeBuilder {
|
|
// The routines below are provided in a separate header but referenced here.
|
|
template <typename DomTreeT, typename FuncT>
|
|
void Calculate(DomTreeT &DT, FuncT &F);
|
|
|
|
template <class DomTreeT>
|
|
void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
|
|
typename DomTreeT::NodePtr To);
|
|
|
|
template <class DomTreeT>
|
|
void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
|
|
typename DomTreeT::NodePtr To);
|
|
|
|
template <typename DomTreeT>
|
|
bool Verify(const DomTreeT &DT);
|
|
} // namespace DomTreeBuilder
|
|
|
|
/// \brief Core dominator tree base class.
|
|
///
|
|
/// This class is a generic template over graph nodes. It is instantiated for
|
|
/// various graphs in the LLVM IR or in the code generator.
|
|
template <typename NodeT, bool IsPostDom>
|
|
class DominatorTreeBase {
|
|
protected:
|
|
std::vector<NodeT *> Roots;
|
|
|
|
using DomTreeNodeMapType =
|
|
DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>;
|
|
DomTreeNodeMapType DomTreeNodes;
|
|
DomTreeNodeBase<NodeT> *RootNode;
|
|
using ParentPtr = decltype(std::declval<NodeT *>()->getParent());
|
|
ParentPtr Parent = nullptr;
|
|
|
|
mutable bool DFSInfoValid = false;
|
|
mutable unsigned int SlowQueries = 0;
|
|
|
|
friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase>;
|
|
|
|
public:
|
|
static_assert(std::is_pointer<typename GraphTraits<NodeT *>::NodeRef>::value,
|
|
"Currently DominatorTreeBase supports only pointer nodes");
|
|
using NodeType = NodeT;
|
|
using NodePtr = NodeT *;
|
|
static constexpr bool IsPostDominator = IsPostDom;
|
|
|
|
DominatorTreeBase() = default;
|
|
|
|
DominatorTreeBase(DominatorTreeBase &&Arg)
|
|
: Roots(std::move(Arg.Roots)),
|
|
DomTreeNodes(std::move(Arg.DomTreeNodes)),
|
|
RootNode(Arg.RootNode),
|
|
Parent(Arg.Parent),
|
|
DFSInfoValid(Arg.DFSInfoValid),
|
|
SlowQueries(Arg.SlowQueries) {
|
|
Arg.wipe();
|
|
}
|
|
|
|
DominatorTreeBase &operator=(DominatorTreeBase &&RHS) {
|
|
Roots = std::move(RHS.Roots);
|
|
DomTreeNodes = std::move(RHS.DomTreeNodes);
|
|
RootNode = RHS.RootNode;
|
|
Parent = RHS.Parent;
|
|
DFSInfoValid = RHS.DFSInfoValid;
|
|
SlowQueries = RHS.SlowQueries;
|
|
RHS.wipe();
|
|
return *this;
|
|
}
|
|
|
|
DominatorTreeBase(const DominatorTreeBase &) = delete;
|
|
DominatorTreeBase &operator=(const DominatorTreeBase &) = delete;
|
|
|
|
/// getRoots - Return the root blocks of the current CFG. This may include
|
|
/// multiple blocks if we are computing post dominators. For forward
|
|
/// dominators, this will always be a single block (the entry node).
|
|
///
|
|
const std::vector<NodeT *> &getRoots() const { return Roots; }
|
|
|
|
/// isPostDominator - Returns true if analysis based of postdoms
|
|
///
|
|
bool isPostDominator() const { return IsPostDominator; }
|
|
|
|
/// compare - Return false if the other dominator tree base matches this
|
|
/// dominator tree base. Otherwise return true.
|
|
bool compare(const DominatorTreeBase &Other) const {
|
|
if (Parent != Other.Parent) return true;
|
|
|
|
const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
|
|
if (DomTreeNodes.size() != OtherDomTreeNodes.size())
|
|
return true;
|
|
|
|
for (const auto &DomTreeNode : DomTreeNodes) {
|
|
NodeT *BB = DomTreeNode.first;
|
|
typename DomTreeNodeMapType::const_iterator OI =
|
|
OtherDomTreeNodes.find(BB);
|
|
if (OI == OtherDomTreeNodes.end())
|
|
return true;
|
|
|
|
DomTreeNodeBase<NodeT> &MyNd = *DomTreeNode.second;
|
|
DomTreeNodeBase<NodeT> &OtherNd = *OI->second;
|
|
|
|
if (MyNd.compare(&OtherNd))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void releaseMemory() { reset(); }
|
|
|
|
/// getNode - return the (Post)DominatorTree node for the specified basic
|
|
/// block. This is the same as using operator[] on this class. The result
|
|
/// may (but is not required to) be null for a forward (backwards)
|
|
/// statically unreachable block.
|
|
DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
|
|
auto I = DomTreeNodes.find(BB);
|
|
if (I != DomTreeNodes.end())
|
|
return I->second.get();
|
|
return nullptr;
|
|
}
|
|
|
|
/// See getNode.
|
|
DomTreeNodeBase<NodeT> *operator[](NodeT *BB) const { return getNode(BB); }
|
|
|
|
/// getRootNode - This returns the entry node for the CFG of the function. If
|
|
/// this tree represents the post-dominance relations for a function, however,
|
|
/// this root may be a node with the block == NULL. This is the case when
|
|
/// there are multiple exit nodes from a particular function. Consumers of
|
|
/// post-dominance information must be capable of dealing with this
|
|
/// possibility.
|
|
///
|
|
DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
|
|
const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
|
|
|
|
/// Get all nodes dominated by R, including R itself.
|
|
void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
|
|
Result.clear();
|
|
const DomTreeNodeBase<NodeT> *RN = getNode(R);
|
|
if (!RN)
|
|
return; // If R is unreachable, it will not be present in the DOM tree.
|
|
SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
|
|
WL.push_back(RN);
|
|
|
|
while (!WL.empty()) {
|
|
const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
|
|
Result.push_back(N->getBlock());
|
|
WL.append(N->begin(), N->end());
|
|
}
|
|
}
|
|
|
|
/// properlyDominates - Returns true iff A dominates B and A != B.
|
|
/// Note that this is not a constant time operation!
|
|
///
|
|
bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
|
|
const DomTreeNodeBase<NodeT> *B) const {
|
|
if (!A || !B)
|
|
return false;
|
|
if (A == B)
|
|
return false;
|
|
return dominates(A, B);
|
|
}
|
|
|
|
bool properlyDominates(const NodeT *A, const NodeT *B) const;
|
|
|
|
/// isReachableFromEntry - Return true if A is dominated by the entry
|
|
/// block of the function containing it.
|
|
bool isReachableFromEntry(const NodeT *A) const {
|
|
assert(!this->isPostDominator() &&
|
|
"This is not implemented for post dominators");
|
|
return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
|
|
}
|
|
|
|
bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; }
|
|
|
|
/// dominates - Returns true iff A dominates B. Note that this is not a
|
|
/// constant time operation!
|
|
///
|
|
bool dominates(const DomTreeNodeBase<NodeT> *A,
|
|
const DomTreeNodeBase<NodeT> *B) const {
|
|
// A node trivially dominates itself.
|
|
if (B == A)
|
|
return true;
|
|
|
|
// An unreachable node is dominated by anything.
|
|
if (!isReachableFromEntry(B))
|
|
return true;
|
|
|
|
// And dominates nothing.
|
|
if (!isReachableFromEntry(A))
|
|
return false;
|
|
|
|
if (B->getIDom() == A) return true;
|
|
|
|
if (A->getIDom() == B) return false;
|
|
|
|
// A can only dominate B if it is higher in the tree.
|
|
if (A->getLevel() >= B->getLevel()) return false;
|
|
|
|
// Compare the result of the tree walk and the dfs numbers, if expensive
|
|
// checks are enabled.
|
|
#ifdef EXPENSIVE_CHECKS
|
|
assert((!DFSInfoValid ||
|
|
(dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
|
|
"Tree walk disagrees with dfs numbers!");
|
|
#endif
|
|
|
|
if (DFSInfoValid)
|
|
return B->DominatedBy(A);
|
|
|
|
// If we end up with too many slow queries, just update the
|
|
// DFS numbers on the theory that we are going to keep querying.
|
|
SlowQueries++;
|
|
if (SlowQueries > 32) {
|
|
updateDFSNumbers();
|
|
return B->DominatedBy(A);
|
|
}
|
|
|
|
return dominatedBySlowTreeWalk(A, B);
|
|
}
|
|
|
|
bool dominates(const NodeT *A, const NodeT *B) const;
|
|
|
|
NodeT *getRoot() const {
|
|
assert(this->Roots.size() == 1 && "Should always have entry node!");
|
|
return this->Roots[0];
|
|
}
|
|
|
|
/// findNearestCommonDominator - Find nearest common dominator basic block
|
|
/// for basic block A and B. If there is no such block then return NULL.
|
|
NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) const {
|
|
assert(A->getParent() == B->getParent() &&
|
|
"Two blocks are not in same function");
|
|
|
|
// If either A or B is a entry block then it is nearest common dominator
|
|
// (for forward-dominators).
|
|
if (!this->isPostDominator()) {
|
|
NodeT &Entry = A->getParent()->front();
|
|
if (A == &Entry || B == &Entry)
|
|
return &Entry;
|
|
}
|
|
|
|
DomTreeNodeBase<NodeT> *NodeA = getNode(A);
|
|
DomTreeNodeBase<NodeT> *NodeB = getNode(B);
|
|
|
|
if (!NodeA || !NodeB) return nullptr;
|
|
|
|
// Use level information to go up the tree until the levels match. Then
|
|
// continue going up til we arrive at the same node.
|
|
while (NodeA && NodeA != NodeB) {
|
|
if (NodeA->getLevel() < NodeB->getLevel()) std::swap(NodeA, NodeB);
|
|
|
|
NodeA = NodeA->IDom;
|
|
}
|
|
|
|
return NodeA ? NodeA->getBlock() : nullptr;
|
|
}
|
|
|
|
const NodeT *findNearestCommonDominator(const NodeT *A,
|
|
const NodeT *B) const {
|
|
// Cast away the const qualifiers here. This is ok since
|
|
// const is re-introduced on the return type.
|
|
return findNearestCommonDominator(const_cast<NodeT *>(A),
|
|
const_cast<NodeT *>(B));
|
|
}
|
|
|
|
bool isVirtualRoot(const DomTreeNodeBase<NodeT> *A) const {
|
|
return isPostDominator() && !A->getBlock();
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// API to update (Post)DominatorTree information based on modifications to
|
|
// the CFG...
|
|
|
|
/// Inform the dominator tree about a CFG edge insertion and update the tree.
|
|
///
|
|
/// This function has to be called just before or just after making the update
|
|
/// on the actual CFG. There cannot be any other updates that the dominator
|
|
/// tree doesn't know about.
|
|
///
|
|
/// Note that for postdominators it automatically takes care of inserting
|
|
/// a reverse edge internally (so there's no need to swap the parameters).
|
|
///
|
|
void insertEdge(NodeT *From, NodeT *To) {
|
|
assert(From);
|
|
assert(To);
|
|
assert(From->getParent() == Parent);
|
|
assert(To->getParent() == Parent);
|
|
DomTreeBuilder::InsertEdge(*this, From, To);
|
|
}
|
|
|
|
/// Inform the dominator tree about a CFG edge deletion and update the tree.
|
|
///
|
|
/// This function has to be called just after making the update
|
|
/// on the actual CFG. There cannot be any other updates that the dominator
|
|
/// tree doesn't know about. The only exception is when the deletion that the
|
|
/// tree is informed about makes some (domominator) subtree unreachable -- in
|
|
/// this case, it is fine to perform deletions within this subtree.
|
|
///
|
|
/// Note that for postdominators it automatically takes care of deleting
|
|
/// a reverse edge internally (so there's no need to swap the parameters).
|
|
///
|
|
void deleteEdge(NodeT *From, NodeT *To) {
|
|
assert(From);
|
|
assert(To);
|
|
assert(From->getParent() == Parent);
|
|
assert(To->getParent() == Parent);
|
|
DomTreeBuilder::DeleteEdge(*this, From, To);
|
|
}
|
|
|
|
/// Add a new node to the dominator tree information.
|
|
///
|
|
/// This creates a new node as a child of DomBB dominator node, linking it
|
|
/// into the children list of the immediate dominator.
|
|
///
|
|
/// \param BB New node in CFG.
|
|
/// \param DomBB CFG node that is dominator for BB.
|
|
/// \returns New dominator tree node that represents new CFG node.
|
|
///
|
|
DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
|
|
assert(getNode(BB) == nullptr && "Block already in dominator tree!");
|
|
DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
|
|
assert(IDomNode && "Not immediate dominator specified for block!");
|
|
DFSInfoValid = false;
|
|
return (DomTreeNodes[BB] = IDomNode->addChild(
|
|
llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get();
|
|
}
|
|
|
|
/// Add a new node to the forward dominator tree and make it a new root.
|
|
///
|
|
/// \param BB New node in CFG.
|
|
/// \returns New dominator tree node that represents new CFG node.
|
|
///
|
|
DomTreeNodeBase<NodeT> *setNewRoot(NodeT *BB) {
|
|
assert(getNode(BB) == nullptr && "Block already in dominator tree!");
|
|
assert(!this->isPostDominator() &&
|
|
"Cannot change root of post-dominator tree");
|
|
DFSInfoValid = false;
|
|
DomTreeNodeBase<NodeT> *NewNode = (DomTreeNodes[BB] =
|
|
llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, nullptr)).get();
|
|
if (Roots.empty()) {
|
|
addRoot(BB);
|
|
} else {
|
|
assert(Roots.size() == 1);
|
|
NodeT *OldRoot = Roots.front();
|
|
auto &OldNode = DomTreeNodes[OldRoot];
|
|
OldNode = NewNode->addChild(std::move(DomTreeNodes[OldRoot]));
|
|
OldNode->IDom = NewNode;
|
|
OldNode->UpdateLevel();
|
|
Roots[0] = BB;
|
|
}
|
|
return RootNode = NewNode;
|
|
}
|
|
|
|
/// changeImmediateDominator - This method is used to update the dominator
|
|
/// tree information when a node's immediate dominator changes.
|
|
///
|
|
void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
|
|
DomTreeNodeBase<NodeT> *NewIDom) {
|
|
assert(N && NewIDom && "Cannot change null node pointers!");
|
|
DFSInfoValid = false;
|
|
N->setIDom(NewIDom);
|
|
}
|
|
|
|
void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
|
|
changeImmediateDominator(getNode(BB), getNode(NewBB));
|
|
}
|
|
|
|
/// eraseNode - Removes a node from the dominator tree. Block must not
|
|
/// dominate any other blocks. Removes node from its immediate dominator's
|
|
/// children list. Deletes dominator node associated with basic block BB.
|
|
void eraseNode(NodeT *BB) {
|
|
DomTreeNodeBase<NodeT> *Node = getNode(BB);
|
|
assert(Node && "Removing node that isn't in dominator tree.");
|
|
assert(Node->getChildren().empty() && "Node is not a leaf node.");
|
|
|
|
// Remove node from immediate dominator's children list.
|
|
DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
|
|
if (IDom) {
|
|
typename std::vector<DomTreeNodeBase<NodeT> *>::iterator I =
|
|
find(IDom->Children, Node);
|
|
assert(I != IDom->Children.end() &&
|
|
"Not in immediate dominator children set!");
|
|
// I am no longer your child...
|
|
IDom->Children.erase(I);
|
|
}
|
|
|
|
DomTreeNodes.erase(BB);
|
|
}
|
|
|
|
/// splitBlock - BB is split and now it has one successor. Update dominator
|
|
/// tree to reflect this change.
|
|
void splitBlock(NodeT *NewBB) {
|
|
if (IsPostDominator)
|
|
Split<Inverse<NodeT *>>(NewBB);
|
|
else
|
|
Split<NodeT *>(NewBB);
|
|
}
|
|
|
|
/// print - Convert to human readable form
|
|
///
|
|
void print(raw_ostream &O) const {
|
|
O << "=============================--------------------------------\n";
|
|
if (this->isPostDominator())
|
|
O << "Inorder PostDominator Tree: ";
|
|
else
|
|
O << "Inorder Dominator Tree: ";
|
|
if (!DFSInfoValid)
|
|
O << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
|
|
O << "\n";
|
|
|
|
// The postdom tree can have a null root if there are no returns.
|
|
if (getRootNode()) PrintDomTree<NodeT>(getRootNode(), O, 1);
|
|
}
|
|
|
|
public:
|
|
/// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
|
|
/// dominator tree in dfs order.
|
|
void updateDFSNumbers() const {
|
|
if (DFSInfoValid) {
|
|
SlowQueries = 0;
|
|
return;
|
|
}
|
|
|
|
unsigned DFSNum = 0;
|
|
|
|
SmallVector<std::pair<const DomTreeNodeBase<NodeT> *,
|
|
typename DomTreeNodeBase<NodeT>::const_iterator>,
|
|
32> WorkStack;
|
|
|
|
const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
|
|
|
|
if (!ThisRoot)
|
|
return;
|
|
|
|
// Even in the case of multiple exits that form the post dominator root
|
|
// nodes, do not iterate over all exits, but start from the virtual root
|
|
// node. Otherwise bbs, that are not post dominated by any exit but by the
|
|
// virtual root node, will never be assigned a DFS number.
|
|
WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
|
|
ThisRoot->DFSNumIn = DFSNum++;
|
|
|
|
while (!WorkStack.empty()) {
|
|
const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
|
|
typename DomTreeNodeBase<NodeT>::const_iterator ChildIt =
|
|
WorkStack.back().second;
|
|
|
|
// If we visited all of the children of this node, "recurse" back up the
|
|
// stack setting the DFOutNum.
|
|
if (ChildIt == Node->end()) {
|
|
Node->DFSNumOut = DFSNum++;
|
|
WorkStack.pop_back();
|
|
} else {
|
|
// Otherwise, recursively visit this child.
|
|
const DomTreeNodeBase<NodeT> *Child = *ChildIt;
|
|
++WorkStack.back().second;
|
|
|
|
WorkStack.push_back(std::make_pair(Child, Child->begin()));
|
|
Child->DFSNumIn = DFSNum++;
|
|
}
|
|
}
|
|
|
|
SlowQueries = 0;
|
|
DFSInfoValid = true;
|
|
}
|
|
|
|
/// recalculate - compute a dominator tree for the given function
|
|
template <class FT> void recalculate(FT &F) {
|
|
using TraitsTy = GraphTraits<FT *>;
|
|
reset();
|
|
Parent = &F;
|
|
|
|
if (!IsPostDominator) {
|
|
// Initialize root
|
|
NodeT *entry = TraitsTy::getEntryNode(&F);
|
|
addRoot(entry);
|
|
} else {
|
|
// Initialize the roots list
|
|
for (auto *Node : nodes(&F))
|
|
if (TraitsTy::child_begin(Node) == TraitsTy::child_end(Node))
|
|
addRoot(Node);
|
|
}
|
|
|
|
DomTreeBuilder::Calculate(*this, F);
|
|
}
|
|
|
|
/// verify - check parent and sibling property
|
|
bool verify() const { return DomTreeBuilder::Verify(*this); }
|
|
|
|
protected:
|
|
void addRoot(NodeT *BB) { this->Roots.push_back(BB); }
|
|
|
|
void reset() {
|
|
DomTreeNodes.clear();
|
|
Roots.clear();
|
|
RootNode = nullptr;
|
|
Parent = nullptr;
|
|
DFSInfoValid = false;
|
|
SlowQueries = 0;
|
|
}
|
|
|
|
// NewBB is split and now it has one successor. Update dominator tree to
|
|
// reflect this change.
|
|
template <class N>
|
|
void Split(typename GraphTraits<N>::NodeRef NewBB) {
|
|
using GraphT = GraphTraits<N>;
|
|
using NodeRef = typename GraphT::NodeRef;
|
|
assert(std::distance(GraphT::child_begin(NewBB),
|
|
GraphT::child_end(NewBB)) == 1 &&
|
|
"NewBB should have a single successor!");
|
|
NodeRef NewBBSucc = *GraphT::child_begin(NewBB);
|
|
|
|
std::vector<NodeRef> PredBlocks;
|
|
for (const auto &Pred : children<Inverse<N>>(NewBB))
|
|
PredBlocks.push_back(Pred);
|
|
|
|
assert(!PredBlocks.empty() && "No predblocks?");
|
|
|
|
bool NewBBDominatesNewBBSucc = true;
|
|
for (const auto &Pred : children<Inverse<N>>(NewBBSucc)) {
|
|
if (Pred != NewBB && !dominates(NewBBSucc, Pred) &&
|
|
isReachableFromEntry(Pred)) {
|
|
NewBBDominatesNewBBSucc = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Find NewBB's immediate dominator and create new dominator tree node for
|
|
// NewBB.
|
|
NodeT *NewBBIDom = nullptr;
|
|
unsigned i = 0;
|
|
for (i = 0; i < PredBlocks.size(); ++i)
|
|
if (isReachableFromEntry(PredBlocks[i])) {
|
|
NewBBIDom = PredBlocks[i];
|
|
break;
|
|
}
|
|
|
|
// It's possible that none of the predecessors of NewBB are reachable;
|
|
// in that case, NewBB itself is unreachable, so nothing needs to be
|
|
// changed.
|
|
if (!NewBBIDom) return;
|
|
|
|
for (i = i + 1; i < PredBlocks.size(); ++i) {
|
|
if (isReachableFromEntry(PredBlocks[i]))
|
|
NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
|
|
}
|
|
|
|
// Create the new dominator tree node... and set the idom of NewBB.
|
|
DomTreeNodeBase<NodeT> *NewBBNode = addNewBlock(NewBB, NewBBIDom);
|
|
|
|
// If NewBB strictly dominates other blocks, then it is now the immediate
|
|
// dominator of NewBBSucc. Update the dominator tree as appropriate.
|
|
if (NewBBDominatesNewBBSucc) {
|
|
DomTreeNodeBase<NodeT> *NewBBSuccNode = getNode(NewBBSucc);
|
|
changeImmediateDominator(NewBBSuccNode, NewBBNode);
|
|
}
|
|
}
|
|
|
|
private:
|
|
bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
|
|
const DomTreeNodeBase<NodeT> *B) const {
|
|
assert(A != B);
|
|
assert(isReachableFromEntry(B));
|
|
assert(isReachableFromEntry(A));
|
|
|
|
const DomTreeNodeBase<NodeT> *IDom;
|
|
while ((IDom = B->getIDom()) != nullptr && IDom != A && IDom != B)
|
|
B = IDom; // Walk up the tree
|
|
return IDom != nullptr;
|
|
}
|
|
|
|
/// \brief Wipe this tree's state without releasing any resources.
|
|
///
|
|
/// This is essentially a post-move helper only. It leaves the object in an
|
|
/// assignable and destroyable state, but otherwise invalid.
|
|
void wipe() {
|
|
DomTreeNodes.clear();
|
|
RootNode = nullptr;
|
|
Parent = nullptr;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
using DomTreeBase = DominatorTreeBase<T, false>;
|
|
|
|
template <typename T>
|
|
using PostDomTreeBase = DominatorTreeBase<T, true>;
|
|
|
|
// These two functions are declared out of line as a workaround for building
|
|
// with old (< r147295) versions of clang because of pr11642.
|
|
template <typename NodeT, bool IsPostDom>
|
|
bool DominatorTreeBase<NodeT, IsPostDom>::dominates(const NodeT *A,
|
|
const NodeT *B) const {
|
|
if (A == B)
|
|
return true;
|
|
|
|
// Cast away the const qualifiers here. This is ok since
|
|
// this function doesn't actually return the values returned
|
|
// from getNode.
|
|
return dominates(getNode(const_cast<NodeT *>(A)),
|
|
getNode(const_cast<NodeT *>(B)));
|
|
}
|
|
template <typename NodeT, bool IsPostDom>
|
|
bool DominatorTreeBase<NodeT, IsPostDom>::properlyDominates(
|
|
const NodeT *A, const NodeT *B) const {
|
|
if (A == B)
|
|
return false;
|
|
|
|
// Cast away the const qualifiers here. This is ok since
|
|
// this function doesn't actually return the values returned
|
|
// from getNode.
|
|
return dominates(getNode(const_cast<NodeT *>(A)),
|
|
getNode(const_cast<NodeT *>(B)));
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_SUPPORT_GENERICDOMTREE_H
|