Files
archived-llvm/include/llvm/Transforms/Utils/MemorySSA.h
Justin Bogner aac07fb758 Annotate our undefined behaviour to sneak it past the sanitizers
We have known UB in some ilists where we static cast half nodes to
(larger) derived types and use the address. See llvm.org/PR26753.

This needs to be fixed, but in the meantime it'd be nice if running
ubsan didn't complain. This adds annotations in the two places where
ubsan complains while running check-all of a sanitized clang build.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@262683 91177308-0d34-0410-b5e6-96231b3b80d8
2016-03-04 01:52:47 +00:00

946 lines
34 KiB
C++

//===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// \file
// \brief This file exposes an interface to building/using memory SSA to
// walk memory instructions using a use/def graph.
//
// Memory SSA class builds an SSA form that links together memory access
// instructions such loads, stores, atomics, and calls. Additionally, it does a
// trivial form of "heap versioning" Every time the memory state changes in the
// program, we generate a new heap version. It generates MemoryDef/Uses/Phis
// that are overlayed on top of the existing instructions.
//
// As a trivial example,
// define i32 @main() #0 {
// entry:
// %call = call noalias i8* @_Znwm(i64 4) #2
// %0 = bitcast i8* %call to i32*
// %call1 = call noalias i8* @_Znwm(i64 4) #2
// %1 = bitcast i8* %call1 to i32*
// store i32 5, i32* %0, align 4
// store i32 7, i32* %1, align 4
// %2 = load i32* %0, align 4
// %3 = load i32* %1, align 4
// %add = add nsw i32 %2, %3
// ret i32 %add
// }
//
// Will become
// define i32 @main() #0 {
// entry:
// ; 1 = MemoryDef(0)
// %call = call noalias i8* @_Znwm(i64 4) #3
// %2 = bitcast i8* %call to i32*
// ; 2 = MemoryDef(1)
// %call1 = call noalias i8* @_Znwm(i64 4) #3
// %4 = bitcast i8* %call1 to i32*
// ; 3 = MemoryDef(2)
// store i32 5, i32* %2, align 4
// ; 4 = MemoryDef(3)
// store i32 7, i32* %4, align 4
// ; MemoryUse(4)
// %7 = load i32* %2, align 4
// ; MemoryUse(3)
// %8 = load i32* %4, align 4
// %add = add nsw i32 %7, %8
// ret i32 %add
// }
//
// Given this form, all the stores that could ever effect the load at %8 can be
// gotten by using the MemoryUse associated with it, and walking from use to def
// until you hit the top of the function.
//
// Each def also has a list of users associated with it, so you can walk from
// both def to users, and users to defs. Note that we disambiguate MemoryUses,
// but not the RHS of MemoryDefs. You can see this above at %8, which would
// otherwise be a MemoryUse(4). Being disambiguated means that for a given
// store, all the MemoryUses on its use lists are may-aliases of that store (but
// the MemoryDefs on its use list may not be).
//
// MemoryDefs are not disambiguated because it would require multiple reaching
// definitions, which would require multiple phis, and multiple memoryaccesses
// per instruction.
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_UTILS_MEMORYSSA_H
#define LLVM_TRANSFORMS_UTILS_MEMORYSSA_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
namespace llvm {
class BasicBlock;
class DominatorTree;
class Function;
class MemoryAccess;
template <class T> class memoryaccess_def_iterator_base;
using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>;
using const_memoryaccess_def_iterator =
memoryaccess_def_iterator_base<const MemoryAccess>;
// \brief The base for all memory accesses. All memory accesses in a block are
// linked together using an intrusive list.
class MemoryAccess : public User, public ilist_node<MemoryAccess> {
void *operator new(size_t, unsigned) = delete;
void *operator new(size_t) = delete;
public:
// Methods for support type inquiry through isa, cast, and
// dyn_cast
static inline bool classof(const MemoryAccess *) { return true; }
static inline bool classof(const Value *V) {
unsigned ID = V->getValueID();
return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal;
}
virtual ~MemoryAccess();
BasicBlock *getBlock() const { return Block; }
virtual void print(raw_ostream &OS) const = 0;
virtual void dump() const;
/// \brief The user iterators for a memory access
typedef user_iterator iterator;
typedef const_user_iterator const_iterator;
/// \brief This iterator walks over all of the defs in a given
/// MemoryAccess. For MemoryPhi nodes, this walks arguments. For
/// MemoryUse/MemoryDef, this walks the defining access.
memoryaccess_def_iterator defs_begin();
const_memoryaccess_def_iterator defs_begin() const;
memoryaccess_def_iterator defs_end();
const_memoryaccess_def_iterator defs_end() const;
protected:
friend class MemorySSA;
friend class MemoryUseOrDef;
friend class MemoryUse;
friend class MemoryDef;
friend class MemoryPhi;
/// \brief Used internally to give IDs to MemoryAccesses for printing
virtual unsigned getID() const = 0;
MemoryAccess(LLVMContext &C, unsigned Vty, BasicBlock *BB,
unsigned NumOperands)
: User(Type::getVoidTy(C), Vty, nullptr, NumOperands), Block(BB) {}
private:
MemoryAccess(const MemoryAccess &);
void operator=(const MemoryAccess &);
BasicBlock *Block;
};
template <>
struct ilist_traits<MemoryAccess> : public ilist_default_traits<MemoryAccess> {
/// See details of the instruction class for why this trick works
// FIXME: This downcast is UB. See llvm.org/PR26753.
LLVM_NO_SANITIZE("object-size")
MemoryAccess *createSentinel() const {
return static_cast<MemoryAccess *>(&Sentinel);
}
static void destroySentinel(MemoryAccess *) {}
MemoryAccess *provideInitialHead() const { return createSentinel(); }
MemoryAccess *ensureHead(MemoryAccess *) const { return createSentinel(); }
static void noteHead(MemoryAccess *, MemoryAccess *) {}
private:
mutable ilist_half_node<MemoryAccess> Sentinel;
};
inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) {
MA.print(OS);
return OS;
}
/// \brief Class that has the common methods + fields of memory uses/defs. It's
/// a little awkward to have, but there are many cases where we want either a
/// use or def, and there are many cases where uses are needed (defs aren't
/// acceptable), and vice-versa.
///
/// This class should never be instantiated directly; make a MemoryUse or
/// MemoryDef instead.
class MemoryUseOrDef : public MemoryAccess {
void *operator new(size_t, unsigned) = delete;
void *operator new(size_t) = delete;
public:
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
/// \brief Get the instruction that this MemoryUse represents.
Instruction *getMemoryInst() const { return MemoryInst; }
/// \brief Get the access that produces the memory state used by this Use.
MemoryAccess *getDefiningAccess() const { return getOperand(0); }
static inline bool classof(const MemoryUseOrDef *) { return true; }
static inline bool classof(const Value *MA) {
return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal;
}
protected:
friend class MemorySSA;
MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty,
Instruction *MI, BasicBlock *BB)
: MemoryAccess(C, Vty, BB, 1), MemoryInst(MI) {
setDefiningAccess(DMA);
}
void setDefiningAccess(MemoryAccess *DMA) { setOperand(0, DMA); }
private:
Instruction *MemoryInst;
};
template <>
struct OperandTraits<MemoryUseOrDef>
: public FixedNumOperandTraits<MemoryUseOrDef, 1> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess)
/// \brief Represents read-only accesses to memory
///
/// In particular, the set of Instructions that will be represented by
/// MemoryUse's is exactly the set of Instructions for which
/// AliasAnalysis::getModRefInfo returns "Ref".
class MemoryUse final : public MemoryUseOrDef {
void *operator new(size_t, unsigned) = delete;
public:
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
// allocate space for exactly one operand
void *operator new(size_t s) { return User::operator new(s, 1); }
MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB)
: MemoryUseOrDef(C, DMA, MemoryUseVal, MI, BB) {}
static inline bool classof(const MemoryUse *) { return true; }
static inline bool classof(const Value *MA) {
return MA->getValueID() == MemoryUseVal;
}
void print(raw_ostream &OS) const override;
protected:
friend class MemorySSA;
unsigned getID() const override {
llvm_unreachable("MemoryUses do not have IDs");
}
};
template <>
struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess)
/// \brief Represents a read-write access to memory, whether it is a must-alias,
/// or a may-alias.
///
/// In particular, the set of Instructions that will be represented by
/// MemoryDef's is exactly the set of Instructions for which
/// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef".
/// Note that, in order to provide def-def chains, all defs also have a use
/// associated with them. This use points to the nearest reaching
/// MemoryDef/MemoryPhi.
class MemoryDef final : public MemoryUseOrDef {
void *operator new(size_t, unsigned) = delete;
public:
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
// allocate space for exactly one operand
void *operator new(size_t s) { return User::operator new(s, 1); }
MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB,
unsigned Ver)
: MemoryUseOrDef(C, DMA, MemoryDefVal, MI, BB), ID(Ver) {}
static inline bool classof(const MemoryDef *) { return true; }
static inline bool classof(const Value *MA) {
return MA->getValueID() == MemoryDefVal;
}
void print(raw_ostream &OS) const override;
protected:
friend class MemorySSA;
// For debugging only. This gets used to give memory accesses pretty numbers
// when printing them out
unsigned getID() const override { return ID; }
private:
const unsigned ID;
};
template <>
struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 1> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess)
/// \brief Represents phi nodes for memory accesses.
///
/// These have the same semantic as regular phi nodes, with the exception that
/// only one phi will ever exist in a given basic block.
/// Guaranteeing one phi per block means guaranteeing there is only ever one
/// valid reaching MemoryDef/MemoryPHI along each path to the phi node.
/// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or
/// a MemoryPhi's operands.
/// That is, given
/// if (a) {
/// store %a
/// store %b
/// }
/// it *must* be transformed into
/// if (a) {
/// 1 = MemoryDef(liveOnEntry)
/// store %a
/// 2 = MemoryDef(1)
/// store %b
/// }
/// and *not*
/// if (a) {
/// 1 = MemoryDef(liveOnEntry)
/// store %a
/// 2 = MemoryDef(liveOnEntry)
/// store %b
/// }
/// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the
/// end of the branch, and if there are not two phi nodes, one will be
/// disconnected completely from the SSA graph below that point.
/// Because MemoryUse's do not generate new definitions, they do not have this
/// issue.
class MemoryPhi final : public MemoryAccess {
void *operator new(size_t, unsigned) = delete;
// allocate space for exactly zero operands
void *operator new(size_t s) { return User::operator new(s); }
public:
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0)
: MemoryAccess(C, MemoryPhiVal, BB, 0), ID(Ver), ReservedSpace(NumPreds) {
allocHungoffUses(ReservedSpace);
}
// Block iterator interface. This provides access to the list of incoming
// basic blocks, which parallels the list of incoming values.
typedef BasicBlock **block_iterator;
typedef BasicBlock *const *const_block_iterator;
block_iterator block_begin() {
auto *Ref = reinterpret_cast<Use::UserRef *>(op_begin() + ReservedSpace);
return reinterpret_cast<block_iterator>(Ref + 1);
}
const_block_iterator block_begin() const {
const auto *Ref =
reinterpret_cast<const Use::UserRef *>(op_begin() + ReservedSpace);
return reinterpret_cast<const_block_iterator>(Ref + 1);
}
block_iterator block_end() { return block_begin() + getNumOperands(); }
const_block_iterator block_end() const {
return block_begin() + getNumOperands();
}
op_range incoming_values() { return operands(); }
const_op_range incoming_values() const { return operands(); }
/// \brief Return the number of incoming edges
unsigned getNumIncomingValues() const { return getNumOperands(); }
/// \brief Return incoming value number x
MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); }
void setIncomingValue(unsigned I, MemoryAccess *V) {
assert(V && "PHI node got a null value!");
assert(getType() == V->getType() &&
"All operands to PHI node must be the same type as the PHI node!");
setOperand(I, V);
}
static unsigned getOperandNumForIncomingValue(unsigned I) { return I; }
static unsigned getIncomingValueNumForOperand(unsigned I) { return I; }
/// \brief Return incoming basic block number @p i.
BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; }
/// \brief Return incoming basic block corresponding
/// to an operand of the PHI.
BasicBlock *getIncomingBlock(const Use &U) const {
assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
return getIncomingBlock(unsigned(&U - op_begin()));
}
/// \brief Return incoming basic block corresponding
/// to value use iterator.
BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const {
return getIncomingBlock(I.getUse());
}
void setIncomingBlock(unsigned I, BasicBlock *BB) {
assert(BB && "PHI node got a null basic block!");
block_begin()[I] = BB;
}
/// \brief Add an incoming value to the end of the PHI list
void addIncoming(MemoryAccess *V, BasicBlock *BB) {
if (getNumOperands() == ReservedSpace)
growOperands(); // Get more space!
// Initialize some new operands.
setNumHungOffUseOperands(getNumOperands() + 1);
setIncomingValue(getNumOperands() - 1, V);
setIncomingBlock(getNumOperands() - 1, BB);
}
/// \brief Return the first index of the specified basic
/// block in the value list for this PHI. Returns -1 if no instance.
int getBasicBlockIndex(const BasicBlock *BB) const {
for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
if (block_begin()[I] == BB)
return I;
return -1;
}
Value *getIncomingValueForBlock(const BasicBlock *BB) const {
int Idx = getBasicBlockIndex(BB);
assert(Idx >= 0 && "Invalid basic block argument!");
return getIncomingValue(Idx);
}
static inline bool classof(const MemoryPhi *) { return true; }
static inline bool classof(const Value *V) {
return V->getValueID() == MemoryPhiVal;
}
void print(raw_ostream &OS) const override;
protected:
friend class MemorySSA;
/// \brief this is more complicated than the generic
/// User::allocHungoffUses, because we have to allocate Uses for the incoming
/// values and pointers to the incoming blocks, all in one allocation.
void allocHungoffUses(unsigned N) {
User::allocHungoffUses(N, /* IsPhi */ true);
}
/// For debugging only. This gets used to give memory accesses pretty numbers
/// when printing them out
virtual unsigned getID() const final { return ID; }
private:
// For debugging only
const unsigned ID;
unsigned ReservedSpace;
/// \brief This grows the operand list in response to a push_back style of
/// operation. This grows the number of ops by 1.5 times.
void growOperands() {
unsigned E = getNumOperands();
// 2 op PHI nodes are VERY common, so reserve at least enough for that.
ReservedSpace = std::max(E + E / 2, 2u);
growHungoffUses(ReservedSpace, /* IsPhi */ true);
}
};
template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess)
class MemorySSAWalker;
/// \brief Encapsulates MemorySSA, including all data associated with memory
/// accesses.
class MemorySSA {
public:
MemorySSA(Function &);
~MemorySSA();
/// \brief Build Memory SSA, and return the walker we used during building,
/// for later reuse. If MemorySSA is already built, just return the walker.
MemorySSAWalker *buildMemorySSA(AliasAnalysis *, DominatorTree *);
/// \brief Returns false if you need to call buildMemorySSA.
bool isFinishedBuilding() const { return Walker; }
/// \brief Given a memory Mod/Ref'ing instruction, get the MemorySSA
/// access associated with it. If passed a basic block gets the memory phi
/// node that exists for that block, if there is one. Otherwise, this will get
/// a MemoryUseOrDef.
MemoryAccess *getMemoryAccess(const Value *) const;
MemoryPhi *getMemoryAccess(const BasicBlock *BB) const;
void dump() const;
void print(raw_ostream &) const;
/// \brief Return true if \p MA represents the live on entry value
///
/// Loads and stores from pointer arguments and other global values may be
/// defined by memory operations that do not occur in the current function, so
/// they may be live on entry to the function. MemorySSA represents such
/// memory state by the live on entry definition, which is guaranteed to occur
/// before any other memory access in the function.
inline bool isLiveOnEntryDef(const MemoryAccess *MA) const {
return MA == LiveOnEntryDef.get();
}
inline MemoryAccess *getLiveOnEntryDef() const {
return LiveOnEntryDef.get();
}
using AccessListType = iplist<MemoryAccess>;
/// \brief Return the list of MemoryAccess's for a given basic block.
///
/// This list is not modifiable by the user.
const AccessListType *getBlockAccesses(const BasicBlock *BB) const {
auto It = PerBlockAccesses.find(BB);
return It == PerBlockAccesses.end() ? nullptr : It->second.get();
}
/// \brief Remove a MemoryAccess from MemorySSA, including updating all
/// definitions and uses.
/// This should be called when a memory instruction that has a MemoryAccess
/// associated with it is erased from the program. For example, if a store or
/// load is simply erased (not replaced), removeMemoryAccess should be called
/// on the MemoryAccess for that store/load.
void removeMemoryAccess(MemoryAccess *);
enum InsertionPlace { Beginning, End };
/// \brief Given two memory accesses in the same basic block, determine
/// whether MemoryAccess \p A dominates MemoryAccess \p B.
bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const;
/// \brief Verify that MemorySSA is self consistent (IE definitions dominate
/// all uses, uses appear in the right places). This is used by unit tests.
void verifyMemorySSA() const;
protected:
// Used by Memory SSA annotater, dumpers, and wrapper pass
friend class MemorySSAAnnotatedWriter;
friend class MemorySSAPrinterPass;
void verifyDefUses(Function &F) const;
void verifyDomination(Function &F) const;
private:
void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const;
using AccessMap =
DenseMap<const BasicBlock *, std::unique_ptr<AccessListType>>;
void
determineInsertionPoint(const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks);
void computeDomLevels(DenseMap<DomTreeNode *, unsigned> &DomLevels);
void markUnreachableAsLiveOnEntry(BasicBlock *BB);
bool dominatesUse(const MemoryAccess *, const MemoryAccess *) const;
MemoryAccess *createNewAccess(Instruction *, bool ignoreNonMemory = false);
MemoryAccess *findDominatingDef(BasicBlock *, enum InsertionPlace);
void removeFromLookups(MemoryAccess *);
MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *);
void renamePass(DomTreeNode *, MemoryAccess *IncomingVal,
SmallPtrSet<BasicBlock *, 16> &Visited);
AccessListType *getOrCreateAccessList(BasicBlock *);
AliasAnalysis *AA;
DominatorTree *DT;
Function &F;
// Memory SSA mappings
DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess;
AccessMap PerBlockAccesses;
std::unique_ptr<MemoryAccess> LiveOnEntryDef;
// Memory SSA building info
MemorySSAWalker *Walker;
unsigned NextID;
};
// This pass does eager building and then printing of MemorySSA. It is used by
// the tests to be able to build, dump, and verify Memory SSA.
class MemorySSAPrinterPass : public FunctionPass {
public:
MemorySSAPrinterPass();
static char ID;
bool doInitialization(Module &M) override;
bool runOnFunction(Function &) override;
void releaseMemory() override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
void print(raw_ostream &OS, const Module *M) const override;
static void registerOptions();
MemorySSA &getMSSA() { return *MSSA; }
private:
bool VerifyMemorySSA;
std::unique_ptr<MemorySSA> MSSA;
// FIXME(gbiv): It seems that MemorySSA doesn't own the walker it returns?
std::unique_ptr<MemorySSAWalker> Walker;
Function *F;
};
class MemorySSALazy : public FunctionPass {
public:
MemorySSALazy();
static char ID;
bool runOnFunction(Function &) override;
void releaseMemory() override;
MemorySSA &getMSSA() {
assert(MSSA);
return *MSSA;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
private:
std::unique_ptr<MemorySSA> MSSA;
};
/// \brief This is the generic walker interface for walkers of MemorySSA.
/// Walkers are used to be able to further disambiguate the def-use chains
/// MemorySSA gives you, or otherwise produce better info than MemorySSA gives
/// you.
/// In particular, while the def-use chains provide basic information, and are
/// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a
/// MemoryUse as AliasAnalysis considers it, a user mant want better or other
/// information. In particular, they may want to use SCEV info to further
/// disambiguate memory accesses, or they may want the nearest dominating
/// may-aliasing MemoryDef for a call or a store. This API enables a
/// standardized interface to getting and using that info.
class MemorySSAWalker {
public:
MemorySSAWalker(MemorySSA *);
virtual ~MemorySSAWalker() {}
using MemoryAccessSet = SmallVector<MemoryAccess *, 8>;
/// \brief Given a memory Mod/Ref/ModRef'ing instruction, calling this
/// will give you the nearest dominating MemoryAccess that Mod's the location
/// the instruction accesses (by skipping any def which AA can prove does not
/// alias the location(s) accessed by the instruction given).
///
/// Note that this will return a single access, and it must dominate the
/// Instruction, so if an operand of a MemoryPhi node Mod's the instruction,
/// this will return the MemoryPhi, not the operand. This means that
/// given:
/// if (a) {
/// 1 = MemoryDef(liveOnEntry)
/// store %a
/// } else {
/// 2 = MemoryDef(liveOnEntry)
/// store %b
/// }
/// 3 = MemoryPhi(2, 1)
/// MemoryUse(3)
/// load %a
///
/// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef
/// in the if (a) branch.
virtual MemoryAccess *getClobberingMemoryAccess(const Instruction *) = 0;
/// \brief Given a potentially clobbering memory access and a new location,
/// calling this will give you the nearest dominating clobbering MemoryAccess
/// (by skipping non-aliasing def links).
///
/// This version of the function is mainly used to disambiguate phi translated
/// pointers, where the value of a pointer may have changed from the initial
/// memory access. Note that this expects to be handed either a MemoryUse,
/// or an already potentially clobbering access. Unlike the above API, if
/// given a MemoryDef that clobbers the pointer as the starting access, it
/// will return that MemoryDef, whereas the above would return the clobber
/// starting from the use side of the memory def.
virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
MemoryLocation &) = 0;
/// \brief Given a memory access, invalidate anything this walker knows about
/// that access.
/// This API is used by walkers that store information to perform basic cache
/// invalidation. This will be called by MemorySSA at appropriate times for
/// the walker it uses or returns.
virtual void invalidateInfo(MemoryAccess *) {}
protected:
MemorySSA *MSSA;
};
/// \brief A MemorySSAWalker that does no alias queries, or anything else. It
/// simply returns the links as they were constructed by the builder.
class DoNothingMemorySSAWalker final : public MemorySSAWalker {
public:
MemoryAccess *getClobberingMemoryAccess(const Instruction *) override;
MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
MemoryLocation &) override;
};
using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>;
using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>;
/// \brief A MemorySSAWalker that does AA walks and caching of lookups to
/// disambiguate accesses.
///
/// FIXME: The current implementation of this can take quadratic space in rare
/// cases. This can be fixed, but it is something to note until it is fixed.
///
/// In order to trigger this behavior, you need to store to N distinct locations
/// (that AA can prove don't alias), perform M stores to other memory
/// locations that AA can prove don't alias any of the initial N locations, and
/// then load from all of the N locations. In this case, we insert M cache
/// entries for each of the N loads.
///
/// For example:
/// define i32 @foo() {
/// %a = alloca i32, align 4
/// %b = alloca i32, align 4
/// store i32 0, i32* %a, align 4
/// store i32 0, i32* %b, align 4
///
/// ; Insert M stores to other memory that doesn't alias %a or %b here
///
/// %c = load i32, i32* %a, align 4 ; Caches M entries in
/// ; CachedUpwardsClobberingAccess for the
/// ; MemoryLocation %a
/// %d = load i32, i32* %b, align 4 ; Caches M entries in
/// ; CachedUpwardsClobberingAccess for the
/// ; MemoryLocation %b
///
/// ; For completeness' sake, loading %a or %b again would not cache *another*
/// ; M entries.
/// %r = add i32 %c, %d
/// ret i32 %r
/// }
class CachingMemorySSAWalker final : public MemorySSAWalker {
public:
CachingMemorySSAWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
virtual ~CachingMemorySSAWalker();
MemoryAccess *getClobberingMemoryAccess(const Instruction *) override;
MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
MemoryLocation &) override;
void invalidateInfo(MemoryAccess *) override;
protected:
struct UpwardsMemoryQuery;
MemoryAccess *doCacheLookup(const MemoryAccess *, const UpwardsMemoryQuery &,
const MemoryLocation &);
void doCacheInsert(const MemoryAccess *, MemoryAccess *,
const UpwardsMemoryQuery &, const MemoryLocation &);
void doCacheRemove(const MemoryAccess *, const UpwardsMemoryQuery &,
const MemoryLocation &);
private:
MemoryAccessPair UpwardsDFSWalk(MemoryAccess *, const MemoryLocation &,
UpwardsMemoryQuery &, bool);
MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
bool instructionClobbersQuery(const MemoryDef *, UpwardsMemoryQuery &,
const MemoryLocation &Loc) const;
SmallDenseMap<ConstMemoryAccessPair, MemoryAccess *>
CachedUpwardsClobberingAccess;
DenseMap<const MemoryAccess *, MemoryAccess *> CachedUpwardsClobberingCall;
AliasAnalysis *AA;
DominatorTree *DT;
};
/// \brief Iterator base class used to implement const and non-const iterators
/// over the defining accesses of a MemoryAccess.
template <class T>
class memoryaccess_def_iterator_base
: public iterator_facade_base<memoryaccess_def_iterator_base<T>,
std::forward_iterator_tag, T, ptrdiff_t, T *,
T *> {
using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base;
public:
memoryaccess_def_iterator_base(T *Start) : Access(Start), ArgNo(0) {}
memoryaccess_def_iterator_base() : Access(nullptr), ArgNo(0) {}
bool operator==(const memoryaccess_def_iterator_base &Other) const {
return Access == Other.Access && (!Access || ArgNo == Other.ArgNo);
}
// This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the
// block from the operand in constant time (In a PHINode, the uselist has
// both, so it's just subtraction). We provide it as part of the
// iterator to avoid callers having to linear walk to get the block.
// If the operation becomes constant time on MemoryPHI's, this bit of
// abstraction breaking should be removed.
BasicBlock *getPhiArgBlock() const {
MemoryPhi *MP = dyn_cast<MemoryPhi>(Access);
assert(MP && "Tried to get phi arg block when not iterating over a PHI");
return MP->getIncomingBlock(ArgNo);
}
typename BaseT::iterator::pointer operator*() const {
assert(Access && "Tried to access past the end of our iterator");
// Go to the first argument for phis, and the defining access for everything
// else.
if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access))
return MP->getIncomingValue(ArgNo);
return cast<MemoryUseOrDef>(Access)->getDefiningAccess();
}
using BaseT::operator++;
memoryaccess_def_iterator &operator++() {
assert(Access && "Hit end of iterator");
if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) {
if (++ArgNo >= MP->getNumIncomingValues()) {
ArgNo = 0;
Access = nullptr;
}
} else {
Access = nullptr;
}
return *this;
}
private:
T *Access;
unsigned ArgNo;
};
inline memoryaccess_def_iterator MemoryAccess::defs_begin() {
return memoryaccess_def_iterator(this);
}
inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const {
return const_memoryaccess_def_iterator(this);
}
inline memoryaccess_def_iterator MemoryAccess::defs_end() {
return memoryaccess_def_iterator();
}
inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const {
return const_memoryaccess_def_iterator();
}
/// \brief GraphTraits for a MemoryAccess, which walks defs in the normal case,
/// and uses in the inverse case.
template <> struct GraphTraits<MemoryAccess *> {
using NodeType = MemoryAccess;
using ChildIteratorType = memoryaccess_def_iterator;
static NodeType *getEntryNode(NodeType *N) { return N; }
static inline ChildIteratorType child_begin(NodeType *N) {
return N->defs_begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->defs_end();
}
};
template <> struct GraphTraits<Inverse<MemoryAccess *>> {
using NodeType = MemoryAccess;
using ChildIteratorType = MemoryAccess::iterator;
static NodeType *getEntryNode(NodeType *N) { return N; }
static inline ChildIteratorType child_begin(NodeType *N) {
return N->user_begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->user_end();
}
};
/// \brief Provide an iterator that walks defs, giving both the memory access,
/// and the current pointer location, updating the pointer location as it
/// changes due to phi node translation.
///
/// This iterator, while somewhat specialized, is what most clients actually
/// want when walking upwards through MemorySSA def chains. It takes a pair of
/// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the
/// memory location through phi nodes for the user.
class upward_defs_iterator
: public iterator_facade_base<upward_defs_iterator,
std::forward_iterator_tag,
const MemoryAccessPair> {
using BaseT = upward_defs_iterator::iterator_facade_base;
public:
upward_defs_iterator(const MemoryAccessPair &Info)
: DefIterator(Info.first), Location(Info.second),
OriginalAccess(Info.first) {
CurrentPair.first = nullptr;
WalkingPhi = Info.first && isa<MemoryPhi>(Info.first);
fillInCurrentPair();
}
upward_defs_iterator()
: DefIterator(), Location(), OriginalAccess(), WalkingPhi(false) {
CurrentPair.first = nullptr;
}
bool operator==(const upward_defs_iterator &Other) const {
return DefIterator == Other.DefIterator;
}
BaseT::iterator::reference operator*() const {
assert(DefIterator != OriginalAccess->defs_end() &&
"Tried to access past the end of our iterator");
return CurrentPair;
}
using BaseT::operator++;
upward_defs_iterator &operator++() {
assert(DefIterator != OriginalAccess->defs_end() &&
"Tried to access past the end of the iterator");
++DefIterator;
if (DefIterator != OriginalAccess->defs_end())
fillInCurrentPair();
return *this;
}
BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); }
private:
void fillInCurrentPair() {
CurrentPair.first = *DefIterator;
if (WalkingPhi && Location.Ptr) {
PHITransAddr Translator(
const_cast<Value *>(Location.Ptr),
OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr);
if (!Translator.PHITranslateValue(OriginalAccess->getBlock(),
DefIterator.getPhiArgBlock(), nullptr,
false))
if (Translator.getAddr() != Location.Ptr) {
CurrentPair.second = Location.getWithNewPtr(Translator.getAddr());
return;
}
}
CurrentPair.second = Location;
}
MemoryAccessPair CurrentPair;
memoryaccess_def_iterator DefIterator;
MemoryLocation Location;
MemoryAccess *OriginalAccess;
bool WalkingPhi;
};
inline upward_defs_iterator upward_defs_begin(const MemoryAccessPair &Pair) {
return upward_defs_iterator(Pair);
}
inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); }
}
#endif