Files
archived-llvm/include/llvm/Bitcode/ReaderWriter.h
Peter Collingbourne 5498e18776 IR, Bitcode: Change bitcode reader to no longer own its memory buffer.
Unique ownership is just one possible ownership pattern for the memory buffer
underlying the bitcode reader. In practice, as this patch shows, ownership can
often reside at a higher level. With the upcoming change to allow multiple
modules in a single bitcode file, it will no longer be appropriate for
modules to generally have unique ownership of their memory buffer.

The C API exposes the ownership relation via the LLVMGetBitcodeModuleInContext
and LLVMGetBitcodeModuleInContext2 functions, so we still need some way for
the module to own the memory buffer. This patch does so by adding an owned
memory buffer field to Module, and using it in a few other places where it
is convenient.

Differential Revision: https://reviews.llvm.org/D26384

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@286214 91177308-0d34-0410-b5e6-96231b3b80d8
2016-11-08 06:03:43 +00:00

214 lines
8.5 KiB
C++

//===-- llvm/Bitcode/ReaderWriter.h - Bitcode reader/writers ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header defines interfaces to read and write LLVM bitcode files/streams.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_BITCODE_READERWRITER_H
#define LLVM_BITCODE_READERWRITER_H
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/MemoryBuffer.h"
#include <memory>
#include <string>
namespace llvm {
class BitstreamWriter;
class LLVMContext;
class Module;
class ModulePass;
class raw_ostream;
/// Offsets of the 32-bit fields of bitcode wrapper header.
static const unsigned BWH_MagicField = 0*4;
static const unsigned BWH_VersionField = 1*4;
static const unsigned BWH_OffsetField = 2*4;
static const unsigned BWH_SizeField = 3*4;
static const unsigned BWH_CPUTypeField = 4*4;
static const unsigned BWH_HeaderSize = 5*4;
/// Read the header of the specified bitcode buffer and prepare for lazy
/// deserialization of function bodies. If ShouldLazyLoadMetadata is true,
/// lazily load metadata as well.
ErrorOr<std::unique_ptr<Module>>
getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
bool ShouldLazyLoadMetadata = false);
/// Like getLazyBitcodeModule, except that the module takes ownership of
/// the memory buffer if successful. If successful, this moves Buffer. On
/// error, this *does not* move Buffer.
ErrorOr<std::unique_ptr<Module>>
getOwningLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
LLVMContext &Context,
bool ShouldLazyLoadMetadata = false);
/// Read the header of the specified bitcode buffer and extract just the
/// triple information. If successful, this returns a string. On error, this
/// returns "".
std::string getBitcodeTargetTriple(MemoryBufferRef Buffer,
LLVMContext &Context);
/// Return true if \p Buffer contains a bitcode file with ObjC code (category
/// or class) in it.
bool isBitcodeContainingObjCCategory(MemoryBufferRef Buffer,
LLVMContext &Context);
/// Read the header of the specified bitcode buffer and extract just the
/// producer string information. If successful, this returns a string. On
/// error, this returns "".
std::string getBitcodeProducerString(MemoryBufferRef Buffer,
LLVMContext &Context);
/// Read the specified bitcode file, returning the module.
ErrorOr<std::unique_ptr<Module>> parseBitcodeFile(MemoryBufferRef Buffer,
LLVMContext &Context);
/// Check if the given bitcode buffer contains a summary block.
bool
hasGlobalValueSummary(MemoryBufferRef Buffer,
const DiagnosticHandlerFunction &DiagnosticHandler);
/// Parse the specified bitcode buffer, returning the module summary index.
ErrorOr<std::unique_ptr<ModuleSummaryIndex>>
getModuleSummaryIndex(MemoryBufferRef Buffer,
const DiagnosticHandlerFunction &DiagnosticHandler);
/// \brief Write the specified module to the specified raw output stream.
///
/// For streams where it matters, the given stream should be in "binary"
/// mode.
///
/// If \c ShouldPreserveUseListOrder, encode the use-list order for each \a
/// Value in \c M. These will be reconstructed exactly when \a M is
/// deserialized.
///
/// If \c Index is supplied, the bitcode will contain the summary index
/// (currently for use in ThinLTO optimization).
///
/// \p GenerateHash enables hashing the Module and including the hash in the
/// bitcode (currently for use in ThinLTO incremental build).
void WriteBitcodeToFile(const Module *M, raw_ostream &Out,
bool ShouldPreserveUseListOrder = false,
const ModuleSummaryIndex *Index = nullptr,
bool GenerateHash = false);
/// Write the specified module summary index to the given raw output stream,
/// where it will be written in a new bitcode block. This is used when
/// writing the combined index file for ThinLTO. When writing a subset of the
/// index for a distributed backend, provide the \p ModuleToSummariesForIndex
/// map.
void WriteIndexToFile(const ModuleSummaryIndex &Index, raw_ostream &Out,
const std::map<std::string, GVSummaryMapTy>
*ModuleToSummariesForIndex = nullptr);
/// isBitcodeWrapper - Return true if the given bytes are the magic bytes
/// for an LLVM IR bitcode wrapper.
///
inline bool isBitcodeWrapper(const unsigned char *BufPtr,
const unsigned char *BufEnd) {
// See if you can find the hidden message in the magic bytes :-).
// (Hint: it's a little-endian encoding.)
return BufPtr != BufEnd &&
BufPtr[0] == 0xDE &&
BufPtr[1] == 0xC0 &&
BufPtr[2] == 0x17 &&
BufPtr[3] == 0x0B;
}
/// isRawBitcode - Return true if the given bytes are the magic bytes for
/// raw LLVM IR bitcode (without a wrapper).
///
inline bool isRawBitcode(const unsigned char *BufPtr,
const unsigned char *BufEnd) {
// These bytes sort of have a hidden message, but it's not in
// little-endian this time, and it's a little redundant.
return BufPtr != BufEnd &&
BufPtr[0] == 'B' &&
BufPtr[1] == 'C' &&
BufPtr[2] == 0xc0 &&
BufPtr[3] == 0xde;
}
/// isBitcode - Return true if the given bytes are the magic bytes for
/// LLVM IR bitcode, either with or without a wrapper.
///
inline bool isBitcode(const unsigned char *BufPtr,
const unsigned char *BufEnd) {
return isBitcodeWrapper(BufPtr, BufEnd) ||
isRawBitcode(BufPtr, BufEnd);
}
/// SkipBitcodeWrapperHeader - Some systems wrap bc files with a special
/// header for padding or other reasons. The format of this header is:
///
/// struct bc_header {
/// uint32_t Magic; // 0x0B17C0DE
/// uint32_t Version; // Version, currently always 0.
/// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
/// uint32_t BitcodeSize; // Size of traditional bitcode file.
/// ... potentially other gunk ...
/// };
///
/// This function is called when we find a file with a matching magic number.
/// In this case, skip down to the subsection of the file that is actually a
/// BC file.
/// If 'VerifyBufferSize' is true, check that the buffer is large enough to
/// contain the whole bitcode file.
inline bool SkipBitcodeWrapperHeader(const unsigned char *&BufPtr,
const unsigned char *&BufEnd,
bool VerifyBufferSize) {
// Must contain the offset and size field!
if (unsigned(BufEnd - BufPtr) < BWH_SizeField + 4)
return true;
unsigned Offset = support::endian::read32le(&BufPtr[BWH_OffsetField]);
unsigned Size = support::endian::read32le(&BufPtr[BWH_SizeField]);
uint64_t BitcodeOffsetEnd = (uint64_t)Offset + (uint64_t)Size;
// Verify that Offset+Size fits in the file.
if (VerifyBufferSize && BitcodeOffsetEnd > uint64_t(BufEnd-BufPtr))
return true;
BufPtr += Offset;
BufEnd = BufPtr+Size;
return false;
}
const std::error_category &BitcodeErrorCategory();
enum class BitcodeError { InvalidBitcodeSignature = 1, CorruptedBitcode };
inline std::error_code make_error_code(BitcodeError E) {
return std::error_code(static_cast<int>(E), BitcodeErrorCategory());
}
class BitcodeDiagnosticInfo : public DiagnosticInfo {
const Twine &Msg;
std::error_code EC;
public:
BitcodeDiagnosticInfo(std::error_code EC, DiagnosticSeverity Severity,
const Twine &Msg);
void print(DiagnosticPrinter &DP) const override;
std::error_code getError() const { return EC; }
static bool classof(const DiagnosticInfo *DI) {
return DI->getKind() == DK_Bitcode;
}
};
} // End llvm namespace
namespace std {
template <> struct is_error_code_enum<llvm::BitcodeError> : std::true_type {};
}
#endif