llvm/lib/IR/Type.cpp

651 lines
22 KiB
C++
Raw Normal View History

//===- Type.cpp - Implement the Type class --------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Type class for the IR library.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Type.h"
#include "LLVMContextImpl.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <utility>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Type Class Implementation
//===----------------------------------------------------------------------===//
Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
switch (IDNumber) {
case VoidTyID : return getVoidTy(C);
case HalfTyID : return getHalfTy(C);
case FloatTyID : return getFloatTy(C);
case DoubleTyID : return getDoubleTy(C);
case X86_FP80TyID : return getX86_FP80Ty(C);
case FP128TyID : return getFP128Ty(C);
case PPC_FP128TyID : return getPPC_FP128Ty(C);
case LabelTyID : return getLabelTy(C);
case MetadataTyID : return getMetadataTy(C);
case X86_MMXTyID : return getX86_MMXTy(C);
[IR] Add token types This introduces the basic functionality to support "token types". The motivation stems from the need to perform operations on a Value whose provenance cannot be obscured. There are several applications for such a type but my immediate motivation stems from WinEH. Our personality routine enforces a single-entry - single-exit regime for cleanups. After several rounds of optimizations, we may be left with a terminator whose "cleanup-entry block" is not entirely clear because control flow has merged two cleanups together. We have experimented with using labels as operands inside of instructions which are not terminators to indicate where we came from but found that LLVM does not expect such exotic uses of BasicBlocks. Instead, we can use this new type to clearly associate the "entry point" and "exit point" of our cleanup. This is done by having the cleanuppad yield a Token and consuming it at the cleanupret. The token type makes it impossible to obscure or otherwise hide the Value, making it trivial to track the relationship between the two points. What is the burden to the optimizer? Well, it turns out we have already paid down this cost by accepting that there are certain calls that we are not permitted to duplicate, optimizations have to watch out for such instructions anyway. There are additional places in the optimizer that we will probably have to update but early examination has given me the impression that this will not be heroic. Differential Revision: http://reviews.llvm.org/D11861 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245029 91177308-0d34-0410-b5e6-96231b3b80d8
2015-08-14 05:09:07 +00:00
case TokenTyID : return getTokenTy(C);
default:
return nullptr;
}
}
bool Type::isIntegerTy(unsigned Bitwidth) const {
return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
}
bool Type::canLosslesslyBitCastTo(Type *Ty) const {
// Identity cast means no change so return true
if (this == Ty)
return true;
// They are not convertible unless they are at least first class types
if (!this->isFirstClassType() || !Ty->isFirstClassType())
return false;
// Vector -> Vector conversions are always lossless if the two vector types
// have the same size, otherwise not. Also, 64-bit vector types can be
// converted to x86mmx.
if (auto *thisPTy = dyn_cast<VectorType>(this)) {
if (auto *thatPTy = dyn_cast<VectorType>(Ty))
return thisPTy->getBitWidth() == thatPTy->getBitWidth();
if (Ty->getTypeID() == Type::X86_MMXTyID &&
thisPTy->getBitWidth() == 64)
return true;
}
if (this->getTypeID() == Type::X86_MMXTyID)
if (auto *thatPTy = dyn_cast<VectorType>(Ty))
if (thatPTy->getBitWidth() == 64)
return true;
// At this point we have only various mismatches of the first class types
// remaining and ptr->ptr. Just select the lossless conversions. Everything
// else is not lossless. Conservatively assume we can't losslessly convert
// between pointers with different address spaces.
if (auto *PTy = dyn_cast<PointerType>(this)) {
if (auto *OtherPTy = dyn_cast<PointerType>(Ty))
return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
return false;
}
return false; // Other types have no identity values
}
bool Type::isEmptyTy() const {
if (auto *ATy = dyn_cast<ArrayType>(this)) {
unsigned NumElements = ATy->getNumElements();
return NumElements == 0 || ATy->getElementType()->isEmptyTy();
}
if (auto *STy = dyn_cast<StructType>(this)) {
unsigned NumElements = STy->getNumElements();
for (unsigned i = 0; i < NumElements; ++i)
if (!STy->getElementType(i)->isEmptyTy())
return false;
return true;
}
return false;
}
unsigned Type::getPrimitiveSizeInBits() const {
switch (getTypeID()) {
case Type::HalfTyID: return 16;
case Type::FloatTyID: return 32;
case Type::DoubleTyID: return 64;
case Type::X86_FP80TyID: return 80;
case Type::FP128TyID: return 128;
case Type::PPC_FP128TyID: return 128;
case Type::X86_MMXTyID: return 64;
case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth();
default: return 0;
}
}
unsigned Type::getScalarSizeInBits() const {
return getScalarType()->getPrimitiveSizeInBits();
}
int Type::getFPMantissaWidth() const {
if (auto *VTy = dyn_cast<VectorType>(this))
return VTy->getElementType()->getFPMantissaWidth();
assert(isFloatingPointTy() && "Not a floating point type!");
if (getTypeID() == HalfTyID) return 11;
if (getTypeID() == FloatTyID) return 24;
if (getTypeID() == DoubleTyID) return 53;
if (getTypeID() == X86_FP80TyID) return 64;
if (getTypeID() == FP128TyID) return 113;
assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
return -1;
}
bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
if (auto *ATy = dyn_cast<ArrayType>(this))
return ATy->getElementType()->isSized(Visited);
if (auto *VTy = dyn_cast<VectorType>(this))
return VTy->getElementType()->isSized(Visited);
return cast<StructType>(this)->isSized(Visited);
}
//===----------------------------------------------------------------------===//
// Primitive 'Type' data
//===----------------------------------------------------------------------===//
Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
[IR] Add token types This introduces the basic functionality to support "token types". The motivation stems from the need to perform operations on a Value whose provenance cannot be obscured. There are several applications for such a type but my immediate motivation stems from WinEH. Our personality routine enforces a single-entry - single-exit regime for cleanups. After several rounds of optimizations, we may be left with a terminator whose "cleanup-entry block" is not entirely clear because control flow has merged two cleanups together. We have experimented with using labels as operands inside of instructions which are not terminators to indicate where we came from but found that LLVM does not expect such exotic uses of BasicBlocks. Instead, we can use this new type to clearly associate the "entry point" and "exit point" of our cleanup. This is done by having the cleanuppad yield a Token and consuming it at the cleanupret. The token type makes it impossible to obscure or otherwise hide the Value, making it trivial to track the relationship between the two points. What is the burden to the optimizer? Well, it turns out we have already paid down this cost by accepting that there are certain calls that we are not permitted to duplicate, optimizations have to watch out for such instructions anyway. There are additional places in the optimizer that we will probably have to update but early examination has given me the impression that this will not be heroic. Differential Revision: http://reviews.llvm.org/D11861 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245029 91177308-0d34-0410-b5e6-96231b3b80d8
2015-08-14 05:09:07 +00:00
Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; }
Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; }
IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
return IntegerType::get(C, N);
}
PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
return getHalfTy(C)->getPointerTo(AS);
}
PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
return getFloatTy(C)->getPointerTo(AS);
}
PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
return getDoubleTy(C)->getPointerTo(AS);
}
PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
return getX86_FP80Ty(C)->getPointerTo(AS);
}
PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
return getFP128Ty(C)->getPointerTo(AS);
}
PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
return getPPC_FP128Ty(C)->getPointerTo(AS);
}
PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
return getX86_MMXTy(C)->getPointerTo(AS);
}
PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
return getIntNTy(C, N)->getPointerTo(AS);
}
PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
return getInt1Ty(C)->getPointerTo(AS);
}
PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
return getInt8Ty(C)->getPointerTo(AS);
}
PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
return getInt16Ty(C)->getPointerTo(AS);
}
PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
return getInt32Ty(C)->getPointerTo(AS);
}
PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
return getInt64Ty(C)->getPointerTo(AS);
}
//===----------------------------------------------------------------------===//
// IntegerType Implementation
//===----------------------------------------------------------------------===//
IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
// Check for the built-in integer types
switch (NumBits) {
case 1: return cast<IntegerType>(Type::getInt1Ty(C));
case 8: return cast<IntegerType>(Type::getInt8Ty(C));
case 16: return cast<IntegerType>(Type::getInt16Ty(C));
case 32: return cast<IntegerType>(Type::getInt32Ty(C));
case 64: return cast<IntegerType>(Type::getInt64Ty(C));
case 128: return cast<IntegerType>(Type::getInt128Ty(C));
default:
break;
}
IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
if (!Entry)
Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
return Entry;
}
bool IntegerType::isPowerOf2ByteWidth() const {
unsigned BitWidth = getBitWidth();
return (BitWidth > 7) && isPowerOf2_32(BitWidth);
}
APInt IntegerType::getMask() const {
return APInt::getAllOnesValue(getBitWidth());
}
//===----------------------------------------------------------------------===//
// FunctionType Implementation
//===----------------------------------------------------------------------===//
FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
bool IsVarArgs)
: Type(Result->getContext(), FunctionTyID) {
Type **SubTys = reinterpret_cast<Type**>(this+1);
assert(isValidReturnType(Result) && "invalid return type for function");
setSubclassData(IsVarArgs);
SubTys[0] = Result;
for (unsigned i = 0, e = Params.size(); i != e; ++i) {
assert(isValidArgumentType(Params[i]) &&
"Not a valid type for function argument!");
SubTys[i+1] = Params[i];
}
ContainedTys = SubTys;
NumContainedTys = Params.size() + 1; // + 1 for result type
}
// This is the factory function for the FunctionType class.
FunctionType *FunctionType::get(Type *ReturnType,
ArrayRef<Type*> Params, bool isVarArg) {
LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
auto I = pImpl->FunctionTypes.find_as(Key);
FunctionType *FT;
if (I == pImpl->FunctionTypes.end()) {
FT = (FunctionType *)pImpl->TypeAllocator.Allocate(
sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1),
alignof(FunctionType));
new (FT) FunctionType(ReturnType, Params, isVarArg);
pImpl->FunctionTypes.insert(FT);
} else {
FT = *I;
}
return FT;
}
FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
return get(Result, None, isVarArg);
}
bool FunctionType::isValidReturnType(Type *RetTy) {
return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
!RetTy->isMetadataTy();
}
bool FunctionType::isValidArgumentType(Type *ArgTy) {
return ArgTy->isFirstClassType();
}
//===----------------------------------------------------------------------===//
// StructType Implementation
//===----------------------------------------------------------------------===//
// Primitive Constructors.
StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
bool isPacked) {
LLVMContextImpl *pImpl = Context.pImpl;
AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
auto I = pImpl->AnonStructTypes.find_as(Key);
StructType *ST;
if (I == pImpl->AnonStructTypes.end()) {
// Value not found. Create a new type!
ST = new (Context.pImpl->TypeAllocator) StructType(Context);
ST->setSubclassData(SCDB_IsLiteral); // Literal struct.
ST->setBody(ETypes, isPacked);
Context.pImpl->AnonStructTypes.insert(ST);
} else {
ST = *I;
}
return ST;
}
void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
assert(isOpaque() && "Struct body already set!");
setSubclassData(getSubclassData() | SCDB_HasBody);
if (isPacked)
setSubclassData(getSubclassData() | SCDB_Packed);
NumContainedTys = Elements.size();
if (Elements.empty()) {
ContainedTys = nullptr;
return;
}
ContainedTys = Elements.copy(getContext().pImpl->TypeAllocator).data();
}
void StructType::setName(StringRef Name) {
if (Name == getName()) return;
StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
using EntryTy = StringMap<StructType *>::MapEntryTy;
// If this struct already had a name, remove its symbol table entry. Don't
// delete the data yet because it may be part of the new name.
if (SymbolTableEntry)
SymbolTable.remove((EntryTy *)SymbolTableEntry);
// If this is just removing the name, we're done.
if (Name.empty()) {
if (SymbolTableEntry) {
// Delete the old string data.
((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
SymbolTableEntry = nullptr;
}
return;
}
// Look up the entry for the name.
auto IterBool =
getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
// While we have a name collision, try a random rename.
if (!IterBool.second) {
SmallString<64> TempStr(Name);
TempStr.push_back('.');
raw_svector_ostream TmpStream(TempStr);
unsigned NameSize = Name.size();
do {
TempStr.resize(NameSize + 1);
TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
IterBool = getContext().pImpl->NamedStructTypes.insert(
std::make_pair(TmpStream.str(), this));
} while (!IterBool.second);
}
// Delete the old string data.
if (SymbolTableEntry)
((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
SymbolTableEntry = &*IterBool.first;
}
//===----------------------------------------------------------------------===//
// StructType Helper functions.
StructType *StructType::create(LLVMContext &Context, StringRef Name) {
StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
if (!Name.empty())
ST->setName(Name);
return ST;
}
StructType *StructType::get(LLVMContext &Context, bool isPacked) {
return get(Context, None, isPacked);
}
StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
StringRef Name, bool isPacked) {
StructType *ST = create(Context, Name);
ST->setBody(Elements, isPacked);
return ST;
}
StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
return create(Context, Elements, StringRef());
}
StructType *StructType::create(LLVMContext &Context) {
return create(Context, StringRef());
}
StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
bool isPacked) {
assert(!Elements.empty() &&
"This method may not be invoked with an empty list");
return create(Elements[0]->getContext(), Elements, Name, isPacked);
}
StructType *StructType::create(ArrayRef<Type*> Elements) {
assert(!Elements.empty() &&
"This method may not be invoked with an empty list");
return create(Elements[0]->getContext(), Elements, StringRef());
}
bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const {
if ((getSubclassData() & SCDB_IsSized) != 0)
return true;
if (isOpaque())
return false;
if (Visited && !Visited->insert(const_cast<StructType*>(this)).second)
return false;
// Okay, our struct is sized if all of the elements are, but if one of the
// elements is opaque, the struct isn't sized *yet*, but may become sized in
// the future, so just bail out without caching.
for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
if (!(*I)->isSized(Visited))
return false;
// Here we cheat a bit and cast away const-ness. The goal is to memoize when
// we find a sized type, as types can only move from opaque to sized, not the
// other way.
const_cast<StructType*>(this)->setSubclassData(
getSubclassData() | SCDB_IsSized);
return true;
}
StringRef StructType::getName() const {
assert(!isLiteral() && "Literal structs never have names");
if (!SymbolTableEntry) return StringRef();
return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
}
bool StructType::isValidElementType(Type *ElemTy) {
return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
[IR] Add token types This introduces the basic functionality to support "token types". The motivation stems from the need to perform operations on a Value whose provenance cannot be obscured. There are several applications for such a type but my immediate motivation stems from WinEH. Our personality routine enforces a single-entry - single-exit regime for cleanups. After several rounds of optimizations, we may be left with a terminator whose "cleanup-entry block" is not entirely clear because control flow has merged two cleanups together. We have experimented with using labels as operands inside of instructions which are not terminators to indicate where we came from but found that LLVM does not expect such exotic uses of BasicBlocks. Instead, we can use this new type to clearly associate the "entry point" and "exit point" of our cleanup. This is done by having the cleanuppad yield a Token and consuming it at the cleanupret. The token type makes it impossible to obscure or otherwise hide the Value, making it trivial to track the relationship between the two points. What is the burden to the optimizer? Well, it turns out we have already paid down this cost by accepting that there are certain calls that we are not permitted to duplicate, optimizations have to watch out for such instructions anyway. There are additional places in the optimizer that we will probably have to update but early examination has given me the impression that this will not be heroic. Differential Revision: http://reviews.llvm.org/D11861 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245029 91177308-0d34-0410-b5e6-96231b3b80d8
2015-08-14 05:09:07 +00:00
!ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
!ElemTy->isTokenTy();
}
bool StructType::isLayoutIdentical(StructType *Other) const {
if (this == Other) return true;
if (isPacked() != Other->isPacked())
return false;
return elements() == Other->elements();
}
StructType *Module::getTypeByName(StringRef Name) const {
return getContext().pImpl->NamedStructTypes.lookup(Name);
}
//===----------------------------------------------------------------------===//
// CompositeType Implementation
//===----------------------------------------------------------------------===//
Type *CompositeType::getTypeAtIndex(const Value *V) const {
if (auto *STy = dyn_cast<StructType>(this)) {
unsigned Idx =
(unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
assert(indexValid(Idx) && "Invalid structure index!");
return STy->getElementType(Idx);
}
return cast<SequentialType>(this)->getElementType();
}
Type *CompositeType::getTypeAtIndex(unsigned Idx) const{
if (auto *STy = dyn_cast<StructType>(this)) {
assert(indexValid(Idx) && "Invalid structure index!");
return STy->getElementType(Idx);
}
return cast<SequentialType>(this)->getElementType();
}
bool CompositeType::indexValid(const Value *V) const {
if (auto *STy = dyn_cast<StructType>(this)) {
// Structure indexes require (vectors of) 32-bit integer constants. In the
// vector case all of the indices must be equal.
if (!V->getType()->isIntOrIntVectorTy(32))
return false;
const Constant *C = dyn_cast<Constant>(V);
if (C && V->getType()->isVectorTy())
C = C->getSplatValue();
const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
return CU && CU->getZExtValue() < STy->getNumElements();
}
// Sequential types can be indexed by any integer.
return V->getType()->isIntOrIntVectorTy();
}
bool CompositeType::indexValid(unsigned Idx) const {
if (auto *STy = dyn_cast<StructType>(this))
return Idx < STy->getNumElements();
// Sequential types can be indexed by any integer.
return true;
}
//===----------------------------------------------------------------------===//
// ArrayType Implementation
//===----------------------------------------------------------------------===//
ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
: SequentialType(ArrayTyID, ElType, NumEl) {}
ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
assert(isValidElementType(ElementType) && "Invalid type for array element!");
LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
ArrayType *&Entry =
pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
if (!Entry)
Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
return Entry;
}
bool ArrayType::isValidElementType(Type *ElemTy) {
return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
[IR] Add token types This introduces the basic functionality to support "token types". The motivation stems from the need to perform operations on a Value whose provenance cannot be obscured. There are several applications for such a type but my immediate motivation stems from WinEH. Our personality routine enforces a single-entry - single-exit regime for cleanups. After several rounds of optimizations, we may be left with a terminator whose "cleanup-entry block" is not entirely clear because control flow has merged two cleanups together. We have experimented with using labels as operands inside of instructions which are not terminators to indicate where we came from but found that LLVM does not expect such exotic uses of BasicBlocks. Instead, we can use this new type to clearly associate the "entry point" and "exit point" of our cleanup. This is done by having the cleanuppad yield a Token and consuming it at the cleanupret. The token type makes it impossible to obscure or otherwise hide the Value, making it trivial to track the relationship between the two points. What is the burden to the optimizer? Well, it turns out we have already paid down this cost by accepting that there are certain calls that we are not permitted to duplicate, optimizations have to watch out for such instructions anyway. There are additional places in the optimizer that we will probably have to update but early examination has given me the impression that this will not be heroic. Differential Revision: http://reviews.llvm.org/D11861 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245029 91177308-0d34-0410-b5e6-96231b3b80d8
2015-08-14 05:09:07 +00:00
!ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
!ElemTy->isTokenTy();
}
//===----------------------------------------------------------------------===//
// VectorType Implementation
//===----------------------------------------------------------------------===//
VectorType::VectorType(Type *ElType, unsigned NumEl)
: SequentialType(VectorTyID, ElType, NumEl) {}
VectorType *VectorType::get(Type *ElementType, unsigned NumElements) {
assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
[slp] Fix a nasty bug in the SLP vectorizer that Joerg pointed out. Apparently some code finally started to tickle this after my canonicalization changes to instcombine. The bug stems from trying to form a vector type out of scalars that aren't compatible at all. In this example, from x86_mmx values. The code in the vectorizer that checks for reasonable types whas checking for aggregates or vectors, but there are lots of other types that should just never reach the vectorizer. Debugging this was made more confusing by the lie in an assert in VectorType::get() -- it isn't that the types are *primitive*. The types must be integer, pointer, or floating point types. No other types are allowed. I've improved the assert and added a helper to the vectorizer to handle the element type validity checks. It now re-uses the VectorType static function and then further excludes weird target-specific types that we probably shouldn't be touching here (x86_fp80 and ppc_fp128). Neither of these are really reachable anyways (neither 80-bit nor 128-bit things will get vectorized) but it seems better to just eagerly exclude such nonesense. I've added a test case, but while it definitely covers two of the paths through this code there may be more paths that would benefit from test coverage. I'm not familiar enough with the SLP vectorizer to synthesize test cases for all of these, but was able to update the code itself by inspection. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228899 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-12 02:30:56 +00:00
assert(isValidElementType(ElementType) && "Element type of a VectorType must "
"be an integer, floating point, or "
"pointer type.");
LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
VectorType *&Entry = ElementType->getContext().pImpl
->VectorTypes[std::make_pair(ElementType, NumElements)];
if (!Entry)
Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
return Entry;
}
bool VectorType::isValidElementType(Type *ElemTy) {
return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
ElemTy->isPointerTy();
}
//===----------------------------------------------------------------------===//
// PointerType Implementation
//===----------------------------------------------------------------------===//
PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
assert(EltTy && "Can't get a pointer to <null> type!");
assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
// Since AddressSpace #0 is the common case, we special case it.
PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
: CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
if (!Entry)
Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
return Entry;
}
PointerType::PointerType(Type *E, unsigned AddrSpace)
: Type(E->getContext(), PointerTyID), PointeeTy(E) {
ContainedTys = &PointeeTy;
NumContainedTys = 1;
setSubclassData(AddrSpace);
}
PointerType *Type::getPointerTo(unsigned addrs) const {
return PointerType::get(const_cast<Type*>(this), addrs);
}
bool PointerType::isValidElementType(Type *ElemTy) {
return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
[IR] Add token types This introduces the basic functionality to support "token types". The motivation stems from the need to perform operations on a Value whose provenance cannot be obscured. There are several applications for such a type but my immediate motivation stems from WinEH. Our personality routine enforces a single-entry - single-exit regime for cleanups. After several rounds of optimizations, we may be left with a terminator whose "cleanup-entry block" is not entirely clear because control flow has merged two cleanups together. We have experimented with using labels as operands inside of instructions which are not terminators to indicate where we came from but found that LLVM does not expect such exotic uses of BasicBlocks. Instead, we can use this new type to clearly associate the "entry point" and "exit point" of our cleanup. This is done by having the cleanuppad yield a Token and consuming it at the cleanupret. The token type makes it impossible to obscure or otherwise hide the Value, making it trivial to track the relationship between the two points. What is the burden to the optimizer? Well, it turns out we have already paid down this cost by accepting that there are certain calls that we are not permitted to duplicate, optimizations have to watch out for such instructions anyway. There are additional places in the optimizer that we will probably have to update but early examination has given me the impression that this will not be heroic. Differential Revision: http://reviews.llvm.org/D11861 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@245029 91177308-0d34-0410-b5e6-96231b3b80d8
2015-08-14 05:09:07 +00:00
!ElemTy->isMetadataTy() && !ElemTy->isTokenTy();
}
bool PointerType::isLoadableOrStorableType(Type *ElemTy) {
return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();
}